Marvin Tanenbaum

Marvin Tanenbaum received his PhD in 2010 from Utrecht University (Cum Laude) for his work on cell division in the group of Prof. René Medema. During his PhD work, Marvin used live-cell microscopy to study the molecular mechanism of cell division, focusing on a group of proteins called microtubule motor proteins. His thesis work was awarded the NVMO Oncology thesis award and the Utrecht University Thesis Prize. After obtaining his PhD, he received fellowships from the Dutch Cancer Society and EMBO to perform his postdoctoral research in the group of Prof. Ron Vale at UCSF in the United States. As a postdoc, Marvin developed a keen interest in studying the mechanisms and dynamics of gene expression control in single cells. He pioneered several new techniques, including the SunTag system, that enabled real-time observation of single protein molecules in action, and developed methods to observe gene expression in single living cells by fluorescence microscopy. He also developed a technique based on the SunTag system to modulate the transcriptional activity of individual endogenous genes. In 2015, he became a group leader at the Hubrecht Institute and was awarded an ERC Starting grant. In 2017 he was selected as a HHMI International Research Scholar. His group uses cutting edge, single molecule microscopy and novel types of genetic engineering to dissect the temporal and spatial control of gene expression.

Visit the Tanenbaum lab website


Team membersTanenbaum

Linda Dekker


Sanne Boersma

PhD Student

Ran Zhuo

MSc Student

Lenno Krenning


Dion de Steenwinkel

MSc student

Deepak Khuperkar


Ive Logister


Stijn Sonneveld

PhD student

Suzan Ruijtenberg


Tim Hoek

PhD Student

Marvin Tanenbaum

Group leader

Show more

Show more


Tanenbaum: Single cell dynamics of gene expression

All the information to build a cell or organism is stored in our DNA. The process of translating this information to proteins is complex and highly regulated, allowing individual cells to precisely modulate gene expression to meet the constantly changing needs of the cell. We use high-resolution, single molecule microscopy and genetic engineering to study how individual cells dynamically tune gene expression. Our work focusses on (post-transcriptional) gene expression regulation during the cell cycle, and we aim to understand how control of protein levels affects key cell cycle decisions. Using live-cell microscopy, augmented by RNA sequencing and innovative types...

Read research

Key publications

Yan X, Hoek TA, Vale RD and Tanenbaum ME. (2016). Dynamics of Translation of Single mRNA Molecules In Vivo. Cell. May 5;165(4):976-89 PDF

Tanenbaum ME, Stern-Ginossar N, Weissman JS and Vale RD. (2015). Regulation of mRNA translation during mitosis. eLife. 2015 Aug 25;4 PDF

Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS and Vale RD. (2014). A protein tagging system for signal amplification in gene transcription and fluorescence imaging. Cell. Oct. 23, 2014 PDF