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SUMMARY

Regulation of mRNA translation, the process by
which ribosomes decode mRNAs into polypeptides,
is used to tune cellular protein levels. Currently,
methods for observing the complete process of
translation from single mRNAs in vivo are unavai-
lable. Here, we report the long-term (>1 hr) imaging
of single mRNAs undergoing hundreds of rounds
of translation in live cells, enabling quantitative mea-
surements of ribosome initiation, elongation, and
stalling. This approach reveals a surprising heteroge-
neity in the translation of individual mRNAs within
the same cell, including rapid and reversible tran-
sitions between a translating and non-translating
state. Applying this method to the cell-cycle gene
Emi1, we find strong overall repression of translation
initiation by specific 50 UTR sequences, but individual
mRNAmolecules in the same cell can exhibit dramat-
ically different translational efficiencies. The ability to
observe translation of single mRNA molecules in live
cells provides a powerful tool to study translation
regulation.

INTRODUCTION

Precise tuning of the expression of each gene in the genome

is critical for many aspects of cell function. The level of gene

expression is regulated at multiple distinct steps, including tran-

scription, mRNA degradation, and translation (Schwanhäusser

et al., 2011). Regulation of all of these steps in gene expression

is important, though the relative contribution of each control

mechanism varies for different biological processes (Brar et al.,

2012; Jovanovic et al., 2015; Peshkin et al., 2015; Tanenbaum

et al., 2015; Vardy and Orr-Weaver, 2007).

Measuring the translation rate from individualmRNAs over time

provides valuable information on the mechanisms of translation

and translational regulation. In vitro experiments, mainly using

bacterial ribosomes, have revealed exquisite information on ribo-

some translocation dynamics at the single molecule level (Blan-

chard, 2009; Chen et al., 2012; Cornish et al., 2008; Fei et al.,

2008;Wenet al., 2008;Zaher andGreen, 2009), but suchmethods
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have not yet been applied in vivo. In contrast, a genome-wide

snapshot of the translational efficiency of endogenous mRNAs

in vivo can be obtained through the method of ribosomal profiling

(Ingolia et al., 2009; Ingolia et al., 2011). However, this method

requires averaging ofmanycells andprovides limited temporal in-

formation because of the requirement to lyse cells to make these

measurements. Single cell imaging studies have succeeded in

measuring average protein synthesis rates (Aakalu et al., 2001;

Brittis et al., 2002;Hanet al., 2014; Leung et al., 2006; Tanenbaum

et al., 2015; Yu et al., 2006), observing the first translation event of

an mRNA (Halstead et al., 2015), localizing sub-cellular sites of

translation by co-localizing mRNAs and ribosomes (Katz et al.,

2016; Wu et al., 2015), and staining nascent polypeptides with

small molecule dyes (Rodriguez et al., 2006).

While ribosomal profiling and other recently developed

methods have provided many important new insights into the

regulation of translation, many questions cannot be addressed

using current technologies. For example, it is unclear to what

extent different mRNA molecules produced in a single cell from

the same gene behave similarly. Many methods to study transla-

tion in vivo require averaging of many mRNAs, masking potential

differences between individual mRNA molecules. Such differ-

ences could arise fromdifferential post-transcriptional regulation,

such as nucleotide modifications (Choi et al., 2016; Wang et al.,

2015), differential transcript lengths through use of alternative

transcriptional start sites (Rojas-Duran andGilbert, 2012) or poly-

adenylation site selection (Elkon et al., 2013; Gupta et al., 2014),

differences in ribonucleic protein (RNP) composition (Wu et al.,

2015), distinct intracellular localization (Hüttelmaier et al., 2005),

or different states of RNA secondary structure (Babendure et al.,

2006; Kertesz et al., 2010). Heterogeneity among mRNA mole-

cules could have a profound impact on the total amount of poly-

peptide produced, as well as the localization of protein synthesis,

but remains poorly studied. Furthermore, the extent to which

translation of single mRNA molecules varies over time is also

largely unknown. For example, translation may occur in bursts,

rather than continuously (Tatavarty et al., 2012; Yu et al., 2006),

and regulationof protein synthesismayoccurbymodulatingburst

size and/or frequency, which could occur either globally or on

each mRNA molecule individually. In addition, the ability of an

mRNAmolecule to initiate translationmay varywith time or spatial

location, for example as cells progress through the cell cycle

(Stumpf et al., 2013; Tanenbaum et al., 2015) or undergo active

microtubule-based transport to particular cellular destinations
y Elsevier Inc.
commons.org/licenses/by/4.0/).
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(Holt andSchuman, 2013). Such regulation could involve changes

in the ratesof translation initiationand/or the ribosomeelongation.

To address these questions, newmethods are required for visual-

izing translation of single mRNA molecules in live cells over time.

Here,wepresent amethod, basedon theSunTagfluorescence

tagging system that we recently developed (Tanenbaum et al.,

2014), for measuring the translation of single mRNA molecules

over long periods of time. Using this system, we have measured

initiation, elongation, and stalling on individual mRNA molecules

and have uncovered unexpected heterogeneity among different

mRNA molecules encoded by the same gene within a single

cell. Our system will be widely applicable to the study of mRNA

translation in live cells.

RESULTS

An Assay for Long-Term Observation of Translation of
Individual mRNAs
Observing the synthesis of a genetically encoded fluorescent pro-

tein, such as GFP, in vivo is difficult because of the relatively long

maturation time required to achieve a fluorescent state. Thus, a

GFP-fusion protein typically will not fluoresce until after its trans-

lation is completed. To overcome this temporal challenge and to

create a sufficiently bright signal to observe protein synthesis

from single mRNAs in vivo, we used our recently developed

SunTag system (Tanenbaum et al., 2014). In this assay, cells are

co-transfected with a reporter transcript containing an array of

24 SunTag peptides followed by a gene of interest, along with a

secondconstruct expressing aGFP-tagged single-chain intracel-

lular antibody (scFv-GFP) that binds to the SunTag peptide with

high affinity. As the SunTag peptides are translated and emerge

from the ribosome exit tunnel, they are rapidly bound by the solu-

ble and already fluorescent scFv-GFP (Figure 1A). Importantly,

labeling of nascent chains using the SunTag antibody did not de-

tectably alter protein synthesis rates of a reportermRNA in human

U2OS cells, as determined by FACS (fluorescence-activated cell

sorting) analysis (Figure 1B). At the same time, themRNAwas flu-

orescently labeled by introducing 24 copies of a short hairpin

sequence into the 30 UTR and co-expressing the PP7 bacterio-

phage coat protein (Chao et al., 2008), which binds with high

affinity to the hairpin sequence, fused to three copies of mCherry

(PP7-mCherry) (Figure 1A).

When observed by spinning disk confocal microscopy, the co-

expression of a reporter construct (SunTag24x-Kif18b-PP724x,
Figure 1. Fluorescence Labeling of Nascent Chains to Visualize Trans

(A) Schematic of nascent polypeptide labeling using the SunTag system and mR

(B) AmCherry-SunTag24x reporter genewas co-transfected with either GFP or scF

by FACS (Experimental Procedures). Binding of the scFv-GFP to the SunTag nas

(C) A representative U2OS cell is shown expressing scFv-GFP, PP7-3xmCherry

sites (scFv-GFP) co-localize with mRNAs (PP7-3xmCherry). Ribosomeswere diss

sites and mRNA do not perfectly overlap because of the brief time difference in

(D) Schematic of nascent polypeptide labeling and membrane tethering of the m

(E) U2OS cells expressing scFv-GFP (green), PP7-2xmCherry-CAAX (red), and th

(top panel) and a zoomed-in view from the white-boxed area containing a few m

(F) U2OS cells were transfected with mCherry, PP7-mCherry, or PP7-mCherry-C

30 UTR, and GFP expression was analyzed by FACS (Experimental Procedures)

positive cells are shown in (B) and (F) (n = 3 independent experiments). Scale ba

See also Figure S1 and Movies S1–S3.
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with Kif18b being a kinesin motor with a 2.5 kb coding sequence;

Tanenbaum et al., 2011), scFv-GFP and PP7-mCherry, resulted

in the appearance of a small number (10–50) of very bright green

and red fluorescent spots per cell that co-migrated in time-lapse

movies (Figure 1C; Movie S1). Spot tracking revealed that these

spots diffused with a diffusion coefficient of 0.047 mm2/s, which

is slightly slower than previousmeasurements of mRNA diffusion

(0.1–0.4 mm2/s) (Katz et al., 2016), consistent with the fact

that our reporter mRNA contains a larger open reading frame

(4.4 kb versus 1.1 kb) and thus more associated ribosomes. In

addition, we observed many dim GFP spots that did not co-

migrate with an mCherry signal in time-lapse movies. The bright

spots rapidly disappeared upon terminating translation by

addition of a protein synthesis inhibitor, puromycin, which dis-

sociates nascent polypeptides and ribosomes from mRNA

(Figure 1C; Movie S2), indicating that they are sites of active

translation where multiple ribosomes are engaged on a single

mRNA molecule. The dim spots were unaffected by puromycin

treatment, suggesting that they represent individual, fully syn-

thesized SunTag24x-Kif18b proteins that had already been

released from the ribosome. Thus, this translation imaging assay

allows visualization of ongoing translation of single mRNA

molecules.

Rapid 3D diffusion of mRNAs makes it difficult to track single

mRNAs for >1 min, as mRNAs continuously diffuse in and out of

the z-plane of observation, and mRNAs regularly cross paths,

complicating identification and tracking of individual mRNA

molecules over time. To track mRNAs unambiguously for long

periods of time, we added a CAAX sequence, a prenylation

sequence that gets inserted into the inner leaflet of the plasma

membrane, to the PP7-mCherry protein that served to tether

mRNAs to the 2D plane of the plasma membrane (Figures 1D

and 1E). As a result of many PP7-mCherry molecules clustering

through their interaction with the multiple recognition sites on a

single mRNA, bright red dots appeared on the plasma mem-

brane at the bottom of the cell, representing a tethered mRNA

molecule (Figure 1E). Tethered mRNA molecules co-migrated

with scFv-GFP foci, indicating that they are sites of active trans-

lation (Figure 1E; Movie S3). Membrane tethering of the mRNA

had minimal effects on the protein expression of a GFP reporter

construct as analyzed by FACS (Figure 1F). While membrane

tethering greatly improves the ability to visualize translation on

single mRNA molecules over long periods of time and does not

appear to grossly perturb mRNA translation, it is important to
lation of Single mRNA Molecules

NA labeling (A) and membrane tethering (D) using the PP7 system.

v-GFP, and the expression of the SunTag24x-mCherry reporter was determined

cent chain did not detectably alter protein expression.

, and the translation reporter (SunTag24x-Kif18b-PP724x). Cytosolic translation

ociated frommRNA by addition of puromycin (right panel). Note that translation

acquiring GFP and mCherry images.

RNA using the PP7 system.

e translation reporter (SunTag24x-Kif18b-PP724x). A single time point of the cell

RNAs (lower) are shown.

AAX together with a GFP reporter transcript with 24 PP7 binding sites in the

. Cumulative distribution of GFP expression levels from GFP-mCherry double

rs, 5 mm (upper) and 2 mm (lower).



note that some aspects of translation, especially localized trans-

lation, may be altered due to tethering (Discussion).

We first analyzed the PP7-mCherry spots observed on the

plasma membrane to confirm that they contained only a single

mRNA molecule. The fluorescence intensities of PP7-mCherry

foci were very homogeneous (Figure S1A). Their absolute inten-

sity was �1.4-fold brighter, on average, than single, membrane-

tethered SunTag24x-CAAX proteins bound with scFv-mCherry,

which is expected to contain 24mCherrymolecules (Figure S1B).

PP7 binds as a dimer to the RNA hairpin, and each PP7 was

taggedwith two tandemcopies ofmCherry. Thus,mRNAs’ spots

could be expected to be four times as bright as single scFv-

mCherry-SunTag24x-CAAX spots, but previous studies sug-

gested that only about half of PP7 binding sitesmay be occupied

(Wu et al., 2015); thus, mRNA spots would be about 2-fold

brighter than single mCherry-SunTag24x spots if they contain a

single mRNA molecule but R4-fold brighter if they contained

two or moremRNAs. These results are therefore most consistent

with the mCherry-PP7 foci being single mRNA molecules rather

than multiple copies of mRNAs. Further supporting this idea, we

tracked 63 single mRNA foci for 30–45 min and did not find a

single case in which one spot split into two, which would have

been indicative of more than one mRNA molecule being present

in a single spot.

Because single mRNAs were tethered to the plasma mem-

brane through multiple PP7 molecules and thus through many

CAAX membrane insertion domains, the 2D diffusion of mRNAs

was extremely slow (1.06 3 10�3 mm2/s, n = 211 mRNAs). This

slow diffusion made it possible to track individual mRNAs and

their associated translation sites for extended periods of time

(mean tracking time >1 hr) (Figure S1C). Furthermore, the very

slow diffusion rate of tethered mRNAs allowed us to image teth-

ered translation sites using long exposure times (500–1000 ms).

During this time interval, rapidly diffusing, non-tethered fully syn-

thesized polypeptides only produced a blurred, diffuse image on

the camera sensor, which enabled sites of translation to be easily

distinguished from fully synthesized molecules (Figure S1D).

Finally, to confirm that the scFv-GFP was binding to nascent

SunTag peptides, we replaced the SunTag epitope peptides

in our reporter mRNA with an unrelated nucleotide sequence

(encoding BFP) and found no GFP foci formation near mRNAs

(Figure S1E).

In conclusion, we have developed assays that enable both

single mRNAs and their associated nascent translating poly-

peptides to be imaged over time. This general SunTag-based

method can be performed with either freely diffusing mRNAs

or mRNAs tethered to the plasma membrane, each of which

has unique advantages depending on the specific biological

question (Discussion). For further experiments in this study, we

used the membrane-tethered system to follow translation for

long periods of time.

Measurement of Ribosome Number, Initiation Rate, and
Elongation Rate on Single mRNAs
To estimate the number of ribosomes translating each mRNA,

we compared the scFv-GFP fluorescence intensity of translation

sites with that of the single, fully synthesized SunTag24x-Kif18b

molecules present in the same cell (Figures S2A and S2B).
Several considerations need to be taken into account to calcu-

late ribosome number from the fluorescence intensities of

translation sites and fully synthesized single SunTag proteins

(Supplemental Experimental Procedures). First, ribosomes pre-

sent at the 50 end of the reporter transcript have translated

only a subset of the 24 SunTag peptides, so the nascent poly-

peptide associated with these ribosomes will have lower fluores-

cence intensity due to fewer bound scFv-GFPs. We generated a

mathematical model to correct for the difference in fluorescence

intensity for ribosomes at different positions along the transcript

(Supplemental Experimental Procedures). Second, if scFv-GFP-

peptide has a slow on rate for the epitope in vivo, a lag time could

exist between the synthesis of a SunTag peptide and binding of a

scFv-GFP, which could result in the underestimation of the num-

ber of ribosomes per mRNA. To test this, cells were treated with

the translation inhibitor cycloheximide (CHX), which blocks ribo-

some elongation by locking ribosomes on the mRNA and

prevents the synthesis of new SunTag peptides, while allowing

binding of scFv-GFP to existing peptides to reach equilibrium.

The translation site scFv-GFP signal did not substantially in-

crease after CHX treatment (Figure S2C), indicating that under

our experimental conditions, the lag time between peptide

synthesis and scFv-GFP binding does not detectably affect

translation-site intensity. Based on the above controls and our

mathematical model, we could estimate the ribosome number

per mRNA from the fluorescence intensity of the translation

site. Approximately 30% of the mRNAs did not have a corre-

sponding GFP signal, suggesting that they were not actively

translating. For the remaining 70% of the mRNAs that were

translating, the majority (76%) had between 10–25 ribosomes

(Figure 2A; Supplemental Experimental Procedures), corre-

sponding to an average inter-ribosome distance of �200–400

nucleotides (nt). We also compared translation-site intensity of

two additional reporter mRNAs with either 53 or 103 SunTag

peptides with the 243 peptide reporter. This analysis revealed

that ribosome density was very similar on the 53 and 103 re-

porter (1.26-fold and 1-fold, respectively) (Figure S2D), indicating

that the long 243 SunTag array does not grossly perturb ribo-

some loading on the reporter mRNA.

Next, we measured the translocation speed of ribosomes on

single mRNAs by treating cells with harringtonine, a small mole-

cule inhibitor of translation that stalls new ribosomes at the start

of the mRNA coding sequence without affecting ribosomes

further downstream (Ingolia et al., 2011). As mRNA-bound

ribosomes complete translation one-by-one after harringtonine

treatment, the GFP signal on mRNAs decreases (Figures 2B–

2D; Movie S4). Using a simple mathematical model to fit the

decay in fluorescence of a cumulative curve from many mRNAs

(Figure S7; Supplemental Experimental Procedures), we esti-

mate a ribosome translocation rate of 3.5 ± 1.1 codons/s. In a

parallel approach, we also measured the total time required for

runoff of all ribosomes from individual mRNAs (Figure S2E),

from which we calculated a similar translation elongation rate

(3.1 ± 0.14 codons/s) as the one obtained through our model

(Supplemental Experimental Procedures). A reporter with only

5 instead of 24 SunTag peptides showed similar elongation

kinetics (3.1 ± 0.4 codons/s) (Figure S2F), indicating that translo-

cation rates are likely not affected by SunTag labeling of the
Cell 165, 976–989, May 5, 2016 979
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Figure 2. Measurements of Ribosome Initi-

ation and Elongation Rates on Single

mRNA Molecules

U2OScells expressing scFv-GFP, PP7-2xmCherry-

CAAX, and the translation reporter (SunTag24x-

Kif18b-PP724x).

(A) Distribution of the number of ribosomes bound

to single mRNAs of the translation reporter

(SunTag24x-Kif18b-PP724x) (n = 2 independent

experiments, 16 cells, 124 mRNAs), see Supple-

mental Experimental Procedures.

(B–D) U2OS cells expressing the translation re-

porter (SunTag24x-Kif18b-PP724x)were treatedwith

harringtonine at t = 0. (B) Representative images

from a time-lapse movie. (C) Five representative

traces of fluorescence decay on single mRNAs (of

>100 analyzed). (D) Normalizedquantificationof the

decrease in fluorescence over time from many

translation sites (n = 4 independent experiments, 37

cells, 536 mRNAs). Scale bars, 5 mm.

See also Figure S2 and Movie S4.
nascent chain. Finally, wemeasured elongation rates of a shorter

and codon-optimized reporter gene, which revealed a somewhat

faster elongation rate of 4.9 codons/s (Figure S2G), indicating

that elongation rates may differ on different transcripts. Using

the elongation rate and ribosome density described above, we

were able to estimate the translation initiation rate to be between

1.4–3.6 min�1 on the Kif18b reporter (Supplemental Experi-

mental Procedures).

Together, these results provide the first in vivo measurements

of the rates of ribosome initiation and translocation on single

mRNA molecules in live cells.

Temporal Changes in Translation of Single mRNA
Molecules
To study translation over time, we imaged cells for 2 hr and quan-

tified the scFv-GFPsignal fromsinglemRNAmolecules that could

be tracked for >1 hr (Figures 3A, 3B, and S3A). The results show

considerable fluctuations in the translational state of individual

mRNAs over time (Figures 3A, 3B, and S3A). Such large fluctua-

tions were not observed when cells were treated with the trans-

lation inhibitor CHX (Figure S3B), indicating they were due to

changes in translation initiation and/or elongation rather than

measurement noise. We also observed heterogeneity of behavior

between different mRNAs. Some remained in a high translating

state for >1 hr (e.g., Figures S3A12 and 13). Others shut down

translation initiation and lost their scFv-GFP signal (e.g., Figures

3A, 3B, and S3A1, 3–11, and 14), which may account for the

population of non-translating mRNAs observed in steady-state
980 Cell 165, 976–989, May 5, 2016
measurements (Figure 2A). From the

progressive decline in scFv-GFP fluores-

cence (Figure 3C; Movie S5), we could

estimate a ribosome run-off rate of 3

codons/s (Figure 3C), which is similar to

that measured after addition of harringto-

nine (3.5 ± 1.1 codons/s) (Figure 2). Inter-

estingly, a subset (67 of 104mRNAs, three

independent experiments, 19 cells) of
these mRNAs later reinitiated translation and largely recovered

their original scFv-GFP fluorescence (Figures 3A, 3B, 3D, and

S3A1, 3, 5, and 8–10). Individual mRNAs even showed repeated

cycling between non-translating and translating states (Figure 3A,

yellow line, and S3A3, 5 and 8). Such cycles of complete transla-

tional shutdown and re-initiation occurred 0.29 ± 0.10 times per

mRNA per hour (n = 4 independent experiments, 27 cells, 106

mRNAs), suggesting that most mRNAs will undergo one or more

translational shutdown and re-initiation events in their lifetime.

Thus, singlemRNA imaging reveals reversible switching between

translational shutdown and polysome formation.

After synchronized expression of the reporter construct using

an inducible promoter, we often observed the initial binding

events of newly transcribed mRNAs to the PP7-mCherry at

the membrane (Figures 4A and 4B). Of these initial binding

events, 44% of the mRNAs were associated with scFv-GFP

fluorescence, indicating that they had already begun transla-

tion. However, the majority, 56% of mRNAs, initially appeared

at the membrane in a non-translating state and subsequently

converted to a translating state, usually within 1–5 min

(Figure 4C; Movie S6). These mRNAs are likely newly tran-

scribed mRNAs that are translating for the first time, rather

than mRNAs that have already undergone translation but tran-

sitioned temporarily to a non-translating state. In support of this

argument, long-term (>1 hr) imaging of single mRNAs reveals

that mRNAs spend on average only 2.5% of their lifetime in

such a temporary non-translating state (n = 4 independent

experiments, 27 cells, 106 mRNAs), which is not sufficient to
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explain the 56% non-translating mRNAs that appeared at the

membrane after synchronized transcription of the reporter.

Rapid initiation of translation on newly transcribed mRNAs

was described recently (Halstead et al., 2015), but our assay

additionally allows an analysis of polysome buildup on new

mRNAs (Figure 4B). Our analysis of the increase in scFv-GFP

fluorescence indicates that, once the first ribosome begins

chain elongation, additional ribosomes initiate translation with

a rate indistinguishable from that on polysomes at steady state

(Supplemental Experimental Procedures). We also examined

the rate of fluorescence recovery (corresponding to polysome

buildup) after complete shutdown of translation and subse-

quent re-initiation (Figure 4D). The polysome buildup on new

transcripts was comparable to that observed for mRNAs that

were cycling between translating and non-translating states

(Figure 4D).

Ribosome Stalling
Several studies reported that ribosomes can pause or stall at a

defined nucleic acid sequence with a regulatory function (Walter

and Blobel, 1981; Yanagitani et al., 2011), at chemically modi-

fied or damaged nucleotides (Simms et al., 2014), or at regions

in the RNA with a strong secondary structure (Tholstrup et al.,

2012; Wen et al., 2008). We found that a subset (�5%–10%)

of mRNAs retained a bright scFv-GFP signal 15 min after

harringtonine treatment (Figures 2B and 2D), a time at which

ribosomes translocating at �3 codons/s should have finished

translating the reporter. A similar percentage of stalled ribo-

somes was observed on two additional reporter transcripts,

both of which were designed using optimal codon usage (Fig-

ures S2G and S4A). Ribosome stalling also was observed using

hippuristanol (Figure S4B), a translation initiation inhibitor with a

different mechanism of inhibition (Bordeleau et al., 2006), indi-

cating that the stalling was not caused by harringtonine. We

also observed stalls when examining ribosome runoff from

non-tethered cytosolic mRNAs lacking PP7 binding sites (Fig-

ure S4C). Importantly, stalls were not observed after puromycin

treatment (Figures S4D and S4E) and the prolonged (>15 min)

scFv-GFP signal on mRNAs from harringtonine-treated cells

rapidly disappeared upon the addition of puromycin, confirming

that the observed signal indeed represents stalled ribosomes

(Figure S4F). The majority of mRNAs with stalled ribosomes

(33 of 43) could be tracked for >40 min, the typical duration of

our harringtonine runoff experiments, indicating that they were

not readily targeted by the no-go mRNA decay machinery within

this time frame.
Figure 3. Long-Term Dynamics of Translation of Single mRNA Molecu

U2OS cells expressing scFv-GFP, PP7-2xmCherry-CAAX, and the translation re

(A) U2OS cell expressing the SunTag24x-Kif18b-PP724x reporter was imaged by

undergoing changes in translation over time (upper). Intensity of scFv-GFP was

scFv-GFP intensity of translation sites marked by asterisk with the same color.

(B) ScFv-GFP intensity traces of two additional mRNA molecules.

(C) mRNAs undergoing permanent translation shutdown. Fluorescence intensity

(pink lines) are shown.

(D) mRNAs undergoing translation re-activation after shutdown. Average (black l

(E) Time to reappearance of the first scFv-GFP fluorescence from translation s

re-initiated translation after complete shutdown and did so within 10 min (n = 10

See also Figure S3 and Movie S5.
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Ribosome stalls could be due to defective ribosomes causing

roadblocks on the mRNA or due to defects in the mRNA. These

models can potentially be distinguished by examining how such

stalls are resolved. A single defective ribosome will inhibit ribo-

some runoff until the stalled ribosome is removed, after which,

the remaining ribosomes will run off at a normal rate. In contrast,

if the stalls are caused by defects to themRNA, such as chemical

damage, then each ribosome passing over the damaged nucle-

otide will be delayed, resulting in an overall slower scFv-GFP

decay rate (Figure 5A). Long-term tracking of stalled ribosomes

on single mRNAs was consistent with the latter model, indicating

that ribosome stalling is likely caused by defective mRNA (Fig-

ure 5B). Consistent with the hypothesis that chemical damage

to mRNA causes ribosome stalling, treatment of cells with

4-nitroquilone-1-oxide (4NQO), a potent nucleic-acid-damaging

agent that causes 8-oxoguanine modifications and stalls ribo-

somes in vitro (Simms et al., 2014), resulted in a slow runoff on

the majority of mRNAs, indicating widespread ribosome stalling

(Figure 5C). Thus, chemical damage to mRNAs stalls ribosome

elongation in vivo.

Regulated ribosome pausing occurs both in vitro and in vivo

at asparagine 256 in the stress-related transcription factor

Xbp1 (Ingolia et al., 2011; Yanagitani et al., 2011), and this ribo-

some pausing is important for membrane targeting of the mRNA

(Yanagitani et al., 2011). To test whether our translation imaging

system could recapitulate such translation pausing, we intro-

duced a strong ribosome-pausing sequence (a point mutant of

the wild-type Xbp1-pausing sequence that shows enhanced

ribosome pausing [Yanagitani et al., 2011]) into the 30 region of

the coding sequence of our reporter (hereafter referred to as

Xbp1 reporter). Harringtonine ribosome runoff experiments on

the Xbp1 reporter revealed a delay in ribosome runoff (Fig-

ure 5D), confirming that our reporter faithfully reproduced the

ribosome-pausing phenotype. To study the behavior of individ-

ual ribosomes on the Xbp1 ribosome-pausing sequence, we

tracked single mRNAs during ribosome runoff. Surprisingly,

the fluorescence decay was not linear, as would be expected

if each ribosome paused a similar amount of time on the pause

site. Rather, fluorescence decay occurred in bursts interspaced

with periods in which no decay was detectable (Figures 4 and

5E, representative traces shown out of 25 analyzed). These

results indicate that most ribosomes are only briefly delayed

at the Xbp1 pause site, but a small subset of ribosomes remain

stalled for an extended (>10 min) period of time, explaining the

strong ribosome stalling phenotype observed in ensemble

experiments.
les

porter (SunTag24x-Kif18b-PP724x).

time-lapse microscopy. Blue and yellow asterisks mark two different mRNAs

measured over time for the two mRNAs (lower). Colors of lines correspond to

quantification is shown (n = 24 mRNAs). Average (black line) and single traces

ine) and single traces (pink lines) are shown (n = 30 mRNAs).

ites that underwent complete translational shutdown. �60% of the mRNAs

4 translational sites analyzed). Scale bar, 2 mm.
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Figure 4. Analysis of Polysome Build Up on

Newly Transcribed mRNAs

U2OScellsexpressingscFv-GFP,PP7-2xmCherry-

CAAX, and the translation reporter (SunTag24x-

Kif18b-PP724x).

(A) Images from a time-lapse movie of newly

transcribed mRNAs undergoing the first rounds of

translation.

(B) Quantification of the fluorescence intensity

increase, aligned at the first time point at which

scFv-GFP signal was detected (n = 30 individual

mRNAs [pink lines], and average [black line] is

shown).

(C) Quantification of the time between mRNA

appearance and the first detection of translation

by scFv-GFP fluorescence.

(D) Comparison of scFv-GFP fluorescence buildup

oneither new transcripts (red line) or on re-initiating

mRNAs (black line). Data are re-plotted from Fig-

ures 3D and 4B. Scale bar, 2 mm.

See also Movie S6.
Translational Regulation of the Cell-Cycle
Regulator Emi1
Wealso applied our assay to study the transcript-specific transla-

tional regulation of Emi1, a key cell-cycle regulatory protein. Our

recent work reported strong translational repression of Emi1 dur-

ing mitosis and found that the 30 UTR of Emi1 is involved in this

regulation (Tanenbaum et al., 2015), but a role of its 50 UTR in

translational regulation was not established. Interestingly, Emi1

has at least two splicing isoforms that differ in their 50 UTR

sequence: NM_001142522.1 (hereafter referred to as 50 UTR_
long) and NM_012177.3 (hereafter referred to as 50 UTR_short)
(Figure 6A). We found that a GFP protein fused downstream of

the 50 UTR_long was expressed at 40-fold lower levels than a

GFP fused to the 50 UTR_short (Figure 6B). Such difference in

protein expression could be due to a difference in transcription

rate,mRNA stability, or reduced translation initiation or elongation

rates. To distinguish between these possibilities, we prepared

translation reporter constructs bearing either the short or long

50 UTR of Emi1. Robust translation was observed on �50% of

mRNAs encoding the short 50 UTR (Figure 6C). In contrast, the

majority (�80%) of transcripts encoding the Emi1 50 UTR_long
showed no detectable translation (not shown), and of the trans-

latingmRNAs, only veryweakscFv-GFPfluorescencewasusually

detected (Figure 6C). Surprisingly, however, a very small fraction

of mRNAs containing the 50 UTR_long (�2%) was associated

with a bright scFv-GFP signal (Figure 6C, >92 bin), indicating

that they are bound to many ribosomes. This was not due to ribo-

some stalling and subsequent (slow) accumulation of ribosomes
on a subset of mRNAs, as this bright

scFv-GFP signal rapidly dissipated upon

harringtonine treatment (Figure S5), indi-

cating that these mRNAs were translated

at high levels. Calculation of the total num-

ber of ribosomes associated with the

mRNAs, based upon scFv-GFP fluores-

cence intensity, revealed that 52% of all
ribosomes translating theEmi1 50 UTR_long reporterwere associ-

ated with the minor (2%) fraction associated with the highest

scFv-GFP intensity. These results indicate that the great

majority of 50 UTR_long transcripts are strongly translationally

repressed but that a small subset of thesemRNAs escape repres-

sion and undergo robust translation. Thus, substantial heteroge-

neity in translational efficiency can exist among different mRNA

molecules within the same cell.

Observation of Translation by Single Ribosomes
Interestingly, with the Emi1 50 UTR_long reporter, we often

observed the abrupt appearance of a weak scFv-GFP signal on

a transcript that was previously translationally silent. The GFP

signal initially increased over time, plateaued, and then was

abruptly lost after 6–8 min (Figures 7A–7C; Movie S7). This type

of signal is best explained by a single ribosome sequentially de-

coding the 24 SunTag peptides on the mRNA, followed by the

release of the newly synthesized polypeptide upon completion

of translation. Consistent with this hypothesis, the absolute fluo-

rescence intensity of such translation events at the plateau phase

(when all 24 SunTag peptides have been synthesized) was very

similar to the intensity of a single fully synthesized SunTag24x-

Kif18b protein (Figures S6A and S6B). The duration of the scFv-

GFP signal per translation event could be converted to a translo-

cation speed of single ribosomes (Supplemental Experimental

Procedures), which revealed an average elongation rate of 3 co-

dons/s (Figure 7D). This value is similar to that determined from

our bulk measurements of harringtonine-induced ribosome
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Figure 5. Dynamics of Ribosome Stalling

U2OS cells expressing scFv-GFP, PP7-2xmCherry-CAAX, and the SunTag24x-Kif18b-PP724x translation reporter (A–C) or the Xbp1 translation reporter (D–E).

(A and B) Ribosome stalling likely results frommRNA defects, model (A) and experiment (B). (B) Fluorescence intensity over time is shown for four representative

stalled translation sites (colors; of 20 analyzed). Since intensity values of single mRNAs were derived from the experiments presented in Figure 2D, the average

fluorescence decay presented in Figure 2D is re-plotted here for comparison (dashed black line).

(C) Nucleic acid damage through 4NQO treatment (red line) induces ribosome stalling (n = 3 independent experiments, 40 cells, 455mRNAs). For comparison, the

harringtonine runoff from control cells with the SunTag24x-Kif18b-PP724x reporter from Figure 2D is re-plotted, as these experiments were performed in parallel.

(D and E) Harringtonine runoff for the Xbp1 pause site (red line, n = 3 independent experiments, 31 cells, 990mRNAs) (D) and control reporter (black dashed lines,

n = 3 independent experiments, 27 cells, 437 mRNAs) (E).

See also Figure S4.
runoff or natural translational initiation shutdown and runoff

(3–3.5 codons/s), indicating that ribosome elongation was not

affected by the Emi1 50 UTR_long. Comparison of translocation

rates obtained from single ribosome translation events also re-

vealed heterogeneity in the decoding speed of individual ribo-

somes in vivo (Figure 7D).

DISCUSSION

Using the SunTag system, we have developed an imaging

method that measures the translation of individual mRNAs in

living cells. Immobilization of mRNAs on the plasma membrane

allows the long-term (>1 hr) observation of translation of single

mRNA molecules, which enables analyses of translational initia-

tion, elongation, and stalling in live cells for the first time. Under

conditions of infrequent translational initiation, we can even

observe a single ribosome decoding an entire mRNA molecule.

Our observations reveal considerable and unexpected heteroge-

neity in the translation properties of different mRNA molecules

derived from the same gene in a single cell, with some not trans-

lating, others actively translating with many ribosomes, and

others bound to stalled ribosomes. The SunTag translation im-

aging assay should be applicable to many different cell types,
984 Cell 165, 976–989, May 5, 2016
including neurons and embryos, in which the localization and

control of protein translation is thought to play an important

role in cell function.

Comparison of Methods to Study Translation In Vivo
Ribosome profiling, a method in which fragments of mRNAs that

are protected by the ribosome are analyzed by deep sequencing

(Ingolia et al., 2009), has found widespread use in measuring

translation. The strength of ribosomal profiling lies in its ability

to measure translation on a genome-wide scale of endogenous

mRNAs. However, a limitation of ribosome profiling is the need

to pool mRNAs from many thousands of cells for a single mea-

surement. Thus, ribosome profiling in its present form cannot

be used to study translation heterogeneity between different

cells in a population or among different mRNA molecules in the

same cell. Furthermore, since ribosome profiling requires cell

lysis, only a single measurement can be made for each sample,

limiting studies of temporal changes.

A number of single-cell translation reporters have been

developed based on fluorescent proteins (Aakalu et al., 2001;

Brittis et al., 2002; Han et al., 2014; Raab-Graham et al.,

2006; Tanenbaum et al., 2015; Tatavarty et al., 2012; Yu

et al., 2006). Such reporters generally rely on the accumulation
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Background from adjacent regions was subtracted. Only mRNAs are plotted

that had translation signal above background (with an intensity value >2; 16%

and 53% of mRNAs for 50 UTR_long and 50 UTR_short, respectively).
See also Figure S5.
of new fluorescence after the assay is initiated. Advantages of

these systems are that they are generally easy to use and have

single-cell sensitivity. However, they do not provide single-

mRNA resolution, often do not allow continuous measurement

of translation, and do not report on ribosome initiation and

elongation rates.
Finally, two methods were developed recently to image

translation on single mRNAs in vivo. In one approach, the first

round of translation is visualized (Halstead et al., 2015). This

method, however, does not allow continuous measurements

of translation. The second approach involves measurements

of the number of ribosomes bound to an mRNA using fluores-

cence fluctuation spectroscopy (Wu et al., 2015). The advantage

of this method is that it can detect binding of a single fluorescent

protein to an mRNA and different subcellular sites can be

probed to study spatial differences in translation. The limitation

of this method though is the inability to follow translation of

single mRNAs over time, as these mRNAs cannot be tracked

in the cell.

SunTag-based translation imaging assays are unique thus far

in their ability to follow translation of individual mRNAs over

time. This translation assay can be employed with either freely

diffusing or tethered mRNAs, the choice of which will depend

on the biological question to be addressed. In the study by

Wang et al. (2016) [this issue of Cell], translation is observed

in distinct spatial compartments in neurons using a similar

SunTag-based translation imaging method with non-tethered

mRNAs. In contrast, for studying ribosome translocation dy-

namics, the tethering assay provides the ability to track a single

mRNA throughout the duration of the ribosome elongation cycle.

Using this assay, we couldmeasure polysome buildup rates over

time, observe mRNAs cycling between translating and non-

translating states, uncover heterogeneity in translation initiation

rates (e.g., with the Emi1 50 UTR) and even observe a single ribo-

some translating an entire transcript. These measurements were

aided by the vastly improved signal-to-noise of the tethered

assay and the ability to easily track slowly diffusing tethered

mRNAs for an hour or more. These long-term observations al-

lowed us to discover that mRNAs can reversibly switch between

a translating and non-translating state and have a high variability

in pause duration at the Xbp1 site. Thus, the untethered and teth-

ered SunTag assays provide means to study translation of single

mRNA molecules, which will be applicable to a wide variety

of biological questions and will be complementary to existing

methods of studying translation.

A drawback of our assay is the need to insert an array of

SunTag peptide repeats into the mRNA of interest to fluores-

cently label the nascent polypeptide and the need to insert an

array of PP7 binding sites in the 30 UTR to label the mRNA. As

is true of any tagging strategy, these modifications could inter-

fere with translation and/or mRNA stability under certain condi-

tions. We have performed a number of control experiments to

ensure that binding the scFv-GFP to the nascent chain and teth-

ering of the transcript to the membrane do not grossly perturb

translation (Figures 1B and 1F). We have also shown that ribo-

some translocation rates and ribosome density are similar

when using a reporter with a very short (53) or long (243) SunTag

peptide array and comparing tethered and non-tethered mRNAs

(Figures 2D, S2F, and S4C), indicating that many aspects of

translation are not perturbed in our assay. Nevertheless, teth-

ering of certain mRNAs to the plasma membrane may influence

translation, especially for those mRNAs that undergo local trans-

lation in a specific compartment of the cell. Thus, our assay has

unique advantages for certain types of measurements of
Cell 165, 976–989, May 5, 2016 985



A

5

B

1 2 3 40
Time (min)

0

0.2
0.4
0.6

1.0
1.2

R
el

at
iv

e 
flu

or
es

ce
nc

e 
in

te
ns

ity

0.8

0

Tracks aligned at start

C

1 2 3 40
Time (min)

0
0.2
0.4
0.6

1.0
1.2

R
el

at
iv

e 
flu

or
es

ce
nc

e 
in

te
ns

ity

1.4

0.8

44444444444444444444444444

Tracks aligned at finish

D

R
ib

os
om

e 
tra

ns
lo

ca
tio

n 
ra

te
(c

od
on

s/
s)

0

3

5

5’UTR_long

2

1

4

6

PP7-mCh-CAAX
scFv-GFP

5’UTR_long-SunTag     24x

10:30 12:308:00 17:30 27:30 28:30
24x-Kif18b-PP7

1.4
1.6

1.6
1.8

0 6 8 10 12 14 16 18 20 22 24 26 28 30
0

3000

Time (min)

Fl
uo

re
sc

en
ce

 
in

te
ns

ity

42

6000

*
*

*
*

*
*

*

* *
*

*
*

Figure 7. Visualizing Single Ribosomes Decoding an mRNA Molecule

(A–D) Analysis of single ribosomes on the Emi1 50UTR_long reporter mRNA. (A) Representative images of multiple single ribosome translation events of individual

mRNAs (upper). ScFv-GFP intensity was quantified over time for the two mRNAs marked by asterisks with the same color (lower). (B) Increase in scFv-GFP

fluorescence from single ribosome translation events aligned at the first detectable scFv-GFP signal (n = 35 individual mRNAs in pink and average in black). (C)

Steady-state and then abrupt decrease in scFv-GFP fluorescence from single translating ribosomes (n = 35 individual mRNAs [pink] and average [black]). (D)

Single ribosome elongation rates (n = 44) (Supplemental Experimental Procedures). Mean ± SD is shown in (D). Scale bar, 2 mm.

See also Figure S6 and Movie S7.
translation, but appropriate controls should be performed for

each experimental system or objective.

Heterogeneity in Translation of Single mRNAs: Possible
Molecular Mechanisms
Using our system, we measured the ribosome translocation

speed on single mRNAmolecules. Ribosome translocation rates

have been measured in bulk previously in mouse embryonic

stem cells (Ingolia et al., 2011), which yielded a translocation

rate of 5.6 codons/s. Our values of 3–5 codons/s (Figure S7;

Supplemental Experimental Procedures) are in general agree-

ment with those published values and very similar to those

measured by Wang et al. (2016) (4 codons/s). Our experiments,

and those ofWang et al. (2016), are the first tomeasure ribosome

translocation rates for a single mRNA species, in single cells and
986 Cell 165, 976–989, May 5, 2016
on single mRNAs, which provides new opportunities to study

regulation of translation elongation.

We also found that translation initiation can shut down tempo-

rarily on individual mRNAs and rapidly restart (Figure 3). Such

shutdown of translation initiation could be due to transient loss

of eIF4E binding to the mRNA cap, mRNA decapping followed

by recapping (Mukherjee et al., 2012), or transient binding of reg-

ulatory proteins. Using our mRNA tethering assay, binding and

unbinding of single proteins to translating mRNA could poten-

tially be observed using total internal reflection fluorescence

(TIRF), which could open up many additional possibilities for

studying translational regulation at the single-molecule level.

The pioneer round of translation, the first ribosome to initiate

translation on a newly transcribed mRNA, may be especially

important, as it is thought to detect defects in the mRNA,



including premature stop codons (Ishigaki et al., 2001). A recently

developed translation biosensor can detect the location of this

pioneer round of translation (Halstead et al., 2015). However,

what happens after the first ribosome initiates translation is un-

known.We found that the translation initiation rate onour reporter

mRNAwas similar on newly transcribed, recently shut down, and

re-initiating mRNAs and polysomal mRNAs (Figure 4; Supple-

mental Experimental Procedures), indicating that the initiation

rate is independent of the number of ribosomes bound to the

mRNA. The presence of introns in a genemay also affect transla-

tion initiation on newly transcribed mRNAs (Le Hir et al., 2016),

which could be tested in future studies.

A subset of ribosomes stall onmRNAs in a sequence-indepen-

dent fashion (Figures 2D, S2G, and S4A). One possible explana-

tion for this is that ribosome stalling is caused by naturally

occurring mRNA ‘‘damage’’ (i.e., chemical modifications of the

nucleotides). Previous studies have found that the 8-oxoguanine

modification occurs on mRNA in vivo, and such modifications

cause ribosome stalling in vitro (Simms et al., 2014) and in vivo

(Figure 5C). Alternatively, while we have performed numerous

control experiments (Figures 5 and S4), we cannot completely

exclude that the observed stalling on a small subset of mRNAs

is an artifact of our construct or assay. We also observe ribo-

some pausing in a sequence-dependent fashion on the pause

site of the Xbp1 transcription factor. Such pausing had been

observed previously in bulk measurements (Ingolia et al., 2011;

Yanagitani et al., 2011), but our quantitative analysis of single

mRNAs revealed a high degree of variability in ribosome pausing

at this site.

Finally, we show that the 50 UTR sequence of one Emi1 tran-

script isoform severely inhibits translation initiation. A likely

explanation for this effect is the presence of several upstream

open reading frames (uORFs) in this sequence. Surprisingly, a

small number of mRNA molecules encoding this 50 UTR do un-

dergo high levels of translation. It is possible that highly trans-

lating mRNAs are generated through alternative downstream

transcription start site selection, which generates an mRNA

that lacks the repressive sequence (for example, the uORFs).

Alternatively, translation could occur if the 50 UTR repressive

sequence is cleaved off, followed by recapping after tran-

scription, if a repressive protein factor dissociates, or if an inhib-

itory RNA secondary structure unfolds. Further studies will be

required to distinguish between these possibilities.

In summary, here we have developed an imaging method that

enables the measurement of ribosome initiation and transloca-

tion rates on singlemRNAmolecules in live cells. Future develop-

ments of this technology could include simultaneous observa-

tion of single translation factors or other regulatory molecules

together with mRNAs and nascent polypeptides, which would

provide a very powerful system to dissect the molecular mecha-

nisms of translational control.
EXPERIMENTAL PROCEDURES

Cell Culture and Drug Treatment

U2OS and HEK293 cells were grown in DMEM/5% with Pen/Strep. Plasmid

transfections were performed with Fugene 6 (Roche), and stable transform-

ants were selected with zeocin (Life Technologies). Unless noted otherwise,
reporter transcripts were expressed from a doxycycline-inducible promoter,

and expression of the reporter was induced with 1 mg/mL doxycycline (Sigma)

for 1 hr before imaging. Harringtonine (Cayman Chemical) was used at

3 mg/mL. 5 mM 4NQO (Sigma) was added to cells for 1 hr before imaging.

Puromycin (Life Technologies) was used at 100 mg/mL. Hippuristanol (a kind

gift of Dr. J. Tanaka) was used at 5 mM. Cycloheximide (Sigma) was used at

200 mg/mL.

Plasmid Sequences

Sequences of constructs used in this study are provided in the Supplemental

Experimental Procedures.

Microscopy

Cells were grown in 96-well glass bottom dishes (Matriplate, Brooks). Images

were acquired using a Yokogawa CSU-X1 spinning disk confocal attached to

an inverted Nikon TI microscope with Nikon Perfect Focus system, 1003 NA

1.49 objective, an Andor iXon Ultra 897 EM-CCD camera, and Micro-Man-

ager software (Edelstein et al., 2010). Single z-plane images were acquired

every 30 s unless noted otherwise. During image acquisition, cells were main-

tained at a constant temperature of 36�C–37�C. Camera exposure times

were generally set to 500 ms, unless noted otherwise. We note that stable

expression of PP7-mCherry, either with or without the CAAX domain, also re-

sulted in an accumulation of mCherry signal in lysosomes, but lysosomes

could be readily distinguished from mRNA foci based on signal intensity

and mobility.

FACS

GFP and scFv-GFP (Figure 1B), mCherry, PP7-mCherry, or PP7-2xmCherry-

CAAX (Figure 1F) were expressed from a constitutive promoter, while the

two reporters, SunTag24x-mCherry and GFP-PP724x (Figures 1B and 1F,

respectively) were expressed from an inducible promoter in U2OS cells

expressing the Tet repressor protein, and their expression was induced

24 hr after transfection using doxycycline (1 mg/mL). This ensured that the re-

porters were translated in the presence of high levels of the scFv-GFP and

PP7-2xmCherry-CAAX proteins. Cells were collected one day after doxycy-

cline induction and analyzed by FACS. Cells were gated for GFP and mCherry

double positivity, and the mCherry and GFP levels (Figures 1B and 1F, respec-

tively) were analyzed using Flowjo v10.1.

Image Analysis and Quantification

For detailed description of Image analysis and quantification, see Supple-

mental Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

seven figures, and seven movies and can be found with this article online at

http://dx.doi.org/10.1016/j.cell.2016.04.034.
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Hüttelmaier, S., Zenklusen, D., Lederer, M., Dictenberg, J., Lorenz, M., Meng,

X., Bassell, G.J., Condeelis, J., and Singer, R.H. (2005). Spatial regulation of

beta-actin translation by Src-dependent phosphorylation of ZBP1. Nature

438, 512–515.
988 Cell 165, 976–989, May 5, 2016
Ingolia, N.T., Ghaemmaghami, S., Newman, J.R., and Weissman, J.S. (2009).

Genome-wide analysis in vivo of translation with nucleotide resolution using

ribosome profiling. Science 324, 218–223.

Ingolia, N.T., Lareau, L.F., and Weissman, J.S. (2011). Ribosome profiling of

mouse embryonic stem cells reveals the complexity and dynamics of mamma-

lian proteomes. Cell 147, 789–802.

Ishigaki, Y., Li, X., Serin, G., and Maquat, L.E. (2001). Evidence for a pioneer

round of mRNA translation: mRNAs subject to nonsense-mediated decay in

mammalian cells are bound by CBP80 and CBP20. Cell 106, 607–617.

Jovanovic, M., Rooney, M.S., Mertins, P., Przybylski, D., Chevrier, N., Satija,

R., Rodriguez, E.H., Fields, A.P., Schwartz, S., Raychowdhury, R., et al.

(2015). Immunogenetics. Dynamic profiling of the protein life cycle in response

to pathogens. Science 347, 1259038.

Katz, Z.B., English, B.P., Lionnet, T., Yoon, Y.J., Monnier, N., Ovryn, B., Bathe,

M., and Singer, R.H. (2016). Mapping translation ‘hot-spots’ in live cells by

tracking single molecules of mRNA and ribosomes. eLife 5, e10415.

Kertesz, M., Wan, Y., Mazor, E., Rinn, J.L., Nutter, R.C., Chang, H.Y., and

Segal, E. (2010). Genome-wide measurement of RNA secondary structure in

yeast. Nature 467, 103–107.

Le Hir, H., Saulière, J., and Wang, Z. (2016). The exon junction complex as a

node of post-transcriptional networks. Nat. Rev. Mol. Cell Biol. 17, 41–54.

Leung, K.M., van Horck, F.P., Lin, A.C., Allison, R., Standart, N., and Holt, C.E.

(2006). Asymmetrical beta-actin mRNA translation in growth cones mediates

attractive turning to netrin-1. Nat. Neurosci. 9, 1247–1256.

Mukherjee, C., Patil, D.P., Kennedy, B.A., Bakthavachalu, B., Bundschuh, R.,

and Schoenberg, D.R. (2012). Identification of cytoplasmic capping targets

reveals a role for cap homeostasis in translation and mRNA stability. Cell

Rep. 2, 674–684.
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