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SUMMARY

The human airway lining consists of two physiologically distinct compartments: the surface airway epithelium 
(SAE) and the submucosal glands (SMGs). Despite their critical role, the SMGs have remained largely over- 
looked in airway in vitro modeling of respiratory inflammation and infection. In this study, we leverage long- 
term cultured organoids derived separately from SAE and SMGs to investigate their unique physiological 
characteristics. Single-cell RNA sequencing (scRNA-seq) analysis confirms that these organoid models 
accurately replicate the cellular heterogeneity inherent to each tissue type. Specifically, SMG organoids 
are enriched in MUC5B-producing mucous cells and also generate alpha-smooth muscle actin (αSMA)- 
expressing myoepithelial cells. ANPEP/CD13 specifically marks SMG secretory cells. Exposure to cytokines 
elicits distinct inflammatory transcriptomic responses in SMG secretory cells. Infection assays with human 
alpha-coronavirus 229E (HCoV-229E) reveal the selective vulnerability of CD13-positive secretory cells, trig- 
gering an unfolded protein response. These findings broaden the utility of airway organoids for modeling res- 
piratory (patho-)physiology.

INTRODUCTION

Human airways are lined by two distinct epithelial structures: the 

ciliated epithelium, which covers the surface areas of the respi- 

ratory tract, and the mucus-producing glands embedded within 

the submucosal space of all cartilaginous airways. 1 The surface 

airway epithelium (SAE) consists of four major cell types: basal, 

ciliated, club, and MUC5AC-producing mucous cells. This layer 

acts as a physical barrier and facilitates mucociliary clearance. 

By contrast, airway submucosal glands (SMGs), predominantly 

located along the trachea and large bronchi, comprise mainly 

MUC5B-producing mucous, serous, basal, and myoepithelial

cells (MECs). 2–5 SMGs are responsible for the secretion of 

mucus and various antimicrobial peptides, which are essential 

for maintaining airway humidity and protecting against patho- 

gens. 6,7 This cellular heterogeneity not only contributes to the 

SMG’s primary role in mucus secretion but also to its intricate 

response to inflammatory stimuli and pathogens.

Recent studies have shown that SMGs contribute to the repair 

and regeneration of airway epithelium following injury in mouse 

models, suggesting a potential reservoir of progenitor cells 

capable of differentiating into multiple airway cell types. 8,9 This 

regenerative capacity implicates SMGs in both health and dis- 

ease, particularly in conditions such as chronic obstructive
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pulmonary disease (COPD), where airway remodeling and 

chronic inflammation are prevalent. Indeed, SMG hypertrophy 

is recognized as one of the main pathophysiological changes 

in COPD airways, causing mucus hypersecretion, airway 

obstruction, and exacerbation of lung injury. 10,11

Despite their importance, there has been no robust in vitro 

model of SMGs from adult tissues beyond short-lived explant 

cultures from human or animal models. 12–15 Organoid-based 

disease modeling of human airways has predominantly focused 

on the more accessible SAE. 16,17 Given the SMG’s essential role 

in mucus production and host defense, we established human 

organoids derived from primary bronchus tissues from both 

SAE and SMG regions.

RESULTS

Establishment and characterization of human bronchus 

SMG organoids

To isolate SMGs from human upper airways, we refined existing 

airway tissue processing protocols. 17,18 A two-step enzymatic 

digestion first removed the SAE from the bronchus (Figure 1A), 

followed by the release of SMGs from submucosal muscle fibers. 

SAE cell sheets and SMG glandular clusters were then cultured 

separately in tailored media (Figure 1B). We established SAE and 

SMG organoids from 7 independent donors (Figures 1C and 

S1A) and passaged them every 21–28 days for at least 8 pas- 

sages (Figure S1B). The media supported both basal cell expan- 

sion and spontaneous differentiation. By day 28, organoids ex- 

hibited the relevant differentiated cell types: SMG organoids 

contained PAS+ and MUC5B+ mucous cells, while SAE organo- 

ids were predominantly composed of basal cells, ciliated cells, 

and the rarer mucus-producing cells (Figure 1D). Consistent 

with native tissue, SMG mucous cells predominantly expressed 

MUC5B, whereas SAE mucous cells expressed both MUC5AC 

and MUC5B (Figure 1E). 19,20

Single-cell characterization of human SMG and SAE 

organoid cultures

To compare the SMG and SAE organoid models with their 

tissue counterparts, we performed single-cell RNA sequencing 

(scRNA-seq) of both organoid cultures on day 28 of passage 4 

and integrated this dataset with a previously published human 

airway epithelium tissue dataset. 21 This combined dataset 

included 1,315 SMG organoid cells, 1,120 SAE organoid cells, 

and 36,248 tissue cells, yielding a total of 38,683 cells (Figure 

2A). Based on reference tissue markers, 2,3,21–23 organoid- 

derived cells clustered closely with their tissue counterparts 

(Figures 2B and 2C; Table S1). Both SAE and SMG organoids 

contained differentiating basal cells (TP63 low and IL33 + ) (SAE: 

27.1%; SMG: 13.9%) and KRT8 high intermediate cells (SAE: 

14.9%; SMG: 19.5%) (Figures S2A–S2C). Distinctly, SMG orga- 

noids were comprised of SMG basal cells (44.3%) (KRT14 + and 

G0S2 + ) and SMG secretory cells (4.1%) (MUC5B + and DMBT1 + ). 

By contrast, SAE basal cells (TP63 + and MMP10 + ), SAE 

secretory cells (MUC5AC + and CEACAM5 + ), and club cells 

(SCGB1A1 + ) were primarily found in SAE organoids (Figures 

2D and S2A–S2C; Table S1). Notably, pulmonary neuroendo- 

crine cells (PNECs) were not captured in the organoid cultures. 

Given the rarity of PNECs in vivo, additional signaling pathways

might be required in the organoid model to trigger PNEC differ- 

entiation. Indeed, a previous study in lung neuroendocrine neo- 

plasms has shown that WNT activator and basic fibroblast 

growth factor are required to support neuroendocrine tumor 

organoid outgrowth. 24 Nevertheless, differentiated cell types 

in both models exhibited mature transcriptional profiles 

(Figure S2D).

SMG and SAE tissues harbor distinct basal and secretory pop- 

ulations. By analyzing differentially expressed genes (DEGs) be- 

tween SMG and SAE basal cell clusters, we confirmed higher 

expression of previously reported markers (VIM, SOX9, 

FOXC1, and KRT14) in SMG basal cells 21,25,26 and enrichment 

of MMP10 and WNT4 in SAE basal cells (Figure S2E). 22,27 

Notably, the presence of SMG organoid-derived cells within 

the SAE basal cell cluster likely reflects the shared transcriptional 

signatures. Despite this apparent overlap, these ‘‘mis-clustered’’ 

SMG cells retained unique transcriptional profiles with low 

expression of SAE-specific basal markers (GJB2, MMP10, 

WNT4, and CAVIN2) (data not shown).

Comparison of SMG and SAE secretory cells revealed consis- 

tent lineage-specific expression patterns. SMG secretory cells, 

both organoid- and tissue-derived, expressed higher levels of 

DMBT1, FOLR1, PROM1, and MUC5B, while SAE secretory 

cells preferentially expressed MUC5AC, KLK11, and 

CEACAM5 (Figure S2F). 22,28 These findings align with prior hu- 

man airway cell atlas studies and reinforce the molecular distinc- 

tion between SMG and SAE lineages. Within the SMG secretory 

compartment, serous cells, a subset of acinar cells producing 

antimicrobial peptides, were not readily detected in organoids. 

RT-qPCR analysis of serous cell markers (PRR4, LTF, and 

LYZ) 22,29 revealed expression at P0 but a marked decline by 

P4/5 (Figure S2G), suggesting serous cell loss during in vitro 

expansion, potentially due to missing niche cues.

A defining feature of the SMG is the presence of MECs. These 

specialized epithelial cells are located at the interface between 

the glandular epithelium and the underlying basement mem- 

brane. MECs express smooth muscle markers such as smooth 

muscle actin (α-SMA) and myosin, enabling their contractile 

function to expel glandular secretions into the airway 

lumen. 1,30–32 Additionally, MECs have been shown to function 

as reserve stem cells to repair tracheal SAE following severe 

injury in mouse models. 8,9 Employing an MEC cell score based 

on previously reported markers, 8,9,23,33 we identified a small 

MEC population within the SMG basal cell cluster (n = 62), 

comprising 2.2% of SMG organoid cells and 3.1% of SMG tissue 

cells but absent in SAE (Figure 2E). These cells retained the 

expression of smooth muscle cell markers (ACTA2, TAGLN, 

ACTG2, and PCP4). By contrast, the few SAE-derived basal cells 

that were assigned to the SMG basal cluster (0.98%) only ex- 

pressed basal cell (KRT14 and KRT5) and cell-cell adhesion 

(FHOD3 and LAMA1) markers (Figure 2F). The presence of these 

MECs in SMG organoids was further confirmed by staining 

of α-SMA in organoids derived from an independent donor 

(Figure 2G).

Next, we sought to understand the unique secretory functions 

of SMGs. To facilitate the targeted enrichment of SMG secretory 

cells, we assayed the differential expression of cell surface 

genes and identified ANPEP (CD13) as one of the highly enriched 

surface markers in SMG secretory cells (Figures 2H and S2H).
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Figure 1. Establishment and characterization of human bronchus SMG organoids

(A) Schematic of tissue processing procedures to isolate SAE and SMG compartments from human bronchus tissue.

(B) Culture media compositions for SAE and SMG organoids.

(C) Time-lapse bright-field images of SMG and SAE organoids established from human bronchus tissues (donor: #OHLT019). Note: SAE organoids were replated 

on day 7 to support continued growth and spatial expansion.

(D) H&E staining, goblet cells (PAS), SMG-specific mucous cells (MUC5B), and SAE ciliated cells (acetylated α-tubulin) in SMG and SAE organoids detected by 

immunohistochemistry (IHC) staining (donor: #OHLT019).

(E) Representative immunofluorescence staining of SMG-specific mucous cells (MUC5B, green), SAE-specific mucous cells (MUC5AC, red), and nuclei (DAPI, 

cyan) in human bronchus tissue and organoids (donor: #0704).

See also Figure S1.
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CD13 localized to the apical surface of SMG tissues and organo- 

ids but was absent in SAE (Figures 2I and S2I). Fluorescence- 

activated cell sorting (FACS) analysis showed that

CD13 + cells (0.5%–4%, donor variation observed) were exclu- 

sive to SMG organoids and co-expressed MUC5B (Figure S2J). 

RT-qPCR analysis further demonstrated enrichment of glandular 

secretory cell markers (MUC5B, LTF, and LYZ) and decreased 

expression of basal cell markers (KRT14, KRT5, and TP63) in 

CD13 + versus CD13 − cells (Figure S2K). Collectively, these ana- 

lyses corroborated the fidelity of SMG and SAE organoid models 

in replicating the cellular heterogeneity of their respective 

tissues.

Human SMG organoids maintain multipotency to 

differentiate into SAE ciliated cells

Previous studies in mouse injury models have shown that MECs 

contribute to the regeneration of SMGs and SAE following 

injury. 8,9 To evaluate the lineage plasticity of human SMG cells, 

we cultured SMG-derived organoids in SAE medium. Under 

these conditions, the organoids exhibited increased expression 

of the ciliated cell marker FOXJ1, and immunostaining for acet- 

ylated α-tubulin confirmed the presence of ciliated cells along 

the apical surface, indicating a shift from mucous-producing 

toward ciliated cell differentiation (Figures 2J and S2L). 

Conversely, SAE organoids cultured in SMG medium exhibited 

upregulation of both MUC5AC and MUC5B expression but still 

preserved ciliated cell differentiation, as indicated by FOXJ1 

gene expression and cilia staining. Notably, expression of the 

SMG basal cell marker KRT14 remained low in SAE organoids, 

suggesting that while environmental cues can influence differen- 

tiation and promote partial phenotypic shifts, the intrinsic identity 

of stem cells from each compartment continues to guide their 

lineage potential.

To further investigate the role of MECs in this cell fate transi- 

tion, we explored the DEGs in MECs and identified CD200 as 

an enriched surface marker compared with other SMG basal 

cells (Figures 2E and S2M). CD200, which encodes a membrane 

glycoprotein, has also been reported as an MEC marker in the

human mammary gland. 34 To validate its specificity in labeling 

MECs within SMG organoids, we isolated CD200 + cells and 

confirmed their myoepithelial identity by elevated ACTA2 

expression relative to CD200 − cells (Figures 2K and S2N). We 

then assessed the lineage potential of CD200 + and CD200 − 

populations by culturing them in SAE-promoting conditions 

(Figure 2L). Both populations gave rise to organoid outgrowths, 

with CD200 + cells displaying higher formation efficiency. How- 

ever, RT-qPCR analysis showed that both populations were 

capable of differentiating into ciliated and mucous cell lineages, 

with no significant differences in marker expression (Figure S2O). 

These results suggest that while CD200 + MECs contribute to or- 

ganoid growth, SMG-derived organoids as a whole retain the ca- 

pacity to differentiate into airway epithelial lineages independent 

of MECs.

Human SMG organoids capture differential impacts of 

respiratory inflammatory cytokines

Interleukin-1 beta (IL-1β) and tumor necrosis factor-alpha 

(TNF-α) are key pro-inflammatory cytokines that play pivotal 

roles in initiating and amplifying inflammatory responses within 

the airways (Figure 3A). 35–38 Both cytokines, produced by 

various immune and epithelial cells, drive the recruitment of im- 

mune cells to the site of inflammation and enhance the produc- 

tion of other inflammatory mediators, collectively exacerbating 

the inflammatory cascade. By contrast, IL-13, primarily pro- 

duced during type 2 immune responses, plays a central role in 

promoting SAE hyperresponsiveness and mucus hypersecre- 

tion. 39,40 However, the specific impact of these inflammation- 

driving cytokines on SMGs remains unclear. To address this 

gap, we exposed SMG organoids to IL-1β, TNF-α, or IL-13 to 

elucidate the unique responses in SMG secretory cells.

After 7 days of treatment with inflammatory cytokines, IL-1β 
and IL-13 significantly reduced the percentage of CD13 + cells, 

whereas TNF-α exhibited no specific effect (Figure 3B). Downre- 

gulation of ANPEP/CD13 expression has been reported in bron- 

chial and nasal epithelium of T helper (Th)2-high asthma. 41 None 

of these cytokines affected the expression pattern of CD13 at the

Figure 2. Integrated scRNA-seq atlas of SMG organoids, SAE organoids, and primary airway tissue

(A) Schematic of integrated scRNA-seq datasets and corresponding cell numbers.

(B) t-Distributed stochastic neighbor embedding (tSNE) plot showing integration of SAE and SMG organoids (donor: #OHLT019) with a published human airway 

epithelium dataset. 21

(C) tSNE plot displaying cluster identities from integrated scRNA-seq analysis.

(D) Left: stacked bar plot of SMG (maroon) and SAE (orange) cell contributions across clusters. Right: dot plot showing relative expression and proportion of cells 

expressing representative markers (three per cluster).

(E) tSNE projection of MEC score across the dataset and expression of two myoepithelial markers in the SMG basal cluster.

(F) Violin plots of MEC markers (ACTA2, TAGLN, CNN1, ACTG2, and PCP4), cell-cell adhesion genes (FHOD3 and LAMA1), and basal cell markers (KRT14 and 

KRT5) within the SMG basal cell cluster, split by sample.

(G) Representative immunofluorescence staining of MECs (ACTA2/α-SMA, red), SMG-specific mucous cells (MUC5B, green), and nuclei (DAPI, blue) in human 

bronchus tissues and SMG organoids (donor: #0704).

(H) Violin plots of MUC5AC, MUC5B, and ANPEP gene expression in SAE and SMG secretory cell clusters.

(I) Representative immunofluorescence staining of ANPEP/CD13 (red), MUC5B (green), and nuclei (DAPI, blue) in human bronchus SMG and SAE organoids 

(donor: #0704).

(J) Representative bright-field images of SAE or SMG organoids under different culture conditions (top row). Representative IHC staining of MUC5B and 

acetylated α-tubulin (donor: #0704).

(K) Left: representative FACS analysis of CD200 + cells from SAE and SMG organoids (donor: #0523). Right: percentage of CD200 + cells from SAE and SMG 

organoids from three independent donors. Data are shown as mean ± SEM. *p < 0.05 by multiple t tests using two-stage linear step-up procedure of Benjamini, 

Krieger, and Yekutieli, with Q = 5%, n = 3.

(L) Representative bright-field time course images of CD200 + and CD200 − cells derived from SMG organoids (donor: #0704).

See also Figure S2.

ll
OPEN ACCESS Short article

1174 Cell Stem Cell 32, 1170–1182, July 3, 2025



Figure 3. SMG organoids model respiratory inflammation

(A) Schematic illustrating airway inflammation, associated cell types, and cytokines.

(B) Diagram of cytokine treatments on SMG organoids (top). FACS quantification of CD13 + cells from SMG organoids from multiple donors post-treatment.

(legend continued on next page)
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apical surface of SMG organoids (Figure S3A). Next, we explored 

the impact of these cytokines on the transcriptional profiles of or- 

ganoid-derived SMG secretory cells. Bulk RNA-seq of sorted 

CD13 + and CD13 − cells confirmed enrichment of SMG mucous 

cell markers (MUC5B, BPIFB1, WFDC2, AGR2, and PIGR) 42,43 

and glycosylation-related pathways in CD13 + cells (Figure 

S3B; Table S2). Subsequently, transcriptomic analysis revealed 

distinct cytokine-specific gene programs (Figure 3C; Table S2). 

IL-1β and TNF-α shared induction of innate immune and antigen 

presentation pathways (Figure 3D; Table S2). Further validation 

through RT-qPCR in SMG organoids from an independent donor 

demonstrated that IL-1β and TNF-α specifically induced the 

expression of major histocompatibility complex class II (MHC 

class II) genes (Figures 3E and 3F). Examination of human bron- 

chus tissues confirmed MHC class II expression on the basolat- 

eral side of SMG secretory cells (Figure S3C). Moreover, both 

TNF-α and IL-1β treatments upregulated PODXL, an anti-adhe- 

sive glycoprotein involved in extracellular matrix (ECM) remodel- 

ing, which was reported to enhance interactions between anti- 

gen-presenting cells (APCs) and T cells. 44 This is in line with a 

recent study showing that CD4 T cells are in close proximity 

with human leukocyte antigen (HLA)-DR high SMG epithelial cells, 

supporting a possible direct antigen-presenting function of 

SMGs. 23 Notably, IL-1β specifically induced expression of 

acute-phase serum amyloid A (SAA) genes: SAA1 and SAA2, 

which are used as biomarkers for airway inflammation and 

mediate local immune responses. 45–47 Furthermore, IL-1β mildly 

upregulated CCL28 expression, a key component of the SMG 

niche chemokine previously reported by tissue spatial transcrip- 

tome profiling, highlighting its role in mediating immune cell 

recruitment within the glandular environment. 23

Consistent with previous studies in 2D airway and conjunctiva 

epithelium cultures, IL-13 promoted cell proliferation in SMG 

organoid cultures (Figures 3D and S3D; Table S2). 48,49 Notably, 

IL-13 markedly suppressed MUC5B expression in CD13 + SMG 

cells while enhancing MUC5AC expression (Figures 3G and 

3H). This shift in mucin expression aligned with clinical observa- 

tions in patients with Th2-high asthma. 50–52 Previous studies in 

primary human bronchial epithelial cell cultures suggested that 

IL-13 induces both MUC5AC and MUC5B expression through 

SPDEF, 53 a key transcription factor in mucous cell differentiation 

across different tissues. 54–56 To further explore SPDEF’s role in 

mediating IL-13 signaling in SMGs, we conducted a CRISPR- 

Cas9-mediated knockout of SPDEF in SMG organoids 

(Figure S3E). Knocking out SPDEF had no impact on CD13 + 

SMG secretory cell differentiation (Figure S3F). Interestingly, 

the knockout led to a marked suppression of MUC5AC expres- 

sion without affecting MUC5B or other IL-13 targets (CDH26,

ANO1, ITLN1, SERPINB2, and COLCA1), suggesting that 

SPDEF selectively mediates IL-13-driven MUC5AC expression 

in SMGs (Figure S3G).

HCoV-229E primarily targets SMG secretory cells 

Respiratory virus infections are a major cause of acute COPD 

exacerbations. 57,58 In particular, coronavirus infections are 

frequently detected in the upper respiratory tract, but their spe- 

cific cellular targets in human airway epithelium remain poorly 

defined. Prior ex vivo studies have produced conflicting results 

regarding whether human alpha-coronavirus 229E (HCoV- 

229E) can infect SAE. 59,60 These discrepancies may stem from 

variability in ex vivo tissue explant conditions, leaving unresolved 

whether HCoV-229E can effectively infect airway tissues and, if 

so, which cellular compartments serve as its primary targets. 

In this study, ANPEP/CD13, a known receptor for HCoV- 

229E, 61 was found to be predominantly expressed on the apical 

surface of SMGs, consistent with previous transcriptomic human 

lung datasets. 2 This prompted us to investigate whether CD13 + 

SMG secretory cells serve as the primary targets for HCoV-229E 

infection.

SMG and SAE organoid cells were seeded on 2D transwells 

and cultured to confluency (Figure 4A). On day 7, culture condi- 

tions were adjusted: SMG upper chambers were filled with PBS 

to mimic a moist lumen, while SAE chambers were exposed to air 

to create an air-liquid interface. By day 21, both formed stratified 

layers with basal KRT14 + cells and apical differentiated cells. 

SMG cultures were enriched for MUC5B⁺ mucous cells, while 

SAE cultures predominantly featured ciliated cells.

Apical exposure to EGFP-labeled HCoV-229E (HCoV-229E- 

EGFP) 62 for 16 h at 33 ◦ C revealed a clear dose-dependent infec- 

tion in SMG cultures with multiplicity of infection (MOI) ranging 

from 0 to 2, with EGFP + cells visible after 24 h and maximal cyto- 

pathic effects by 48 h (Figures 4B and S4A–S4C). Notably, 

HCoV-229E predominantly infected CD13 + cells within SMG 

transwell cultures, with 30%–60% of CD13 + cells infected across 

donors, while infection of CD13 − cells remained below 1% 

(Figures 4C and 4D). After 14 days post-infection, EGFP signals 

were diminished, accompanied by a notable reduction of CD13 + 

SMG cells within previously infected versus uninfected cultures 

(Figure S4D). To confirm the necessity of CD13 in viral entry, we 

pretreated SMG organoids with anti-CD13 antibodies prior to 

infection, which significantly reduced the infectivity of HCoV- 

229E (Figure S4E). This supports CD13 as a functional entry recep- 

tor for HCoV-229E in SMG cells. Furthermore, infection modestly 

increased secretion of MUC5B and MUC5AC in SMG cultures, 

while SAE cultures remained unaffected, further suggesting a 

compartment-specific infection profile (Figures S4F and S4G).

(C) Heatmap of top DEGs in CD13 + or CD13 − cells after cytokine treatments compared with control group by bulk RNA-seq (donor: #0704, n = 2).

(D) Gene ontology analysis of the top 200 upregulated genes in CD13 + cells after cytokine treatments.

(E) RT-qPCR quantification of selected genes upregulated by IL-1β and TNF-α (donor: #OHLT019).

(F) Representative confocal images of human bronchus SMG organoids upon cytokine treatments (donor: #0704). The protein expressions of MHC class II 

(green), F-actin (phalloidin, magenta), and nuclei (DAPI, blue) are highlighted by immunofluorescence staining.

(G) RT-qPCR quantification of selected genes upregulated by IL-13 (donor: #OHLT019).

(H) Representative confocal images of SMG organoids with or without IL-13 treatment (donor: #0704), stained for MUC5B (green), MUC5AC (red), and nuclei 

(DAPI, blue).

Data in this figure are shown as mean ± SEM. ns, not significant; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 by multiple t tests using two-stage linear step-up 

procedure of Benjamini, Krieger, and Yekutieli, with Q = 5%, n = 3.

See also Figure S3.
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Figure 4. HCoV-229E primarily targets SMG secretory cells and causes cellular stress

(A) Left: diagram depicting transwell culture for SMG and SAE organoids. Right: representative immunofluorescence staining of SMG mucous cells (MUC5B, red), 

basal cells (KRT14, green), ciliated cells (acetylated α-tubulin, white), and nuclei (DAPI, blue) in transwell cultures (donor: #0704).

(legend continued on next page)
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Next, to understand the transcriptional response to infection, 

we performed bulk RNA-seq on infected (CD13 + EGFP + ) SMG 

cells from three independent donors (Figure 4E). As expected, 

HCoV-229E infection unregulated interferon-responsive genes 

(IFIT, OAS, and the ISG gene family), chemokines (CXCL9, 

CXCL10, and CXCL11), and antiviral host factors (BATF2, 

SAMD9, and STAT1) (Figure 4F; Table S3). Additionally, genes 

involved in ATP metabolism were significantly suppressed. Inter- 

estingly, genes involved in endoplasmic reticulum (ER) stress 

and the unfolded protein response were significantly upregu- 

lated in infected cells. These included the central regulators 

(DDIT3/CHOP, EIF2AK3/PERK, and HSPA5/BiPS), as well as 

other members of heat shock protein families (Figure 4G; 

Table S3). RT-qPCR analysis in SMG organoids from an inde- 

pendent donor further confirmed the upregulation of ER stress 

signaling upon viral infection (Figure S4H). Additionally, infected 

cells exhibited increased expression of pro-inflammatory cyto- 

kines and chemokines (IL-6, IL1A, IFNB1, and CXCL8), indi- 

cating that infected cells signal the recruitment of immune cells 

to combat viruses. Collectively, the infected (CD13 + EGFP + ) 

SMG cells primarily contributed to the cytopathic effect upon 

HCoV-229E-EGFP virus infection, proposing a plausible cellular 

mechanism of acute exacerbation driven by ER stress.

DISCUSSION

Traditional airway models have predominantly focused on the 

SAE, often neglecting the complex and critical role of the 

SMGs. The SMG organoid model presented here enables 

more physiologically relevant studies of glandular components, 

including responses to infection and inflammation (Figure 4H). 

This model recapitulates key SMG features, particularly 

mucus-secreting cells and MECs. However, it lacks a defined 

serous compartment typically found in distal acinar branches. 63 

Although SMG organoids can be expanded over multiple pas- 

sages, serous cells are progressively lost, making early-passage 

organoids more suitable for studies requiring full cellular diver- 

sity, such as those on antimicrobial function and serous secre- 

tion. Given the close association between serous cells and im- 

mune components in vivo, 23 incorporating immune co-culture 

models or refining niche factor composition may provide strate- 

gies to sustain their long-term presence.

A vibrant immune environment has recently been described 

underlying the SMG glandular structure. 23,64 In this study, intro- 

ducing IL-1β, TNF-α, and IL-13 into SMG organoid cultures re- 

vealed significant impacts on secretory cells. While previous 

studies have mainly focused on MHC class II expression in the 

SAE and lower airway, 65–67 our findings show that IL-1β and

TNF-α specifically induce MHC class II expression in SMG mu- 

cous cells, consistent with observations in human bronchus tis- 

sues. Similar cytokine-driven responses have been reported in 

other epithelial tissues. 68,69 This highlights the potential role of 

SMG mucous cells in antigen presentation and immune modula- 

tion, comprising an important immune niche underlying mucosal 

epithelium.

HCoV-229E infection has been associated with exacerbation 

of COPD and asthma in epidemiological studies. 70–73 In this 

study, we demonstrate that HCoV-229E preferentially infects 

CD13 + SMG cells, causing primary epithelial injury and ampli- 

fying secondary immune responses. Although airborne viruses 

are typically expected to infect surface epithelium, emerging ev- 

idence suggests that some respiratory viruses can directly ac- 

cess submucosal compartments. For example, SARS-CoV-2 

variants, particularly the Delta variant, have been detected in 

the nasal submucosa and salivary glands, 74,75 while both human 

and avian influenza viruses can bind the apical surface of SMG 

ducts. 76 These observations imply that submucosal access 

may occur under specific conditions, such as impaired mucocili- 

ary clearance seen in COPD and cystic fibrosis, where thickened 

mucus hampers viral elimination and facilitates deeper viral 

penetration. 77–79 Our data indicate that HCoV-229E selectively 

infects SMG cells and induces ER stress and pro-inflammatory 

signaling, implicating this compartment in virus-driven injury. In- 

fected SMG cells also showed elevated MUC5B and MUC5AC 

secretion, contributing to mucus hypersecretion and airway 

obstruction—hallmarks of COPD exacerbation. A previous study 

reported HCoV-229E infection in human airway organoids, with 

infection in 3D cultures requiring mechanical dissociation prior 

to exposure, 80 This study found higher ANPEP/CD13 expression 

in undifferentiated versus differentiated cells, resulting in higher 

infection rates in undifferentiated cultures. This finding contra- 

dicts the current scRNA-seq atlas of human airways and our 

data from sorted CD13 + SMG cells. Thus, it remains crucial to 

examine further whether tissue-derived organoids accurately 

reflect the heterogeneity and functionality of their respective tis- 

sue counterparts.

Taken together, our study establishes the SMG organoid 

model as a new tool for investigating the complex role of 

SMGs in the human airway. This model effectively recapitulates 

key glandular cell types and, together with SAE organoids, pro- 

vides a more physiologically relevant system for studying cellular 

responses to infections and inflammatory stimuli.

Limitations of the study

Although SAE and SMG organoids recapitulate key features of 

their respective tissues, integrating both compartments within

(B) Schematic of HCoV-229E infection in SMG and SAE transwell cultures.

(C) Representative immunofluorescence staining of MUC5B (red), HCoV-229E-EGFP (green), CD13 (magenta), and nuclei (DAPI, cyan) in human SMG and SAE 

transwell cultures infected with HCoV-229E (donor: #OHLT019).

(D) Left: representative FACS analysis of infected cultures stained with CD13-antigen-presenting cell (APC) (donor: #OHLT019). Right: quantification of infected 

cell types in SMG transwell cultures from three independent donors. Data are shown as mean ± SEM. ***p < 0.001 by two-way ANOVA using the two-stage linear 

step-up procedure of Benjamini, Krieger, and Yekutieli, with Q = 5%, n = 3.

(E) Principal-component analysis (PCA) of SMG cultures with or without HCoV-229E-EGFP infection by bulk RNA-seq (n = 3 donors).

(F) Heatmap of top DEGs in infected versus uninfected cells.

(G) Enrichment network plot depicting gene sets and three selected pathways by Gene oOntology analysis.

(H) Schematic summarizing the use of SMG organoids to model tissue characteristics, cytokine responses, and viral infections.

See also Figure S4.
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a single culture remains technically challenging. Future 

studies could incorporate microfabrication approaches to 

enable co-culture systems that better reflect the native airway 

architecture. Additionally, promoting serous acini differentiation 

and enhancing MEC maturation may require optimized ECM 

compositions, biomechanical cues, or perfusion-based plat- 

forms that more closely emulate the physical and mechanical 

environment of the in vivo airway.
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C. (2018). The mucus bundles responsible for airway cleaning are retained 

in cystic fibrosis and by cholinergic stimulation. Eur. Respir. J. 52, 

1800457. https://doi.org/10.1183/13993003.00457-2018.

14. Choi, J.Y., Khansaheb, M., Joo, N.S., Krouse, M.E., Robbins, R.C., Weill, 

D., and Wine, J.J. (2009). Substance P stimulates human airway submuco- 

sal gland secretion mainly via a CFTR-dependent process. J. Clin. Invest. 

119, 1189–1200. https://doi.org/10.1172/JCI37284.

15. Ali, M., Maniscalco, J., and Baraniuk, J.N. (1996). Spontaneous release of 

submucosal gland serous and mucous cell macromolecules from human 

nasal explants in vitro. Am. J. Physiol. 270, L595–L600. https://doi.org/ 

10.1152/ajplung.1996.270.4.L595.

16. Zhou, J., Li, C., Sachs, N., Chiu, M.C., Wong, B.H.-Y., Chu, H., Poon, V. 

K.-M., Wang, D., Zhao, X., Wen, L., et al. (2018). Differentiated human 

airway organoids to assess infectivity of emerging influenza virus. Proc. 

Natl. Acad. Sci. USA 115, 6822–6827. https://doi.org/10.1073/pnas. 

1806308115.

17. Sachs, N., Papaspyropoulos, A., Ommen, D.D.Z., Heo, I., Klay, D., 

Weeber, F., Huelsz-Prince, G., Iakobachvili, N., Gimano, D., de Ligt, J., 

et al. (2019). Long-term expanding human airway organoids for disease 

modeling. EMBO J. 38, e100300. https://doi.org/10.15252/embj. 

2018100300.

18. Hegab, A.E., Ha, V.L., Darmawan, D.O., Gilbert, J.L., Ooi, A.T., Attiga, Y.S., 

Bisht, B., Nickerson, D.W., and Gomperts, B.N. (2012). Isolation and 

In Vitro Characterization of Basal and Submucosal Gland Duct Stem/ 

Progenitor Cells from Human Proximal Airways. Stem Cells Transl. Med. 

1, 719–724. https://doi.org/10.5966/sctm.2012-0056.

19. Okuda, K., Chen, G., Subramani, D.B., Wolf, M., Gilmore, R.C., Kato, T., 

Radicioni, G., Kesimer, M., Chua, M., Dang, H., et al. (2019). 

Localization of Secretory Mucins MUC5AC and MUC5B in Normal/ 

Healthy Human Airways. Am. J. Respir. Crit. Care Med. 199, 715–727. 

https://doi.org/10.1164/rccm.201804-0734OC.

20. Ostedgaard, L.S., Moninger, T.O., McMenimen, J.D., Sawin, N.M., Parker, 

C.P., Thornell, I.M., Powers, L.S., Gansemer, N.D., Bouzek, D.C., Cook, D. 

P., et al. (2017). Gel-forming mucins form distinct morphologic structures 

in airways. Proc. Natl. Acad. Sci. USA 114, 6842–6847. https://doi.org/10. 

1073/pnas.1703228114.

21. Goldfarbmuren, K.C., Jackson, N.D., Sajuthi, S.P., Dyjack, N., Li, K.S., 

Rios, C.L., Plender, E.G., Montgomery, M.T., Everman, J.L., Bratcher, P. 

E., et al. (2020). Dissecting the cellular specificity of smoking effects and 

reconstructing lineages in the human airway epithelium. Nat. Commun. 

11, 2485. https://doi.org/10.1038/s41467-020-16239-z.

22. Deprez, M., Zaragosi, L.-E., Truchi, M., Becavin, C., Ruiz Garcı́a, S., 

Arguel, M.-J., Plaisant, M., Magnone, V., Lebrigand, K., Abelanet, S., 

et al. (2020). A Single-Cell Atlas of the Human Healthy Airways. Am. J. 

Respir. Crit. Care Med. 202, 1636–1645. https://doi.org/10.1164/rccm. 

201911-2199OC.

23. Madissoon, E., Oliver, A.J., Kleshchevnikov, V., Wilbrey-Clark, A., 

Polanski, K., Richoz, N., Ribeiro Orsi, A., Mamanova, L., Bolt, L., 

Elmentaite, R., et al. (2023). A spatially resolved atlas of the human lung 

characterizes a gland-associated immune niche. Nat. Genet. 55, 66–77. 

https://doi.org/10.1038/s41588-022-01243-4.

24. Dayton, T.L., Alcala, N., Moonen, L., den Hartigh, L., Geurts, V., 

Mangiante, L., Lap, L., Dost, A.F.M., Beumer, J., Levy, S., et al. (2023). 

Druggable growth dependencies and tumor evolution analysis in pa- 

tient-derived organoids of neuroendocrine neoplasms from multiple 

body sites. Cancer Cell 41, 2083–2099.e9. https://doi.org/10.1016/j. 

ccell.2023.11.007.

25. Hegab, A.E., Ha, V.L., Gilbert, J.L., Zhang, K.X., Malkoski, S.P., Chon, A. 

T., Darmawan, D.O., Bisht, B., Ooi, A.T., Pellegrini, M., et al. (2011). 

Novel Stem/Progenitor Cell Population from Murine Tracheal 

Submucosal Gland Ducts with Multipotent Regenerative Potential. Stem 

Cells 29, 1283–1293. https://doi.org/10.1002/stem.680.

26. Sun, X., Perl, A.-K., Li, R., Bell, S.M., Sajti, E., Kalinichenko, V.V., Kalin, T. 

V., Misra, R.S., Deshmukh, H., Clair, G., et al. (2022). A census of the lung: 

CellCards from LungMAP. Dev. Cell 57, 112–145.e2. https://doi.org/10. 

1016/j.devcel.2021.11.007.

27. Schmid, A., Sailland, J., Novak, L., Baumlin, N., Fregien, N., and Salathe, 

M. (2017). Modulation of Wnt signaling is essential for the differentiation of 

ciliated epithelial cells in human airways. FEBS Lett. 591, 3493–3506. 

https://doi.org/10.1002/1873-3468.12851.

28. Bonser, L.R., Koh, K.D., Johansson, K., Choksi, S.P., Cheng, D., Liu, L., 

Sun, D.I., Zlock, L.T., Eckalbar, W.L., Finkbeiner, W.E., et al. (2021). 

Flow-Cytometric Analysis and Purification of Airway Epithelial-Cell 

Subsets. Am. J. Respir. Cell Mol. Biol. 64, 308–317. https://doi.org/10. 

1165/rcmb.2020-0149MA.

29. Warner, T.F., and Azen, E.A. (1984). Proline-rich proteins are present in se- 

rous cells of submucosal glands in the respiratory tract. Am. Rev. Respir. 

Dis. 130, 115–118. https://doi.org/10.1164/arrd.1984.130.1.115.

30. Liu, X., Driskell, R.R., and Engelhardt, J.F. (2004). Airway Glandular 

Development and Stem Cells. Curr. Top. Dev. Biol. 64, 33–56. https:// 

doi.org/10.1016/S0070-2153(04)64003-8.

31. Shimura, S., Sasaki, T., Sasaki, H., and Takishima, T. (1986). Contractility 

of isolated single submucosal gland from trachea. J. Appl. Physiol. (1985) 

60, 1237–1247. https://doi.org/10.1152/jappl.1986.60.4.1237.

32. Yu, W., Moninger, T.O., Rector, M.V., Stoltz, D.A., and Welsh, M.J. (2022). 

Pulmonary neuroendocrine cells sense succinate to stimulate myoepithe- 

lial cell contraction. Dev. Cell 57, 2221–2236.e5. https://doi.org/10.1016/j. 

devcel.2022.08.010.

33. Anderson, P.J., Lynch, T.J., and Engelhardt, J.F. (2017). Multipotent 

Myoepithelial Progenitor Cells Are Born Early during Airway Submucosal 

Gland Development. Am. J. Respir. Cell Mol. Biol. 56, 716–726. https:// 

doi.org/10.1165/rcmb.2016-0304OC.

34. Goldhammer, N., Kim, J., Villadsen, R., Rønnov-Jessen, L., and Petersen, 

O.W. (2022). Myoepithelial progenitors as founder cells of hyperplastic hu- 

man breast lesions upon PIK3CA transformation. Commun. Biol. 5, 219. 

https://doi.org/10.1038/s42003-022-03161-x.

35. Mukhopadhyay, S., Hoidal, J.R., and Mukherjee, T.K. (2006). Role of TNFα 
in pulmonary pathophysiology. Respir. Res. 7, 125. https://doi.org/10. 

1186/1465-9921-7-125.

36. Perea, L., Bottier, M., Cant, E., Richardson, H., Dicker, A.J., Shuttleworth, 

M., Giam, Y.H., Abo-Leyah, H., Finch, S., Huang, J.T.-J., et al. (2024). 

Airway IL-1β is related to disease severity and mucociliary function in 

bronchiectasis. Eur. Respir. J. 64, 2301966. https://doi.org/10.1183/ 

13993003.01966-2023.

37. Bal, S.M., Bernink, J.H., Nagasawa, M., Groot, J., Shikhagaie, M.M., 

Golebski, K., van Drunen, C.M., Lutter, R., Jonkers, R.E., Hombrink, P.,

ll
OPEN ACCESS Short article

1180 Cell Stem Cell 32, 1170–1182, July 3, 2025



et al. (2016). IL-1β, IL-4 and IL-12 control the fate of group 2 innate 

lymphoid cells in human airway inflammation in the lungs. Nat. Immunol. 

17, 636–645. https://doi.org/10.1038/ni.3444.

38. Chen, G., Sun, L., Kato, T., Okuda, K., Martino, M.B., Abzhanova, A., Lin, J. 

M., Gilmore, R.C., Batson, B.D., O’Neal, Y.K., et al. (2019). IL-1β domi- 

nates the promucin secretory cytokine profile in cystic fibrosis. J. Clin. 

Invest. 129, 4433–4450. https://doi.org/10.1172/JCI125669.

39. Wills-Karp, M., Luyimbazi, J., Xu, X., Schofield, B., Neben, T.Y., Karp, C.L., 

and Donaldson, D.D. (1998). Interleukin-13: Central Mediator of Allergic 

Asthma. Science 282, 2258–2261. https://doi.org/10.1126/science.282. 

5397.2258.

40. Kuperman, D.A., Huang, X., Koth, L.L., Chang, G.H., Dolganov, G.M., Zhu, 

Z., Elias, J.A., Sheppard, D., and Erle, D.J. (2002). Direct effects of inter- 

leukin-13 on epithelial cells cause airway hyperreactivity and mucus 

overproduction in asthma. Nat. Med. 8, 885–889. https://doi.org/10. 

1038/nm734.

41. Coden, M.E., Loffredo, L.F., Abdala-Valencia, H., and Berdnikovs, S. 

(2021). Comparative Study of SARS-CoV-2, SARS-CoV-1, MERS-CoV, 

HCoV-229E and Influenza Host Gene Expression in Asthma: Importance 

of Sex, Disease Severity, and Epithelial Heterogeneity. Viruses 13, 1081. 

https://doi.org/10.3390/v13061081.

42. Rose, M.C., and Voynow, J.A. (2006). Respiratory Tract Mucin Genes and 

Mucin Glycoproteins in Health and Disease. Physiol. Rev. 86, 245–278. 

https://doi.org/10.1152/physrev.00010.2005.

43. Strous, G.J., and Dekker, J. (1992). Mucin-Type Glycoproteins. 

Crit. Rev. Biochem. Mol. Biol. 27, 57–92. https://doi.org/10.3109/ 

10409239209082559.

44. Amo, L., Dı́ez-Garcı́a, J., Tamayo-Orbegozo, E., Maruri, N., and Larrucea, 

S. (2022). Podocalyxin Expressed in Antigen Presenting Cells Promotes 

Interaction With T Cells and Alters Centrosome Translocation to the 

Contact Site. Front. Immunol. 13, 835527. https://doi.org/10.3389/ 

fimmu.2022.835527.

45. Smole, U., Gour, N., Phelan, J., Hofer, G., Kö hler, C., Kratzer, B., Tauber, 
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Human samples

Human bronchus samples were obtained as healthy adjacent tissues from tumor resections at the St Antonius Hospital Utrecht 

(#OHLT019), or at the Diakonessen Hospital Utrecht (#0523, #0620, #0704, #0801, #0815, and #0919) (Utrecht, the Netherlands). 

The study was approved by the ethical committee and was in accordance with the Declaration of Helsinki and according to Dutch 

law. This study is compliant with all relevant ethical regulations regarding research involving human participants. As patient samples 

were anonymized, sex, gender, age, race and other information were not recorded and hence are not available.

Viruses

HCoV-229E containing endogenously tagged EGFP protein by replacing accessory gene 4 (HCoV-229E-EGFP) was a kind gift from 

Volker Thiel (University of Bern, Switzerland). 62 Biosafety level 2 (BSL-2) infections were conducted at the Hubrecht Institute following 

Dutch regulations.

METHOD DETAILS

Organoid culture

Bronchus samples with cartilaginous rings were dissected using fine-tip surgical scissors to expose the surface airway and resus- 

pended in 1.5 mg/mL Pronase in digestion buffer, which contained Advanced Dulbecco’s modified Eagle’s medium (DMEM)/F12 

(Thermo Fisher Scientific) supplemented with Y-27632 dihydrochloride (10 μM, Abmole Bioscience), Primocin (100 μg/mL, 

InvivoGen), and 10 U/mL DNase I (Sigma-Aldrich), at 4 ◦ C for 2 hours with gentle nutation. The tube with bronchus samples was 

then placed at 37 ◦ C for 30 minutes, and the tissue suspension was vigorously pipetted up and down using a P1000 pipette every

5 minutes. The detached SAE cells were collected in a separate tube, washed, and pelleted at 300xg for 3 minutes.

The remaining bronchus tissues were then placed in a petri dish and dissected with fine-tip surgical scissors into tissue pieces ≤

5 mm 3 . Pre-warmed Collagenase (Sigma-Aldrich) diluted in digestion buffer was added to the tissue pieces to a final concentration of

1 mg/mL, followed by incubation at 37 ◦ C for 15 minutes. The tissue suspension was vigorously pipetted up and down using a P1000 

pipette every 5 minutes. The cell suspension containing the remaining detached SAE cell sheets was collected, washed, and com- 

bined with the previously collected SAE samples.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

clusterProfiler (v.4.7.1.002) Yu et al. 85 https://yulab-smu.top/biomedical- 

knowledge-mining-book/

Enrichplot (v.1.18.3) Wu et al. 86 and Yu et al. 85 https://doi.org/10.1016/j.xinn.2021.100141

Biorender Biorender http://www.biorender.com

Experimental Models: organoid lines and cell lines

Donor: #OHLT019 HUB

Donor: #0523 Diakonessenhuis Utrecht-Hubrecht

Donor: #0620 Diakonessenhuis Utrecht-Hubrecht

Donor: #0703 Diakonessenhuis Utrecht-Hubrecht

Donor: #0801 Diakonessenhuis Utrecht-Hubrecht

Donor: #0815 Diakonessenhuis Utrecht-Hubrecht

Donor: #0919 Diakonessenhuis Utrecht-Hubrecht

Huh-7 Kindly provided by Dr. Volker Thiel 

(University of Bern, Switzerland)

N/A

Experimental Models: virus strains

HCoV-229E-EGFP Kindly provided by Dr. Volker Thiel 

(University of Bern, Switzerland), 

Cervantes-Barragan et al. 62

https://doi.org/10.1128/mBio.00171-10

Oligonucleotides

qPCR primers This paper, and Table S4 

Oligo collection

N/A

Viral titer primers This paper, and Table S4 

Oligo collection

N/A
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The tissue suspension was again placed in a petri dish and dissected with a surgical knife and micro scissors to remove the carti- 

laginous rings. The SMGs entangled with connective tissues were cut and collected into fresh digestion medium with 1 mg/mL Colla- 

genase (Sigma-Aldrich) at 37 ◦ C for 15 minutes. The tissue suspension was vigorously pipetted up and down using a P1000 pipette 

every 5 minutes until the SMGs were released from connective tissues. The resulting cell suspension containing SMGs was collected, 

washed, and pelleted at 300xg for 3 minutes. If the cell pellets of SMGs and SAE presented red blood cells, they were resuspended in

1 mL of Red Blood Cell Lysis Buffer (Sigma-Aldrich) and incubated at room temperature for 5 minutes. The SMG and SAE cell pellets 

were washed twice with digestion buffer and seeded separately in Cultrex Basement Membrane Extract (BME, Growth Factor 

Reduced, Type 2, R&D Systems) in cell suspension plate (Corning).

The compositions of culture media for human SMG and SAE organoids are listed in Figure 1B. The concentrations are: Noggin 

conditioned medium (1%, U-Protein Express), n-Acetyl Cysteine (1.25 mM, Sigma-Aldrich), Nicotinamide (5 mM, Sigma-Aldrich), hu- 

man FGF-10 (50 ng/mL, PeproTech), human FGF-7 (25 ng/mL, PeproTech), A83-01 (500 nM, Tocris), p38 inhibitor SB202190 (1 μM, 

Sigma-Aldrich), supplemented in basic culture medium consisting of Advanced Dulbecco’s modified Eagle’s medium (DMEM)/F12 

with B27 (minus vitamin A, 1%, Thermo Fisher Scientific), Glutamax (1%, Thermo Fisher Scientific), HEPES (1%, Thermo Fisher Sci- 

entific), and penicillin/streptomycin (1%, Thermo Fisher Scientific). Rho kinase inhibitor Y-27632 dihydrochloride (10 μM, Abmole 

Bioscience) and Primocin (100 μg/mL, InvivoGen) were added upon passaging.

SMG and SAE organoids were split every 21-28 days and the medium was refreshed every three days. For passaging, organoids 

were removed from the BME (R&D Systems) and digested with prewarmed TrypLE (Thermo Fisher Scientific) at 37 ◦ C for 2-3 minutes. 

The organoids were vigorously pipetted up and down using glass Pasteur pipettes until they were mostly dissociated into small cell 

clumps (<10 cells). The digested cell suspension was then washed twice with AdDMEM/F12 (Thermo Fisher Scientific) and replated in 

fresh BME (R&D Systems).

Cytokine treatments

Stock solutions for cytokines were prepared according to manufacturer’s recommendation. Recombinant human IL-13 (Peprotech), 

Recombinant human TNF-α (Peprotech), and Recombinant human IL-1β (Peprotech) were added to organoid cultures to a final con- 

centration of 10 ng/mL. The medium was replenished every 2 days until Day 7. Cells were then harvested for further analysis.

HCoV-229E-EGFP propagation and titration quantification

Huh-7 cells, kindly provided by Dr. Volker Thiel (University of Bern, Switzerland), were cultured in DMEM with high glucose and 

GlutaMAX Supplement (Thermo Fisher Scientific), containing 10% FBS and 1% Penicillin/Streptomycin. The cells were maintained 

at 37 ◦ C with 5% CO2. On day 0, Huh-7 cells were inoculated with HCoV-229E-EGFP virus and incubated at 33 ◦ C for 24 hours post- 

infection. After incubation, cells were washed with PBS and further cultured in fresh medium. Cells were monitored daily under a light 

microscope until strong cytopathic effects became visible on day 4. Supernatant was harvested daily, centrifuged for 5 minutes at 

300xg at 4 ◦ C, filtered through a 45 μm pore size polyethersulfone membrane filter, and stored at 4 ◦ C. Once all batches of superna- 

tants were collected, they were combined and concentrated using Lenti-X Concentrator (Takara Bio) according to the manufacturer’s 

protocol. The concentrated virus was resuspended in 1/100th of the original volume using AdDMEM/F12 (Thermo Fisher Scientific), 

aliquoted into 100 μL/tube, and stored at -80 ◦ C.

For virus titration, genomic RNA from HCoV-229E-EGFP virus particles was isolated from concentrated aliquots using the Nucle- 

ospin RNA Virus Kit (Macherey-Nagel) and treated with DNase I (Thermo Fisher Scientific). Quantitation was performed in a qRT-PCR 

reaction using primers targeting the nucleocapsid (N) encoding gene locus (Table S4), following the protocol of the Lenti-X qRT-PCR 

Titration Kit (Takara Bio), yielding an approximate concentration of 1*10∧6 virus particles per μL of the concentrated virus mixture. To 

achieve an optimal infection titration with a multiplicity of infection (MOI) smaller than 1, a series of test infection experiments were 

performed on SMG transwell cultures with serial dilutions of the concentrated virus mixture. All HCoV-229E-EGFP infection exper- 

iments were conducted at 33 ◦ C.

CRISPR/Cas9-mediated knockout in SMG organoids

For generating the SPDEF -/- knockout organoid line, we dissociated the SMG organoids into single cells and filtered them through a 

35 μm nylon mesh cell strainer (Falcon) prior to electroporation. CRISPR/Cas9-mediated gene knockout in organoids was performed 

as previously described. 87 sgRNA targeting SPDEF was designed and cloned into the vector sgBbsI (p2Tol-U6-2xBbsI-sgRNA- 

HygR) (Addgene #71485) at the BbsI restriction enzyme cutting site. Together with p2T-CAG-SpCas9-BlastR (Addgene #107190), 

a 10 μg plasmid mixture was introduced into the digested organoid cells in Opti-MEM (Thermo Fisher Scientific) using the NEPA elec- 

troporation system (NEPAGENE) as previously described, with the poring pulse voltage adjusted to 150 V. 88 Organoid clones derived 

from single-cell expansion were manually picked and expanded for genotyping. The gRNA sequences and genotyping primers are 

listed in Table S4. The sgBbsI (p2Tol-U6-2xBbsI-sgRNA-HygR) vector was a gift from Richard Sherwood (Addgene plasmid # 71485; 

http://n2t.net/addgene:71485; RRID:Addgene_71485). The p2T-CAG-SpCas9-BlastR vector was a gift from Richard Sherwood 

(Addgene plasmid # 107190; http://n2t.net/addgene:107190; RRID:Addgene_107190).

RNA extraction and real-time PCR analysis

For organoids cultured in 3D, organoid cultures subjected to different treatments were removed from BME (R&D Systems) and washed 

with DPBS (Thermo Fisher Scientific). RNA purification was performed using the NucleoSpin RNA Mini kit (MACHEREY-NAGEL),
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following the manufacturer’s protocol. DNase-treated RNA was resuspended in nuclease-free water and quantified using a Nanodrop 

spectrophotometer (Thermo Fisher Scientific). For each reverse transcription reaction, 1-2 μg of DNase-treated RNA was used with 

Oligo(dT)15 Primer (Promega) or Random Primer (Promega) and the GoScript™ Reverse Transcriptase kit (Promega). The cDNA was 

subsequently subjected to qPCR using iQ™ SYBR® Green supermix (Bio-Rad) in a CFX Connect™ Real-Time PCR machine 

(Bio-Rad). Gene expression profiling was performed using gene-specific qPCR primers. The Ct readouts of each gene were first normal- 

ized against the housekeeping gene GAPDH (ΔCt), and the relative expression levels of individual genes under experimental conditions 

versus control conditions were calculated using the 2-ΔΔCt method. All qPCR primers are listed in Table S4.

For organoids subjected to CD13 staining or virus infection, sorted cells were collected in Buffer RA1 from the NucleoSpin RNA Kit 

(Macherey-Nagel) and then subjected to RNA purification, followed by cDNA synthesis. For each reverse transcription reaction, 

4000-8000 cells per condition were sorted per replicate. Equivalent cell numbers from different conditions were used for each exper- 

iment to ensure consistency.

Flow cytometry

Organoids were removed from BME (R&D Systems), digested with TrypLE (Thermo Fisher Scientific) for 5 minutes into single cells 

using glass Pasteur pipettes, washed with ice-cold AdDMEM/F12 (Thermo Fisher Scientific), and filtered into FACS tubes through a 

cell strainer (Falcon). Prior to FACS, cells were stained with DAPI (Sigma-Aldrich) to identify live cells.

For cells subjected to RNA isolation, Buffer RA1 from the NucleoSpin RNA Kit (Macherey-Nagel) was used as the collection buffer. 

For cells subjected to flow cytometry analysis, we used an analysis buffer consisting of 5 mM EDTA, 25 mM HEPES, and 1% BSA in 

DPBS (Thermo Fisher Scientific). Flow cytometry analysis was performed using a CytoFLEX benchtop flow cytometer (Beckman 

Coulter) and analyzed with FlowJo software.

For CD200 staining and cell sorting, single-cell suspensions were stained with an APC-conjugated anti-human CD200 antibody 

(BioLegend) following the manufacturer’s instructions. Briefly, cells were incubated with the antibody at a 1:20 dilution in staining 

buffer (0.5% BSA in basic culture medium) for 30 mins at 4 ◦ C. After staining, cells were sorted using a BD FACSAria Fusion Cell Sorter 

(BD Biosciences) with DAPI (Sigma-Aldrich) to exclude non-viable cells. The sorted live cells were then plated at a density of 

300 cells/μl in 10-20 μl of BME per well in a 48-well cell suspension plate.

For organoid cultures treated with cytokines, flow cytometry sorting was performed on a BD Influx™ cell sorter (BD Bioscience). For 

organoid cultures infected with the virus, both flow cytometry analysis and sorting were performed on a BD FACSMelody Cell Sorter 

(BD Biosciences) in a Class II Biosafety Cabinet of an ML-II laboratory.

Transwell culture and HCoV-229E-EGFP infections

Organoids were removed from BME (R&D Systems) and digested with TrypLE (Thermo Fisher Scientific) for 5 minutes into single cells 

using glass Pasteur pipettes. A total of 200,000 cells were seeded in 500 μL of SMG or SAE culture medium on one well of 12-well 

ThinCert Tissue Culture Inserts with a 0.4 μm pore size (Greiner), which had been previously coated with 10% BME (R&D Systems). 

An additional 1.5 mL of medium was added to the bottom chamber of the transwell. After 7-10 days of continuous medium replen- 

ishment, the cells formed a confluent layer on the transwell. The medium in the upper chamber of SMG transwell cultures was re- 

placed with DPBS (Thermo Fisher Scientific), while the medium in the upper chamber of SAE transwell cultures was completely 

removed to establish an air-liquid interface. By Day 21-28, the SMG and SAE transwell cultures had developed into multilayer struc- 

tures and were ready for further characterization and virus infection experiments.

For infections, transwells were apically exposed to the HCoV-229E-EGFP viral mixture in Advanced Dulbecco’s modified Eagle’s 

medium (DMEM)/F12 (Thermo Fisher Scientific) for 16 hours. Viral mixtures were then removed. The upper chambers of transwell 

cultures were washed with DPBS (Thermo Fisher Scientific) twice. And then, 500 μL of DPBS (Thermo Fisher Scientific) were added 

to the upper chamber of both SMG and SAE transwell cultures. Culture medium at the bottom chamber of the transwell cultures were 

replenished. The cultures were then incubated at 33 ◦ C for an additional 24 hours before analysis.

To assess the role of CD13 in HCoV-229E-EGFP infection, SMG organoids were cultured in transwells for 28 days prior to infection. 

Organoids from three independent donor lines were apically pre-incubated with two different anti-CD13 monoclonal antibodies 

(clone: WM15, 5μg) (BioLegend, Antibodies) for 1 hour at 37 ◦ C prior to viral infection. Following antibody treatment, organoids 

were infected with HCoV-229E-EGFP at a MOI = 4 and incubated at 33 ◦ C for 16 hours in the presence or absence of the blocking 

antibodies. After incubation, cells were washed, and DPBS with or without the blocking antibodies was added to the apical compart- 

ment. After 24 hours post-infection, cells were dissociated and subjected to fluorescence-activated cell sorting to quantify the per- 

centage of HCoV-229E-EGFP-infected cells.

Dot blot

Following the 24-hour incubation period after viral infection, 500 μL of the supernatants were collected. From each sample, 20 μL 

aliquots of the supernatants were transferred into PCR strip tubes and boiled at 95 ◦ C for 5 minutes. Subsequently, 4 μL of the boiled 

supernatants were loaded directly onto nitrocellulose membranes and allowed to dry for 5 minutes. The membranes were then 

blocked with 5% w/v non-fat dry milk in TBST, followed by staining with primary antibodies specific to MUC5B (Atlas Antibodies) 

or MUC5AC (Thermo Fisher Scientific). This was followed by staining with secondary antibodies: goat anti-rabbit HRP (Thermo Fisher 

Scientific) or rabbit anti-mouse HRP (Agilent). Finally, the membranes were imaged using the Amersham ImageQuant 800 Western 

blot imaging system.
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Immunohistochemistry staining

Organoids were removed from BME (R&D Systems), washed with DPBS (Thermo Fisher Scientific), and fixed with 4% paraformal- 

dehyde (PFA) for 1 hour at room temperature. Human bronchus tissues were also washed with DPBS (Thermo Fisher Scientific) and 

fixed with 4% PFA overnight at 4 ◦ C. Both organoids and tissues were then washed, dehydrated using a graded ethanol series, and 

washed in xylene before being embedded in paraffin. Sections cut from paraffin blocks were stained with antibodies according to the 

manufacturer’s instructions. Slides were imaged using a SLIDEVIEW VS200 Slide Scanner (Olympus). The primary antibodies used 

for staining paraffin sections included MUC5B (Atlas Antibodies), acetylated alpha Tubulin (Santa Cruz), CD13 (ProteinTech), Human 

HLA-DR, DP, DQ (BD Biosciences), and MKi-67 (MONOSAN). The secondary antibodies used for staining included EnVision+ Single 

Reagent (HRP. Mouse) (Agilent) and BrightVision+ Anti-Rabbit IgG (H+L) (Poly-HRP) (Avantor).

Immunofluorescence

Human bronchus tissues, 3D organoids, or transwell cultures were fixed, washed, embedded in tissue freezing medium (Leica Bio- 

systems), and stored at -80 ◦ C. Cryosectioning was performed at -20 ◦ C using a Cryostat (Thermo Fisher Scientific). Sections were 

then washed and permeabilized in PBST (PBS + 0.1% Tween20). To block non-specific binding, sections were incubated in 10% FBS 

in PBST. Primary antibodies were applied overnight at 4 ◦ C. The following day, sections were washed and incubated with secondary 

antibodies at room temperature for 2 hours. Finally, sections were mounted in the Antifade mounting medium (VectorLabs) and 

analyzed under a confocal microscope.

Confocal Imaging

Sections subjected to immunofluorescence staining were imaged using a Leica Sp8 confocal microscope. Fluorescent images were 

processed for maximum projection of all z-stacks using Fiji software.

Single-cell transcriptome sample preparation

Organoids were removed from BME (R&D Systems) and digested with TrypLE (Thermo Fisher Scientific) for 5 minutes into single cells 

using glass Pasteur pipettes. The cells were then washed with ice-cold AdDMEM/F12 (Thermo Fisher Scientific) and resuspended in 

culture medium supplemented with Y-27632 dihydrochloride (10 μM, Abmole Bioscience). After filtering them into FACS tubes 

through a cell strainer (Falcon), cells were co-stained with DAPI (Sigma-Aldrich) and DRAQ5 (Biostatus), and subjected to FACS sort- 

ing for live cells. FACS was performed on a BD Influx™ cell sorter (BD Biosciences). 4,000 live cells per condition were subjected to 

droplet-based scRNA-seq using the 10x Genomics platform. Libraries were prepared using the 10x Genomics Chromium 3’ Gene 

Expression solution v3.1 and sequenced on a NovaSeq 6000 (Illumina).

Single-cell RNA-sequencing data processing

Mapping of sequencing reads

The sequencing output was demultiplexed and converted to FASTQ files using the function mkfastq from the CellRanger toolkit 

(v5.0.1). Reads were then mapped to a custom variant of the GRCh38 human transcriptome, and feature count tables were generated 

using the CellRanger count function.

Data pre-processing

CellRanger output files were processed using the Seurat package (v.5.1.0) in R (v.4.3.3). Genes expressed in less than 5 cells were 

removed. High-quality cells were subsequently obtained by filtering out cells expressing less than 3500 or more than 7500 tran- 

scripts, and a mitochondrial gene percentage higher than 5%.

Data integration

Integration of both our organoid datasets (SAE and SMG) was first performed using Reciprocal PCA (RPCA) using the default param- 

eters. 89 After computing PCA dimensions, Uniform Manifold Approximation and Projections (UMAPs) were rendered using 

dims=1:20. The combined organoid object was subsequently integrated with a previously published human airway tissue dataset 

from Goldfarbmuren et al., 21 using RPCA and a k.anchor of 20. Seurat’s IntegrateData function was used with a k.weight of 80. After 

integration, t-distributed Stochastic Neighbor Embeddings (t-SNEs) were computed using dims=1:20.

Clustering and differential expression analysis

To determine the cell clusters present, we used the FindNeighbors function with dims=1:20, and FindClusters with a resolution of 0.3. 

This yielded 14 clusters. By overlaying these clusters with the original identities assigned by the original metadata of Goldfarbmuren 

et al., 21 clusters were annotated. The original KRT8 high population spanned across four clusters (2, 4, 5, and 11) in our integrated data- 

set. Two of these clusters (5 and 11) expressed the highest levels of KRT19 and SERPINB4, and were thereby annotated as supra- 

basal cells. 22 Cluster 4 was annotated as club cells, based on the high expression of club cell markers such as SCGB1A1, SERPINB3, 

CYP2F1, and WFDC2. 90 Finally, cluster 2 showed the highest levels of KRT8, thus we assigned this population to KRT8 high cells. Tis- 

sue-labelled differentiating basal cells were found in two of our clusters (0 and 1). Since common basal cell markers (e.g., IL33, TP63, 

KRT5, and COL4A5) 21 were more highly expressed in cluster 0 than in 1, we annotated cluster 0 as ‘‘SAE basal’’ and cluster 1 as 

‘‘differentiating basal’’. To distinguish myoepithelial cells in the joint dataset, we calculated a module score 91 using the known my- 

oepithelial cell markers ACTA2, TAGLN, CNN1, ACTG2, LAMA1, and FHOD3. 23,92 The percentage of myoepithelial cells among SMG 

basal cells was calculated using cells with a module score higher than 0.5. Lastly, to explore cell abundance and gene expression in 

organoids only, the labels assigned in the integrated object were transferred to the organoid object.
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Bulk mRNA sequencing sample preparation

For cytokine treatment experiments, organoids were removed from BME (R&D Systems) and digested with TrypLE (Thermo Fisher 

Scientific) for 5 minutes to dissociate them into single cells using glass Pasteur pipettes. The cells were then washed with ice-cold 

AdDMEM/F12 (Thermo Fisher Scientific). For HCoV-229E-EGFP infection experiments, transwell cultures were washed with DPBS 

and digested with TrypLE (Thermo Fisher Scientific) for 15 minutes, achieving single-cell suspensions through repeated pipetting. 

The cells were resuspended in culture medium supplemented with Y-27632 dihydrochloride (10 μM, Abmole Bioscience) and stained 

with CD13-APC antibody (1:250, BioLegend) for 20 minutes at 4 ◦ C. Subsequently, the cells were washed, stained with DAPI (Sigma- 

Aldrich), and filtered through a cell strainer (Falcon) for sorting. Cells were sorted into 500 μL of TRIzol (Thermo Fisher Scientific) using 

different gating settings. A range of 25,000 to 150,000 cells were collected and subjected to RNA isolation. For library preparation of 

bulk RNA sequencing, a minimum of 100 ng of total RNA per condition was utilized. The sequencing library preparation was done by 

Utrecht Sequencing Facility (USEQ, Utrecht, The Netherlands) using a TruSeq Stranded mRNA polyA kit, and sequenced with Illu- 

mina NextSeq2000.

Bulk RNA-sequencing data processing

Raw counts were loaded into R using the read.csv function. A DESeq dataset was subsequently created using the DESeq2 package 

(v.1.42.1), and genes with less than 10 counts across conditions were removed from the matrix. For cytokine treatment experiments, 

the gene expression profiles of CD13 + cells treated with IL-13 (Peprotech), TNF-α (Peprotech), and IL-1β (Peprotech) were compared 

to those of untreated CD13 + cells. The top 200 differentially expressed genes were then plotted in a heatmap showing all conditions 

using the pheatmap package (v.1.0.12). For HCoV-229E-EGFP infection experiments, gene expression in virally infected 

CD13 + EGFP + cells were compared to that in non-exposed CD13 + cells or uninfected CD13 + cells, The top 200 differentially ex- 

pressed genes were thereafter plotted in a heatmap showing all conditions using the package pheatmap (v.1.0.12). Gene ontology 

analysis was performed using enrichGO function of package clusterProfiler (v.4.7.1.002), and the gene set enrichment plot was 

rendered with the cnetplot function.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data are presented as means with standard error of the mean (SEM) to indicate the variation within each experiment. Sample sizes (n) 

presented in this study are all biological replicates. Statistics analysis was performed in Prism 8 and R 4.2.0. Multiple t-tests using 

two-stage linear step-up procedure of Benjamini, Krieger and Yekutieli were used for comparison between two different conditions. 

For experiments with more than two conditions, ANOVA test was used to calculate significance. Annotation for P values in figure 

legends regardless of statistical test type are: *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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