
REVIEW
Address corre
versity Medic
lands; E-mail:
Capturing embryonic hematopoiesis in temporal and
spatial dimensions
spon
al Ce
c.rob
Bart Weijtsa, and Catherine Robina,b*

aHubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands; bRegenera-
tive Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
Hematopoietic stem cells (HSCs) possess the ability to sustain the continuous production of all blood cell
types throughout an organism’s lifespan. Although primarily located in the bone marrow of adults, HSCs
originate during embryonic development. Visualization of the birth of HSCs, their developmental trajectory,
and the specific interactions with their successive niches have significantly contributed to our understanding
of the biology and mechanics governing HSC formation and expansion. Intravital techniques applied to live
embryos or non-fixed samples have remarkably provided invaluable insights into the cellular and anatomical
origins of HSCs. These imaging technologies have also shed light on the dynamic interactions between
HSCs and neighboring cell types within the surrounding microenvironment or niche, such as endothelial
cells or macrophages. This review delves into the advancements made in understanding the origin, produc-
tion, and cellular interactions of HSCs, particularly during the embryonic development of mice and zebrafish,
focusing on studies employing (live) imaging analysis. © 2024 International Society for Experimental Hema-
tology. Published by Elsevier Inc. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/)
HIGHLIGHTS

� Imaging tools provide information with spatial and temporal
dimension.

� Imaging provided evidence of the endothelial-to-hematopoietic
(stem) cell transition in vertebrate embryo aortas.

� Heterogeneity of intra-aortic hematopoietic cluster cells is
revealed by surface markers and transgenic reporter lines.

The adage “Seeing is believing” has significantly influenced scientific
research, guiding the formulation and validation of hypotheses. The dis-
covery of hematopoietic stem cells (HSCs), the cells at the foundation
of the entire blood system, coincided with the evolution of microscopy
during the early 20th century [1]. Integration of sophisticated micros-
copy techniques, fluorescent labeling methods, and advanced image
analysis tools has enabled direct visualization of individual blood cells
and tissue structures, such as bone marrow (BM) or blood vessels,
thereby revolutionizing our comprehension of developmental and
adult hematopoiesis. Continuous improvements in microscopy tech-
nologies as well as processing tools and software have increased imag-
ing depth and resolution in complex tissue structures and embryos,
facilitating optical sectioning, three-dimensional (3D) reconstructions,
and prolonged imaging durations while minimizing phototoxicity and
photobleaching [2,3]. Techniques like confocal, multiphoton, light
sheet fluorescence, and intravital microscopy offer high spatiotemporal
resolution imaging of large, living embryos or unfixed tissues in real-
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time, although each technique has its pros and cons. Fluorescent
markers, including fluorescently tagged antibodies or transgenic
reporter lines, aid in labeling specific hematopoietic cell populations for
visualization and tracking. Imaging analysis software has become more
user-friendly with point-and-click programs that allow processing and
analysis of large datasets, with advanced options for quantification,
tracking, and visualization of blood cell populations in time and space.
Collectively, these technological advancements have opened new ave-
nues for observing the dynamics of hematopoietic stem and progenitor
cells (HSPCs) within their physiological environments in tissues or
embryos, including cell-cell interactions, behaviors, and migration/hom-
ing. This review presents the latest findings on HSPC production, espe-
cially during mouse and zebrafish ontogeny, with a particular focus on
how imaging approaches have contributed to establishing the endothe-
lial origin of HSPCs in the embryonic dorsal aorta (DA) through an
endothelial to hematopoietic transition (EHT), as well as the role of
specialized niche cells in HSPC detachment after EHT, migration/hom-
ing, and quality control.
THE QUEST FOR THE SPATIAL AND TEMPORAL
ORIGIN OF HSCs

The exploration of the spatial and temporal origins of HSCs began
with the observation of the first blood cells, the primitive erythrocytes,
in the extra-embryonic yolk sac (YS). Until the 1970s, this observation
fueled the hypothesis that the YS served as the primary source of all
blood cell production, including HSCs [4,5]. This hypothesis was
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further supported by a series of experiments using avian parabioses
and in vitro assays to test the hematopoietic potential of mouse intra-
and extra-embryonic tissues [6−12]. Sophisticated homotypic grafting
experiments challenged the dogma of extra-embryonic origin of
HSCs by tracing hematopoietic cells during ontogeny using avian YS
chimeras [13−17]. Chicken/quail chimeras were created by grafting a
whole embryo from one species onto the YS of another species at a
comparable developmental age. Grafting was performed before the
onset of circulation to prevent “contamination” by cells derived from
one anatomical site, i.e., intra- or extra-embryonic, and migrating to
another site. Relying on microscopy to distinguish chicken and quail
cells through variances in the nucleoli (unique and compact for the
quail, scattered and multiple for the chicken) and later on species-spe-
cific antibodies, it was shown that adult blood derived from an intra-
embryonic source, while YS either did not contribute at all or only
temporarily to cells that did not persist in adults [10,11,13,18,19].

Although these pioneering avian studies pinpointed the region of
the DA as the prospective source of HSPCs [20,21], confirmation of
bona fide HSC presence in the DA of chicken embryos came more
than 40 years later through an in ovo transplantation approach [22].
Transplanting green fluorescent protein-positive (GFP+) chicken intra-
or extra-embryonic tissues onto the chorioallantoic membrane of
wild-type chicken embryos showed that only the embryonic tissue
comprising the DA enabled lymphoid-myeloid multilineage reconsti-
tution in recipients four months post-grafting, while grafting of YS,
allantois, or head did not. This further established the critical role of
the DA in housing the first HSCs produced during embryonic de-
velopment. Grafting experiments in amphibians (Xenopus) con-
firmed that the dorsal lateral plate mesoderm (orthologous region of
the aortic region) predominantly contributed to adult blood produc-
tion, while the ventral blood island region (orthologous region of the
YS) only contributed to embryonic blood production [23−25]. Evi-
dence for the early developmental divergence of definitive and primi-
tive blood was demonstrated by performing lineage tracing
experiments in 32-cell stage Xenopus embryos [26,27].

From the above-mentioned avian and amphibian studies, the intra-
embryonic DA was identified as the primary site of HSC production
[28]. To test its validity in mammals, including humans, alternative
strategies had to be developed due to the obvious impracticability of
embryonic grafting strategies in mammals. Therefore, a series of in
vitro and in vivo (e.g., short-term transplantation [spleen colony-form-
ing unit {CFU-S} assay]) experiments confirmed that the para-aortic
splanchnopleure, which sequentially develops into the aorta-gonad-
mesonephros (AGM) region, generates definitive multipotent HSPCs
in mouse and human embryos [29−34]. To date, injecting donor cells
into irradiated adult recipients is considered the gold standard assay to
determine whether cells have multilineage and self-renewal capacity
and, therefore, are HSCs. Multipotency is analyzed in primary recipi-
ents in the long-term (after at least 4 months post-transplantation).
The self-renewal capacity is evaluated through serial transplantations,
where cells from the BM of primary reconstituted recipients are trans-
planted into secondary recipients and analyzed for multipotent prog-
eny of donor origin. Using this in vivo transplantation assay, HSCs
were detected in various sites starting at embryonic day (E) 10.5 of
mouse development, i.e., the DA of the AGM region, the vitelline
artery (VA), the umbilical artery (UA), and the head [35−39]. From
E11 onward, HSCs are also found in the YS, placenta, and fetal liver
(FL) [40−43]. At mid-gestation, the placenta and FL become impor-
tant HSC reservoirs where HSCs mature and expand into a finite
pool of HSCs with multilineage and self-renewal capacities before
colonizing the BM starting at E17 [44]. In human embryos, HSCs
with self-renewal and therefore regenerative capacity are also first
detected in the AGM region, between 27 and 40 days of human
embryonic development [45−48]. Yet, questions remained regarding
the de novo generation of HSCs in specific anatomical sites, such as
placenta and YS, and the identity of their direct precursors, prompting
further investigation into alternative hypotheses.
HEMATOPOIETIC CLUSTERS CONTAINING THE FIRST
HSCs LOCATE IN THE MAIN ARTERIES DURING A
RESTRICTED DEVELOPMENTAL TIME WINDOW

Although the experimental confirmation of HSC activity in the main
arteries of vertebrate embryos is relatively recent, the recognition of
hematopoietic cells in that location dates back over a century. A
meticulous examination of different fixed vertebrate embryos under
the microscope revealed clusters of “hemoblast” cells, later referred to
as intra-aortic hematopoietic clusters (IAHCs), in the DA of various
embryo species [28,49−53]. Initially associated with a hematopoietic
identity due to the high nuclear-to-cytoplasmic ratio of IAHC cells
and an affinity for basophilic stains [21], this was later confirmed by
immunostaining performed on fixed embryo sections or non-fixed
thick slices, whole-mount embryos, or flow cytometry analyses after
tissue dissociation using various combinations of hematopoietic
markers. IAHCs appeared closely associated with the wall of the DA,
composed of a layer of endothelial cells (ECs), facing the luminal
side. IAHC cells exhibit a morphologically round shape, with bean,
round, and ring-like nuclear shapes, distinct from the underlying flat
ECs [54]. Scanning electron microscopy on thick embryo slices
revealed the heterogeneity in size and shape of IAHCs, ranging from
single cells to clusters of up to 19 cells, exhibiting either spheroidal,
mushroom-like, or stacked organization, with all cells harboring
microvilli on their surface (Figure 1A) [55]. Further observation using
electron (scanning) microscopy underlined the ultrastructural similari-
ties and tight junctions between IAHCs and the underlying ECs [55
−57]. In contrast to the idea that IAHCs are just a random accumula-
tion of circulating cells originating from other intra- or extra-embry-
onic regions, these observations led to the concept that they are
more likely derived from the underlining endothelium. This implies
that some ECs possess a hemogenic potential and are thus termed
hemogenic ECs (HECs) [58,59].

Precise quantification, cartography, and organization of IAHCs
along the circumference and length of the main arteries were initially
performed by immunostaining on serial embryo sections collected
along the anterior to posterior axis of the embryo and later by confo-
cal imaging of whole-mount immunostained embryos of chicken
[60,61], mouse [62], and human [63,64] species. The ability to
acquire optical sections of an intact embryo allows for the software-
based 3D reconstruction of the embryo, which preserves cell organi-
zation along the entire vasculature without disrupting tissue integrity
or dislodging cells. By employing this approach, it was shown that
IAHCs are randomly dispersed on the ventral aortic endothelium in
avian and human embryos [60,63], although in mouse embryos,
IAHCs are also found on the dorsal side (roof) of the DA, although
less numerous [65]. Mouse IAHCs appear around E9.5 in the VA
and shortly after in both DA and UA [66], distributed around the
entire circumference and length of the VA, while IAHCs in UA are



Figure 1 Commonly used surface markers and fluorescent transgenic lines to phenotypically characterize the endothelial and
hematopoietic populations in the dorsal aorta of mouse and human embryos. (A) Scanning electron microscopy image of an E10-
thick embryo slice, showing a close-up view of intra-aortic hematopoietic clusters (IAHCs) visible inside the aorta, in close contact
with the endothelial wall. Markers expressed (positive, blue; low/intermediate, orange) and not expressed (negative, red) are indicated
for aortic endothelial cells (AECs), hemogenic endothelial cells (HECs), cells undergoing endothelial to hematopoietic transition (EHT),
and IAHC cells. IAHC cells include pro-hematopoietic stem cells (pro-HSCs) and precursors of HSCs type I and II (pre-HSCs).
(B) Table listing all markers and transgenic lines referred to in the top panel, including their description and gene symbols.
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predominantly located dorsally [49,54,62]. IAHCs in the DA are
more concentrated around the central embryonic region [55,67,68],
and are phenotypically similar but smaller than the ones in the UA
and VA (e.g., up to 76 cells/cluster in the VA at E10.5) [62]. In chicken
embryos, IAHCs are only present in the anterior region of the DA,
restricted by the aortic arches and the DA-VA connection, but
completely absent below this connection or in the VA [61]. In human
embryos, IAHCs appear along the ventral endothelium of the VA
around 30−36 days of development (Carnegie stage [CS]13−15),
being more numerous at the DA-VA connection [63]. In the DA,
IAHCs are also found along the ventral endothelium, more concen-
trated in the pre-umbilical section, emerging around 27 days (CS12)
and persisting until 39−42 days (CS17) [69].

The connection between IAHCs and HSCs was established due to
their shared expression of markers (e.g., c-Kit [62]) and their absence
in Runx1 knock-out embryos [70]. Although ventral and dorsal
IAHCs are transcriptionally very similar [71], HSC activity is restricted
to the ventral IAHCs, whereas committed hematopoietic progenitors
(identified using in vitro clonogenic assay) are associated with both
ventral and dorsal sides of the DA [65]. At E11.5, the DA harbors
more functional HSCs, while small IAHCs of 1−2 cells are also pre-
dominant, preferentially expressing CD27 (TNFRSF7), which is
known to be essential for all functional HSCs [72,73]. This observa-
tion fueled the idea that these small IAHCs are HSCs emerging
directly from HECs. In support of a long-ignored correlation between
IAHC size and HSC function, it was shown, either through Notch sig-
naling perturbation [74] or knockout of Svep1 [22] or Pdgfrb [75],
that large-size IAHCs correlate with decreased HSC activity. IAHC
formation occurs during a restricted time window, with their number
peaking at E10.5 with around 700 IAHC cells in the DA that disap-
pear around E14.5 [62]. Human (35 days) and chicken (E3) DAs con-
tain thousands of IAHC cells and their numbers also gradually
decrease until 42 days (CS17) in human and E5.5 in chicken embryos
[61,64]. Elegant quail-chicken transplantation experiments suggested
that HECs originate from the splanchnopleural mesoderm, while the
non-HECs originate from the paraxial (somitic) mesoderm [76]. Ulti-
mately, the floor of the DA is replaced by the non-HECs, suggesting
that HSCs were “lost” due to their emergence as IAHC cells. A similar
process has been described for zebrafish (described below), although
in mice it remains an open question.
PHENOTYPIC HETEROGENEITY OF IAHC CELLS

In vitro and in vivo functional assays as well as single-cell RNA
(scRNA)-sequencing analysis of sorted endothelial and IAHC cells
underlined the heterogeneity of IAHC cells, which in part seems to
depend on IAHC size (as mentioned above) and the time point of
development (described in details in reviews [69,73,77−83]. Succes-
sive precursors have been identified in IAHCs, where they mature via
a multistep process, transitioning from pro-HSCs to pre-HSCs type I
to pre-HSCs type II (between E9.5−E11.5, in the aorta) and finally to
HSCs (mainly after migration in the FL) [84−86]. However, IAHCs
also contain a mix of lymphoid, myeloid, and embryonic multipotent
progenitors. To date, the exact cell composition of IAHCs is still under
debate, depending on whether conclusions are based on transcrip-
tomics or in vitro/in vivo functional data (reviewed in [81]). Moreover,
it is still unclear whether all pre-HSCs will mature into functional
HSCs.
Besides being functionally and transcriptionally heterogeneous
(described in detail [79,81,82,87]), IAHC cells are also phenotypically
heterogeneous. Conforming to their endothelial origin, multicolor
stainings using various combinations of antibodies against surface
markers have shown that IAHC cells co-express endothelial and
hematopoietic markers, although cells are phenotypically heteroge-
neous within and between IAHCs (Figure 1A, B), e.g., [62,66,86,88
−91]. Indeed, not all cells in IAHCs express the same markers or
have the same levels of expression. For example, all IAHC cells
express the hematopoietic marker c-Kit and endothelial markers
CD31 and CD34, while other hematopoietic markers are restricted
to a fraction of IAHC cells or are expressed with different levels of
intensity at different time points of development, e.g., CD45, CD41,
CD43, and endoglin [73,84,92−94]. Fluorescent reporter lines have
also been useful to trace HEC and IAHC formation, including Ly-6A-
GFP [66], Gfi1-Tomato and Gfi1b-GFP [95], Neurl3-GFP [96], 23-GFP
(Runx1 +23 enhancer-reporter) [97], Gata2-Venus [98], and Evi1-
GFP [99] (Figure 1A, B). Successive populations leading to the forma-
tion of HSCs have been phenotypically characterized, i.e., the aortic
ECs (AECs), HECs, cells undergoing an EHT, and IAHC cells. A non-
exhaustive summary of the recognized surface markers as well as
markers used for fluorescent cell tracing is summarized in Figure 1A,
B.

The functional assessment of cell proliferation in IAHCs was deter-
mined using fluorescent ubiquitination-based cell cycle indicator
(FUCCI) reporter mice that enabled in vivo visualization of the cell-
cycle status utilizing two anti-phase oscillating proteins that mark dif-
ferent phases of the cell cycle [100]. Cdt1-mKO2 is expressed during
G0 and G1 phases (red fluorescence, slow cycling), and Geminin-
mAG (Gem-mAG) is expressed during S/G2/M phases (green fluo-
rescence, active cycling), while cells transiting from G1 to S phase
appear yellow. Utilizing this FUCCI line, it was shown that pre-HSCs
initially expand before they become more quiescent and start to
acquire a definitive HSC state [101]. While slowly cycling cells are
located at the base of IAHCs, actively proliferating cells are located at
the more apical part of the cluster, where they highly express c-Kit
and therefore are more receptive to c-Kit/SCF signaling for expansion
[84,102].

Overall, IAHC cells exhibit phenotypic, functional, and tran-
scriptional diversity within and between IAHCs, which can be in
part attributed to the asynchronicity of the continuum of matura-
tion. Therefore, isolating them to purity is difficult, and uncertain-
ties remain on the exact expression level of some markers (e.g.,
negative, low, or intermediate), which can depend on the use
of different fluorochromes conjugated to antibodies, flow cytome-
ter sensitivity, and proper controls to determine the levels of
expression.
PROOF OF THE ENDOTHELIAL ORIGIN OF ALL HSCs

To establish the origins of the definitive hematopoietic system, various
experimental approaches were pioneered, initially on avian embryos.
Chicken embryos injected with a vital dye to label the entire vascula-
ture showed for the first time that IAHC cells formed 1 day later
were positive for both the pan-hematopoietic marker CD45 and the
dye, proving their endothelial origin [60]. Due to rapid technological
advances in microscopy, time-lapse imaging with short intervals and
long durations allowed single-cell imaging and cell tracking. Such



Experimental Hematology
Volume 136

B. Weijts and C. Robin 5
methods enabled the visualization of mouse embryonic stem cells
(ESCs) forming a hemogenic endothelium, from which nascent
blood cells progressively bud off in vitro [103,104]. In mice, the defini-
tive proof was established by using a VE-Cadherin Cre line to perma-
nently label ECs. After induction, IAHCs in the DA and HSPC
progeny in the FL and adult hematopoietic tissues (e.g., spleen, thy-
mus, BM) were all labeled, demonstrating that all HSCs in adult mice
derived from VE-Cadherin+ ECs [105]. In support of the HSC endo-
thelial origin, endothelial-specific knockout of important hematopoi-
etic transcription factors, i.e., RUNX1 or GATA2, resulted in a
Figure 2 Commonly used transgenic zebrafish lines to mark hemato
of endothelial cells during zebrafish embryonic development. The b
poietic tissue region (red) of a Tg(gata2b:KalTA4; UAS:lifeactGFP; fli1
complete impairment of HSC production as well as IAHC formation
[106,107].
VISUALIZING HSPC EMERGENCE FROM HEMOGENIC
EC IN THE EMBRYONIC AORTA

Although the above-mentioned studies provided conclusive evidence
for the endothelial origin of all HSCs, there was no absolute proof
that HECs underwent a hematopoietic transition inside the
poietic stem and progenitor cells (HSPCs) and different subsets
ackground image shows a HSPC (green) in the caudal hemato-
a:lifeactCherry) zebrafish embryo 3 days post fertilization.
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embryonic DA. Therefore, efforts have been made to image such a
transition in real-time in the DA of embryos. In the past decades,
zebrafish has gained significant traction as a model to study develop-
mental hematopoiesis, as its ex utero development, the optical trans-
parency of the embryo, and the availability to differentially mark
HSPCs and the vasculature have enabled the visualization of cellular
behaviors with a high spatiotemporal resolution (Figure 2). Time-lapse
live confocal imaging of zebrafish embryos, in which GFP specifically
marked the ECs, allowed to witness for the first time that flat aortic
HECs located in the floor of the DA transitioned into round blood
cells, a process referred to as endothelial-to-hematopoietic transition,
or EHT [108]. Since then, the zebrafish model has been instrumental
in further elucidating and dissecting the process of EHT. Direct imag-
ing revealed that EHT is polarized not only in the dorso-ventral but
also in the rostrocaudal versus mediolateral direction. Similar to mam-
mals, and as reported with ESCs in vitro [104], HECs fail to complete
EHT and undergo apoptosis in runx1-deficient embryos [108]. Unlike
mammals, EHT does not result in HSPCs egressing into the aortic
lumen to form IAHCs, but they rather emerge as single cells and tran-
sit into the mesenchyme of the sub-aortic space that separates the
DA from the posterior cardinal vein (PCV) [108−110]. Analyses of
the EHT process revealed that this transition is characterized by dras-
tic morphological shape changes that start with a strong bending of
the basal side of the HEC toward the sub-aortic space, creating a cup-
shaped appearance. Even further bending of the cell allows the two
neighboring ECs (left and right on the mediolateral axis) to connect
with each other and establish tight junctions to maintain the vascular
integrity of the DA when the HEC fully emerges from the vessel
[108,111,112]. These alterations in cell shape are dependent on the
contraction of an anisotropic circumferential actomyosin belt that
facilitates the extruding of HECs.

To better understand the endothelial landscape of the DA and to
map these morphologic changes, a software tool was developed,
allowing the projection of lateral z-slices acquired in the anteropos-
terior orientation on a two-dimensional (2D) grid [111]. These 2D-
maps revealed two main populations of ECs in the DA that were of
similar length (in the anteroposterior direction) but significantly dif-
fered in width, with ECs that display a narrower appearance along
the anteroposterior axis being hemogenic. The idea that ECs within
the DA have different potentials was further supported by the fact
that a portion of aortic ECs originate from a bipotential precursor in
the somites that have no hemogenic potential [113,114]. HECs in
the DA are thus seemingly solely derived from the splanchnic meso-
derm located in the lateral plate mesoderm, while the supporting
non-HECs originate from the dermomyotome located in the para-
xial mesoderm. However, lineage tracing of a complete somite using
photoconversion did show that some cells contributed to blood for-
mation [115].

The emergence of HSPCs starts shortly after the onset of circula-
tion, around 30 hours post fertilization (hpf), peaks approximately at
50 hpf, and continues until 70 hpf. Initiated by blood circulation, the
DA undergoes drastic morphologic changes that are most likely
required for EHT and include a ventralized EC redistribution, an ini-
tial rapid increase in DA diameter, and an adaptation of an irregular
shape with regular intervals of thicker and thinner regions, referred to
as corrugation [116]. The more than doubling diameter of the DA is
not due to EC expansion but rather to cell shape changes [117]. Ulti-
mately, the DA will return to its original diameter, and this is attrib-
uted to the loss of HECs that emerge as HSPCs [111,117].
At the same time that EHT was visualized in zebrafish embryos,
pioneering work was done to capture the birth of HSCs from the DA
in mouse embryos, which required overcoming the problem of
accessing the DA, which is deeply located in opaque embryos that
develop within the uterus. An elegant solution to this problem was to
image thick transversal slices from non-fixed E10.5 embryos. To visu-
alize the entire endothelium, the embryos were injected with fluores-
cent antibodies (i.e., against CD31) before imaging [118,119]. Using
CD41-YFP and Ly-6A(Sca-1)-GFP reporter lines that mark nascent
HSCs, CD41-YFP+ and Ly-6A-GFP+ cells were observed budding
directly from the endothelium toward the lumen side, while they
retained the CD31 staining, thus proving their endothelial origin.
Additional staining of the slides at the end of imaging and re-imaging
of the same location revealed that these CD41-YFP+ and Ly-6A-GFP+

cells also co-express c-Kit, validating the HSC phenotypic signature.
The estimated frequency of emergence events was extremely low
(<2 per embryo), which might be due to the absence of blood flow
or shear stress known to be essential for HSC production in vivo [120
−123]. In addition, no cells emerged from the DA of embryos youn-
ger than E10.5 (<33 somite pairs) or the DA of Runx1 knockout
embryos, further supporting the validity of the experimental and
imaging techniques. This ex vivo imaging approach of non-fixed
embryo thick slices has since been instrumental in new findings in the
formation of IAHCs in the mouse DA. For example, imaging of VE-
Cadherin-CreER: Confettifl/fl embryo slices shed light on the clonal
composition of IAHCs, showing that after EHT, proliferative and
monoclonal IAHCs are formed, which then progressively become
more polyclonal via the recruitment of neighboring HECs [74], as
also shown by others [124]. The size of IAHCs is in part determined
by the number of HECs recruited into the IAHCs, a process depend-
ing on NOTCH signaling [74]. Another example was the observation
that Gata2 expression oscillates in cells undergoing EHT in embryo sli-
ces [125]. These results led to the hypothesis that the acquisition of a
hematopoietic fate occurs stepwise and that a signal window is
opened in each step in which Gata2 is essential to maintaining the
HSC fate, but other fate decisions can take place, such as the forma-
tion of lineage-committed progenitors [82,87]. Overall, the ex vivo
imaging of embryo slices has further supported the hypothesis that
HSPCs are generated from HECs located in the ventral part of the
DA. However, questions remain regarding the process underlying
EHT and HSC generation in the mouse DA and whether (some)
observations made in zebrafish embryos can be translated to mice or
humans, knowing that HSPCs emerge in the opposite direction and
without the formation of IAHCs in zebrafish. Of note, in chicken
embryos, although most hematopoietic cells delaminating from the
aortic floor are released into the bloodstream, some go in the oppo-
site direction and ingress into the dorsal mesentery [126]. Another
intriguing question is whether extra-embryonic sites (e.g., YS or pla-
centa) are also capable of de novo HSC production via an endothelial
transition, similar to the DA in mammals.
IAHC-LIKE STRUCTURES IN ATYPICAL (NON-
HEMATOPOIETIC) ANATOMICAL SITES

Immunostaining on whole-mount/cryosections and confocal micros-
copy of extra- and intra-embryonic tissues from E7.5 onward showed
the presence of IAHC-like structures in other hematopoietic tissues,
besides arteries, as well as in non-hematopoietic sites. Dispersed
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hematopoietic clusters (CD31+RUNX1+c-Kit+) are found in the
proximal region of the vascular plexus in both the arterial and venous
vessels of YS from E9.5 mouse embryos [54,127]. By E10.5, distinct
clusters of hematopoietic cells are found in small-diameter arterial
and venous vessels throughout the proximal and distal regions of the
YS. IAHC-like structures have also been reported in the vasculature
of mouse and human placenta [128−130]. Hematopoietic clusters
are also present in the intersomitic vessels and the dorsal longitudinal
anastomotic vessels of E10.5 mouse embryos [54]. Large IAHC-like
structures are found in the ventricular cavity of the heart of E10.5
mouse embryos, as well as in the atrioventricular canal [54]. Some
endocardial cells might have hemogenic potential [131,132], although
this finding was not confirmed in a recent study [133]. HSPC genera-
tion via EHT was long thought to be restricted to the early stages of
development. Using interspecific grafts, genetic tagging, and live imag-
ing, HECs with a molecular signature similar to that of embryonic aor-
tic HECs have been identified in the BM of late fetus/young adult
chickens and mice, where they can generate de novo HSPCs via EHT
[134].

The notion that de novo production of HSPCs can occur in atypical
anatomic sites is interesting and could be the basis for our under-
standing of the microenvironment requirements for the generation of
HSPCs, but additional experiments will be required to further sup-
port these claims. For example, despite the presence of HSCs in the
head at E10.5, identified by performing long-term transplantations
[36], a combination of whole-mount immunostaining and 3D confo-
cal reconstruction techniques of the embryonic head revealed the
absence of RUNX1 expression in the vasculature, supporting the
absence of HECs, EHT events and hematopoietic cluster formation,
overall suggesting that HSCs may not be de novo generated from the
head endothelium [135,136]. Volumetric imaging of whole mouse
embryos showed the presence of extravascular islands that most likely
result from the extravascular budding of hematopoietic clusters in the
VA and the UA that might contribute to either hematopoiesis [137]
or the formation of new blood vessels [138]. However, other imaging
analyses suggest that hematopoietic clusters remain intravascular dur-
ing the period of vascular remodeling [139]. Overall, live imaging
combined with a more sophisticated lineage-tracing experiment
would be of great interest to confirm or refute some of the above-
mentioned findings in several non-hematopoietic sites. Functional
assays also need to be performed to determine and validate their
hematopoietic potential.
THE INFLUENCE OF SHEAR STRESS IN HSPC
EMERGENCE IN THE DA

As previously stated for mammals, blood flow-induced shear stress in
the embryonic DA is an important regulator of HSC formation. New
microscopic observations in wild-type zebrafish embryos, embryos
with reduced or absent blood flow (silent-heart mutants), and those
with disrupted actomyosin machinery revealed that mechanical
forces not only serve as signals promoting and synchronizing EHT
but also assist the process by activating shape instabilities directly
[140]. In zebrafish embryos, without blood flow or perturbed flow,
there is a significant reduction in EC redistribution toward the ventral
side of the DA, EC shape changes, and HSPC emergence
[117,121,141]. Hemodynamic forces/mechanical cues created by
blood flow are important for proper vascular homeostasis, EC
remodeling, and the formation of HSCs and thus require proper sens-
ing and relaying of these forces into a cellular response. Primary cilia,
hairy-like sensory organelles composed of microtubules, are versatile
structures that, among others, can sense flow and flow direction
through the deflection of the cilia and the activation of mechano-
transduction signaling (reviewed in [142]). Some HECs (runx1+)
located in the ventral floor of the DA are ciliated, and disruption of
fsd1 (fibronectin type III and SPRY domain-containing 1), a gene cod-
ing for a centrosome-associated protein linked to a subset of microtu-
bules and required for ciliogenesis, results in a reduction in runx1+

cells in the floor of the DA and HSPC emergence [143]. However,
fluorescence in situ hybridization (FISH) for c-myb and cilia showed
that the c-myb+ HECs in the AGM region were not ciliated [143],
suggesting that some HECs have alternative methods for flow sensing.
One such transducer of physical stimuli into HECs is the transcrip-
tional coregulator Yes-activated protein (YAP), which shuttles from
the cytoplasm into the nucleus in a blood flow-dependent manner to
facilitate EHT through the regulation of runx1 and c-myb [144].
Another flow-dependent pathway that has been shown to be
involved in HSPC formation is the kr€uppel-like transcription factor
2a (Klf2a), which directly regulates nitric oxide (NO) synthase and
leads to the production and secretion of NO by the ECs, which in
turn regulates HSPC formation [121,145,146]. Notch signaling is yet
another pathway that can be activated by blood flow and is critical
for HEC specification and HSPC production (review [78]). There-
fore, it is reasonable to assume that blood flow might be involved in
the activation and/or maintenance of the Notch signal in the DA,
including the HECs and HSPCs [147,148]. The initial wave of Notch
activation in the nascent HSPC population occurs at an early stage of
embryonic development, captured by imaging of the hemangioblasts
migrating from the lateral side of the embryo toward the midline,
where these cells closely migrate across the ventral face of the somite,
expressing the Notch ligands Dlc and Dld [149]. Notch activation is
then maintained via various routes, including the possibility of blood
flow-induced Notch activation in HSPCs and neutrophil-dependent
activation of Notch [150].
HSPC INTERACTIONS WITH ECs AND MACROPHAGES
IN GENERATION AND EXPANSION NICHES

Imaging has played an important role in visualizing the cellular inter-
actions of HSPCs in the DA, as well as in secondary hematopoietic
sites where HSCs mature and expand. Immune cells play an impor-
tant role in HSPC emergence, maintenance, and guidance, with a
pronounced role for macrophages. At the time of HSPC emergence
in zebrafish embryos, macrophages accumulate in the sub-aortic
space, where they intensively interact with HSPCs and secrete matrix
metalloproteinases that modify the extracellular matrix to facilitate
EHT, their migration in the AGM stroma, and the intravasation of the
PCV to enter the circulation [151,152]. Similarly, it was shown in
mice that macrophages localized in the aorta expressed a pro-inflam-
matory signature and dynamically interacted with nascent and emerg-
ing intra-aortic hematopoietic cells [153]. In zebrafish, HSPCs migrate
to the caudal hematopoietic tissue (CHT) after they enter the circula-
tion. The CHT is the equivalent of the FL in mammals and is com-
posed of a transient network of venous sinusoids in the caudal part
of the tail, where HSPCs differentiate and expand before they
migrate again to seed the definitive hematopoietic organs, the thymus
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and kidney marrow (the equivalent to the BM in mammals) [154].
Upon their arrival in the CHT, HSPCs interact with the sinusoidal
ECs and transmigrate across the vascular barrier, where they trigger
the remodeling of their direct microenvironment to create a pocket,
or niche, that mainly consists of sinusoidal ECs and fibroblastic reticu-
lar cells, a type of stromal cell [154,155]. A similar process also seems
to occur in mouse FL, as shown by imaging liver slices ex vivo [155].
Niche factors involved in homing and/or HSPC expansion include
cxcl8, cxcl12, ccl25b, gpr182, kitlb, thrombopoietin, csf1a, and erythropoie-
tin [155−160]. Macrophages, or so-called usher cells, patrol the sinu-
soidal vessels for HSPCs, retain them upon contact, and facilitate
their extravasation into the stroma [161]. In addition, macrophage-
HSPC interaction is required to maintain a healthy population of
HSPCs, as stressed stem cells are targeted and phagocytosed by the
macrophages in the CHT, a process called grooming and dooming
[162]. There is a possibility that these macrophages also play a role in
the modulation of the niche itself through the secretion of mmp9 and
by modulating cxcr1 expression in niche ECs [152,158].

To fully understand the precise cellular composition of the HSPC
niche and to dissect the required signaling events to maintain and
expand HSPCs will still take a tremendous amount of work, but it
will be essential to improve current protocols to expand HSPCs in
vitro. A comprehensive single-cell transcriptomic atlas of HSPC
expansion in the zebrafish CHTwas recently created, which can now
be used as a resource for future functional studies [160]. The fact that
an ectopic HSPC vascular niche can be recreated outside of the con-
text of the CHT by reprogramming muscle, neurons, or skin cells by
the overexpression of a 3-factor combination of transcription factors
(Etv2, Sox7, and Nr2f2) suggests that under the right conditions, a
bona fide niche can be induced in which HSPCs can be maintained
and expanded [163]. Recently, researchers also developed workflows
to integrate fluorescent live imaging and light sheet microscopy to
generate a 3D visualization of the entire kidney marrow of zebrafish
larvae and to visualize HSPC lodging [164]. In parallel, they also per-
formed a series of sophisticated sectioning approaches on zebrafish
to generate 3D datasets of about 3,000 tissue sections, each coupled
to high-resolution imaging at the sub-cellular scale. Such analysis
heavily based on imaging allowed to define different HSPC niches
adjacent to the glomerulus in the anterior kidney region and the pos-
terior vascular and perivascular regions. HSPCs are in close contact
with the nervous system, which is involved in HSPC regulation, with
ECs and stromal cells, as well as with other HSPCs, as is also the case
in the CHT during embryonic development [155].
CONCLUDING REMARKS AND PERSPECTIVES

For decades, imaging has been the basis of our understanding of the
production of hematopoietic cells in vivo or in vitro and has enabled
significant discoveries through the continuous improvement of tools,
optical components, and analysis techniques. However, many ques-
tions remain unanswered regarding the formation and regulation of
IAHCs and HSPCs during embryonic development, primarily
because the anatomical sites where these processes occur are not eas-
ily accessible, particularly in mammalian embryos, or difficult to repro-
duce in vitro. Discrepancies between findings often arise from
variations in assays, investigative strategies, and/or data interpretation,
i.e., comparing, for example, findings from lineage-tracing experi-
ments and transplantation assays. In part, some of the discrepancies
and variations can be attributed to the lack of specific antibodies and
the reliance on the use of reporter lines for the zebrafish. For exam-
ple, the random integration of reporter cassettes via the tol2 transpo-
son system can result in ectopic regulation of the promoter. Upstream
activating sequence (UAS) systems are often prone to silencing, and
due to the relatively long lifetime of fluorescent protein cells, can be
mislabeled [165,166].

Various hypotheses revolve around the timing and location at
which a cell acquires hemogenic potential, (pro/pre-)HSC properties,
or a more committed fate (e.g., hematopoietic progenitors, mature
cells). The intrinsic and extrinsic factors involved in these processes
remain elusive. Additionally, the lack of specific or unique markers
for HECs with different hematopoietic potentials poses a challenge,
as does the need for reliable markers to distinguish and trace different
stages of hematopoietic development. Despite most blood cells de-
riving from HECs, questions persist regarding the precise timing and
frequency of EHTevents and whether de novo EHToccurs in all sites
where clusters and/or HSCs are detected, particularly in mammals.
There is also the possibility of inducing the hemogenic capacity of
other types of endothelium, such as lymphatic endothelium [167].
Despite recent progress, the journey to understand the regulation
and cellular interactions occurring when EHT takes place and how
the newly formed HSPCs migrate and home from the aorta to suc-
cessive hematopoietic sites, such as the FL in mice or the CHT in
zebrafish embryos, has just begun. Some reports based on lineage-
tracing experiments suggest that hematopoietic progenitors, rather
than HSCs, are the dominant contributor to both embryonic and
young adult hematopoiesis under physiological conditions [168,169],
raising the possibility that embryos/adults could survive with only
multipotent progenitors. On the other hand, studies have shown that
erythroid-myeloid progenitors (EMPs) produced in the YS are the ori-
gin of most tissue-resident macrophages in adults, emphasizing the
importance of comprehensive studies on developmental hematopoi-
esis.

The ultimate objective of regenerative medicine is to generate in
vitro HSCs with full transplantation capacity, akin to those found in
vivo. Indeed, multipotent progenitors do not engraft in the long-term
and cannot replace defective HSCs or defective blood systems in
patients with blood-related diseases upon transplantation. Real-time
in vivo examination of the myriad intrinsic and extrinsic signals affect-
ing HEC fate could elucidate their heterogeneity and capacity to pro-
duce specific hematopoietic cell types, in particular HSCs [82].
Regulatory mechanisms, including metabolic changes, NO signaling,
(blood) flow-induced shear stress, and biomechanical forces, are
increasingly recognized as key players in controlling stem cell fate.
Understanding how these factors are dynamically orchestrated to
control cell fate is crucial for the in vitro production of clinically trans-
plantable HSCs or for developing treatment strategies for blood-
related diseases. Stringent regulations surrounding the use of mam-
malian embryos, particularly humans, have prompted the develop-
ment of pluripotent stem cell-derived models. Thus, in addition to
advancing in vivo experimental models, efforts are being made to
develop in vitro systems such as the BM [170], liver [171] or blood ves-
sel organoids [172], whole embryo-like structures named gastruloids
[173], and AGM-on-a-chip model [174], offering less complexity,
greater accessibility (e.g., for imaging), and mimicking certain aspects
of in vivo counterparts as an arterial (hemogenic) endothelial network
or a supportive HSPC environment. Although these complex 3D
models aim to replicate crucial aspects of genetic, biochemical, and
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mechanical processes occurring during embryonic development, they
are not exact replicas of natural embryos or hematopoietic organs.
Still, they offer a valuable opportunity for scientists to study human
development and observe and manipulate developmental phenom-
ena that may be challenging to access otherwise. It is also crucial to
recognize that these models can be used for intercellular interactions,
early developmental decisions, and to probe crosstalk between
healthy and unhealthy tissues. However, insights gained from in vitro
studies must be thoroughly validated in real embryos before conclud-
ing and to ensure their reliability and relevance.

Future studies will require a combination of live imaging and line-
age tracing using reliable (and ideally unique) markers to capture the
fate transition process accurately during developmental and postnatal
hematopoiesis. The quest to understand developmental hematopoie-
sis will continue through the utilization of mathematical and predic-
tive models, along with innovative (quantitative) imaging techniques
employing animal models such as zebrafish embryos. Innovations in
imaging techniques aim to enhance access to larger, deeper samples
while also striving for increased speed and sensitivity. Furthermore,
improvements in sample and embryo preparation, including
enhanced transparency (albeit only on fixed specimens) and the use
of a broader spectrum and brighter fluorophores, will enhance our
ability to discriminate, lineage trace, and manipulate different cells in
one specimen. Integrating multimodal omics data will be crucial for
determining cell fate decisions and generating hematopoietic organo-
ids or gastruloids to recapitulate HSC induction and expansion under
native conditions. Direct (quantitative) imaging is a powerful
approach not only to obtain in situ information but also to provide
guidance for predictive models and to design perturbation assays
[175]. The ultimate aspiration is to capture multiple biological pro-
cesses in action across multiple dimensions (space and time), within
numerous samples or living embryos. Automated standardized pro-
cesses and analysis tools, along with the integration of artificial intelli-
gence, will facilitate efficient data translation and sharing. Moreover,
the sheer volume of information generated (i.e., imaging, transcrip-
tomics, proteomics, experimental, and bibliography) will necessitate
the use of well-trained artificial intelligence to efficiently manage, pro-
cess, and connect data, given that our brain capacities may be insuffi-
cient for such tasks!
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