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Abstract

Centromeres are chromatin structures specialized in sister chromatid cohesion, kinetochore assembly, and microtubule attach-
ment during chromosome segregation. The regional centromere of vertebrates consists of long regions of highly repetitive
sequences occupied by the Histone H3 variant CENP-A, and which are flanked by pericentromeres. The three-dimensional
organization of centromeric chromatin is paramount for its functionality and its ability to withstand spindle forces. Alongside
CENP-A, key contributors to the folding of this structure include components of the Constitutive Centromere-Associated Net-
work (CCAN), the protein CENP-B, and condensin and cohesin complexes. Despite its importance, the intricate architecture
of the regional centromere of vertebrates remains largely unknown. Recent advancements in long-read sequencing, super-
resolution and cryo-electron microscopy, and chromosome conformation capture techniques have significantly improved our
understanding of this structure at various levels, from the linear arrangement of centromeric sequences and their epigenetic
landscape to their higher-order compaction. In this review, we discuss the latest insights on centromere organization and

place them in the context of recent findings describing a bipartite higher-order organization of the centromere.
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Introduction

Centromeres are regions of specialized chromatin that form
the primary constriction of the mitotic chromosome and
have crucial functions for cell division (Flemming 1879;
Fukagawa and Earnshaw 2014; McKinley and Cheese-
man 2016; Schalch and Steiner 2017). These loci are
defined structurally and functionally by the deposition of
a centromere-specific Histone 3 (H3) named Centromeric
protein A (CENP-A) (Earnshaw and Rothfield 1985; King-
well and Rattner 1987; Palmer et al. 1987, 1991). In verte-
brates, CENP-A spans several hundred kilobases, forming
the core centromere (Altemose et al. 2022a; Logsdon et al.
2024). CENP-A’s main function is to direct the assembly
of the kinetochore, the structure responsible for connecting
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centromeres to spindle microtubules during mitosis (Fuka-
gawa and Earnshaw 2014). The regions flanking the core are
known as pericentromeres and have critical functions such
as ensuring sister chromatid cohesion, which is essential for
generating tension and stabilizing kinetochore-microtubule
interactions (Ng et al. 2009; Tanaka et al. 1999, 2000).

In humans, (peri)centromeres are largely comprised of
highly repetitive sequences known as satellite sequences
(Alexandrov et al. 1988; Rudd et al. 2003; Waye and Willard
1989; Willard and Waye 1987a). CENP-A is almost exclu-
sively loaded within a-satellite (e«Sat) DNA consisting of
AT-rich 171 bp-long monomers that are tandemly repeated
in a head-to-tail fashion forming higher-order repeats
(HORs) (Vafa and Sullivan 1997; Altemose et al. 2022a;
Rudd and Willard 2004; Willard and Waye 1987b). HORs
are chromosome-specific, and they differ in the type, order,
and number of monomers (Altemose et al. 2022a; Logsdon
et al. 2024; Willard and Waye 1987a). A subset of these
monomers contains a 17-bp sequence called the “CENP-B
Box”, a motif recognized by Centromeric Protein B (CENP-
B) (Masumoto et al. 1989; Muro et al. 1992) which enhances
the epigenetic robustness of the centromere. HORs are fur-
ther arranged into highly homogeneous arrays that can span
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kilobase to megabase-long regions (Altemose et al. 2022a;
Logsdon et al. 2024; Warburton and Willard 1990; Willard
and Waye 1987b). Although several arrays may be present
per centromere, only a subset of HORs within a single array,
known as the active array, are occupied by CENP-A (Alte-
mose et al. 2022a; Gershman et al. 2022; McNulty and Sul-
livan 2018). Notably, satellite sequences and CENP-B are
nonetheless not essential for centromere identity: chromo-
some Y lacks CENP-B boxes (Earnshaw et al. 1987, 1989;
Miga et al. 2014), and CENPA can occupy, experimentally
or naturally, non-repetitive sequences and create a functional
neocentromere (Debose-Scarlett and Sullivan 2021; Murillo-
Pineda et al. 2021; Naughton and Gilbert 2020). In canoni-
cal centromeres, pericentromeres flanking HOR arrays are
composed of more degenerated and variable sequences,
including f and y-satellite DNA and satellite DNA I, II, and
III (Altemose et al. 2022a; Hoyt et al. 2022; Logsdon et al.
2024; Smurova and De Wulf 2018). Additionally, pericen-
tromeres contain non-LTR autonomous retrotransposons,
DNA transposons, and retroviral elements (Altemose et al.
2022a; Hoyt et al. 2022; Smurova and De Wulf 2018). The
core centromere and the pericentromere also show distinct
epigenetic signatures, with pericentromeres typically asso-
ciated with heterochromatin while the core centromere
shows traits related to open chromatin (Fig. 1) (Fukagawa
and Earnshaw 2014; Smurova and De Wulf 2018). This
special epigenetic landscape creates a unique chromatin
configuration suitable for the recruitment of the Constitu-
tive Centromere-Associated Network (CCAN), a complex
that works as a link between centromeric chromatin and

aSatellite DNA

the microtubule-binding region of the kinetochore (Hara
and Fukagawa 2017; Hori et al. 2008, 2013; McAinsh and
Meraldi 2011; Musacchio and Desai 2017; Perpelescu and
Fukagawa 2011).

The structural maintenance of chromosomes (SMC)
complexes are also enriched in centromeric chromatin. In
animals, cohesin, condensin I, and condensin II are the most
prominent of these multi-protein complexes with ATPase
activity that orchestrate the 3D organization of chromatin,
and which have critical functions in genome regulation and
chromosome segregation (Davidson and Peters 2021; Hoe-
ncamp and Rowland 2023; Uhlmann 2016). The three com-
plexes have well-described roles in centromere maintenance
and function: from mediating sister chromatid cohesion and
chromosome biorientation for cohesin (Tanaka et al. 1999,
2000), to ensuring pericentromeric compliance and preserv-
ing core centromere integrity in response to spindle forces
for the condensins (Gerlich et al. 2006; Oliveira et al. 2005;
Ribeiro et al. 2009; Samoshkin et al. 2009).

In chromatin fibers, centromeric chromatin exhibits a
distinctive "beads on a string" linear arrangement, featur-
ing discrete clusters of CENP-A nucleosomes interspersed
among canonical nucleosomes (Blower et al. 2002; Haaf and
Ward 1994; Kyriacou and Heun 2018; Ribeiro et al. 2010;
Sullivan and Karpen 2004; Vargiu et al. 2017; Zinkowski
et al. 1991). This arrangement has spurred the proposal of
various models explaining how the CENP-A nucleosomes
could come together in 3D during mitosis, including loop-
ing, helicoidal, and sinusoidal architectures (Blower et al.
2002; Fukagawa and Earnshaw 2014; Ribeiro et al. 2010).
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Fig. 1 Genetic and epigenetic features of the centromere. Schematic
of the genetic and epigenetic elements that compose the core cen-
tromere and pericentromere, indicating the inactive and active HOR
arrays, and the CENP-A-binding domain. aSat monomers are por-
trayed as smaller arrows within the HORs. The DNA methylation
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pattern of the active array is shown in blue, and the centromere dip
region (CDR) is indicated. Euchromatic (green) and heterochromatic
(red) epigenetic marks present at the core centromere and pericen-
tromere are depicted as circles located on top of the CENP-A (yel-
low) and H3 (gray) nucleosomes
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However, the precise architecture of centromeric chromatin
remains elusive. The aim of this review is to highlight the
most relevant contributions to our current understanding of
centromere folding mechanisms. Additionally, building upon
our recent findings that describe centromeres as bipartite
structures (Sacristan et al. 2024), we discuss a model that
explores how these diverse mechanisms might collectively
contribute to the intricate process of centromere folding.

Genetic and epigenetic features
of the human centromere

The highly repetitive complexity of centromeric sequences
has posed a significant challenge to our understanding of
centromere biology. With the recent publication of the first
complete assemblies of human centromeres, a breakthrough
has been made toward comprehending the organization of
these unique genomic regions and their evolutionary dynam-
ics (Altemose et al. 2022a; Gershman et al. 2022; Hoyt et al.
2022; Logsdon et al. 2024). Phylogenetic analyses of the
new assemblies reveal that the HOR array containing the
core centromere, known as the active array, is more con-
served and repetitive than the flanking centromeric regions.
This organization likely results from a layered expansion of
aSat repeats, where new repeats periodically emerge within
the CENP-A region through a mechanism akin to tandem
duplication (Altemose et al. 2022a). This has resulted in the
progressive displacement of older repetitive sequences to
the sides, which eventually have degenerated and diversified
into the smaller, less repetitive, and more divergent satellite
families (Altemose et al. 2022a; Shepelev et al. 2009).

The core and pericentromere exhibit distinct epigenetic
signatures. The core is characterized by poised and acti-
vating marks such as H3K4me2, H3K36me2, H4K20mel,
H4KS, and K12 acetylation, whereas pericentromeres fea-
ture a significant enrichment of constitutive heterochromatin
histone modifications, such as H3K9me?2/3 (Fig. 1) (Fuka-
gawa and Earnshaw 2014; Gershman et al. 2022; Smurova
and De Wulf 2018). Nanopore sequencing revealed that the
active HOR array typically displays a higher DNA meth-
ylation content than the neighboring inactive HORs. This
enrichment is locally interrupted at the so-called centromere
dip region (CDR), which closely coincides with the site of
CENP-A deposition (Fig. 1) (Altemose et al. 2022a; Ger-
shman et al. 2022; Logsdon et al. 2021). Consistent with
the euchromatic environment of core centromeres, RNA
Pol II has been found associated with them (Chan et al.
2012; Perea-Resa and Blower 2018), and aSat transcripts
are detected throughout the cell cycle (Hoyt et al. 2022).
Centromere transcription facilitates CENP-A incorporation
(Bobkov et al. 2018) and maintains the heterochromatic
state of the pericentromere (Johnson et al. 2017), among

several other functions (Perea-Resa and Blower 2018). An
open chromatin state associated with RNA Pol II at the core
and a compacted heterochromatic pericentromere have also
been reported in neocentromeres (Murillo-Pineda et al.
2021; Naughton et al. 2022). Even though this epigenetic
landscape is not universally present in all neocentromeres
(Alonso et al. 2010; Nishimura et al. 2019), the fact that
chicken neocentromeres lacking repressive marks have
been found associated with H3K9Me3-dense regions in the
nucleus (Nishimura et al. 2019) suggests an important inter-
play between epigenetic marks within the (peri)centromere
to guarantee centromere identity and functions.

Heterogeneity of human centromere
structure

A surprising aspect arising from the first two assemblies of
human centromeres (CHM1 and CHM13) is a remarkable
heterogeneity between chromosomes and genomes in length,
sequence, and position of the CENP-A domain (Altemose
et al. 2022a; Logsdon et al. 2024). For instance, the length
of active arrays ranges from 300 kb- 6.5 Mbs. Likewise, the
extent of the CENP-A domain shows variability between
genomes and centromeres, with the largest core (573 kb in
Chr.1 of CHM13) being more than three times bigger than
the smallest one (175 kb in Chr.9 of CHM13) (Altemose et al.
2022a; Logsdon et al. 2024). Notably, even smaller cores have
been identified in human neocentromeres (Alonso et al. 2010;
Murillo-Pineda et al. 2021; Naughton et al. 2022).

CENP-A in the centromere has been reported to be in
excess (Bodor et al. 2014), potentially buffering the observed
size differences between centromeres. Interestingly, a vari-
ability in CENP-A molecules has been found between cen-
tromeres and cell lines, ranging from "50-300 CENP-A
nucleosomes per centromere (Bodor et al. 2014). Based on
these numbers, a density of 1:25 CENP-A:H3 nucleosomes
has been estimated (Bodor et al. 2014). These calculations,
however, were based on previous estimations of 1 Mb cen-
tromere size (Sullivan et al. 2011). Considering the precise
mapping of CENP-A in the new assemblies showing that
the average core extends ~200 kb (Altemose et al. 2022a;
Logsdon et al. 2024), the real density of CENP-A nucle-
osomes is likely to exceed these earlier estimates by several
folds. Accordingly, Dimelo-Seq, a protein mapping tech-
nique compatible with long-read sequencing, estimates that
CENP-A is present in around one out of four nucleosomes
within chromosome X centromeres of HG002 cells (Alte-
mose et al. 2022b).

Overall, the first complete assemblies of centromeric
sequences have yielded crucial insights into the diverse
nature of the linear organization of centromeres. It will be
of interest to understand whether such diversity influences
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the final 3D organization of centromeric chromatin in mito-
sis and to elucidate how folding mechanisms of centromeric
chromatin are regulated in different scenarios. Next, we will
explore several mechanisms involved in the assembly of this
unique architecture.

CENP-A

CENP-A stands out as the most divergent member within the
family of H3 histones (Ali-Ahmad and Sekuli¢, 2020; Sul-
livan et al. 1994; Tachiwana et al. 2012). Like other histones,
CENP-A features a conserved histone fold domain (HFD),
consisting of three a-helices connected by two short loops
(L1 and L2). This domain mediates interactions with other
CENP-A and histone H4 molecules, leading to the forma-
tion of a tetramer. Core centromeric chromatin purified from
cells indicates that the predominant form in human cells is
an octamer formed by the CENPA/H4 tetramer in complex
with another H2A/H2B tetramer (Camabhort et al. 2009; Has-
son et al. 2013).

CENP-A and H3-containing nucleosomes show some key
differences. In CENP-A, the L1 loop is positively charged
and is more exposed than in a canonical nucleosome, facili-
tating interactions with centromeric factors (Ali-Ahmad
and Sekuli¢, 2020; Tachiwana et al. 2011). Additionally,
CENP-A nucleosomes only bind a fraction of the DNA that
canonical nucleosomes do. This shortened wrapping is due
to differences in CENP-A’s aN helix, which is shorter com-
pared to histone H3 (Tachiwana et al. 2011). The length of
the aN determines the ability of the nucleosome to stabilize
the DNA at the entry and exit sites, resulting in highly flex-
ible DNA ends in CENP-A nucleosomes (Roulland et al.
2016; Panchenko et al. 2011; Tachiwana et al. 2011).

It has been proposed that the high flexibility of the CENP-
A nucleosome modulates the higher-order organization of
chromatin. In vitro reconstituted arrays of CENP-A nucle-
osomes exhibit a more condensed configuration than canoni-
cal ones (Panchenko et al. 2011), while displaying higher
local mobility compared to histone H3 (Takizawa et al.
2020, Nagpal et al. 2023). These higher dynamics might
help create an open chromatin state, increasing the acces-
sibility to centromeric factors (Takizawa et al. 2020, Nagpal
et al. 2023). In cells, the higher flexibility of CENP-A ends
prevents linker histone H1 from binding to the centromere.
Mutant CENP-A nucleosomes capable of recruiting H1
cause the delocalization of kinetochore proteins, indicating
that the flexible ends of the CENP-A nucleosome are essen-
tial for kinetochore assembly (Roulland et al. 2016).

Recent cryo-EM analyses of the human CCAN complex
structure have uncovered how the extra nucleosomal DNA
contributes to CCAN recruitment. The stable binding of
CENP-A and the CCAN is mostly mediated by CENP-C
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(Pesenti et al. 2022; Yatskevich et al. 2022). This was a sur-
prise since CENP-N had previously been postulated as a
second major mediator of the nucleosome-CCAN interaction
(Cao et al. 2018; Carroll et al. 2009, 2010; Chittori et al.
2018; Pentakota et al. 2017; Tian et al. 2018). With such a
limited number of CENP-A-CCAN interactions, the stable
recruitment of the CCAN is further supported by the linker
DNA emerging from the CENP-A nucleosome (Pesenti et al.
2022; Yatskevich et al. 2022). This extra nucleosomal DNA
is gripped by CENP-N/L, forming a tunnel through which
the linker DNA threads. The CENP-HIKM and CENP-
TWSX complexes close the tunnel and establish additional
contact points with the DNA (Fig. 2a).

Taken together, the above studies suggest that the flex-
ible ends of CENP-A nucleosomes aid in creating an
unconstrained chromatin configuration, thereby potentially
enhancing CCAN assembly by freeing up linker DNA.

Centromeric proteins

While CENP-A nucleosomes can introduce significant alter-
ations in chromatin arrangement, the ultimate higher-order
organization of centromeric chromatin arises from a com-
bination of mechanisms. Among them, centromere proteins
CENP-C, CENP-N, and CENP-B are emerging as crucial
factors influencing centromere compaction.

CENP-C

Beyond its known functions mediating centromere-Kine-
tochore associations (Hori et al. 2008; Klare et al. 2015;
Przewloka et al. 2011; Saitoh et al. 1992; Screpanti et al.
2011; Sugimoto et al. 1994), CENP-C also influences cen-
tromeric chromatin organization. Overexpression of CENP-
C in human cells induces chromatin clustering (Melters et al.
2019), while its depletion in chicken cells causes the unfold-
ing of core centromeric chromatin (Vargiu et al. 2017) and a
decrease in chromatin interactions (Hara et al. 2023). These
interactions depend on a C-terminally located Cupin domain
and its preceding "pre-Cupin' region (Hara et al. 2023), nec-
essary for CENP-C homodimerization and multimerization,
respectively (Fig. 2b) (Chik et al. 2019; Cohen et al. 2008;
Hara et al. 2023; Medina-Pritchard et al. 2020). In addition,
CENP-C dimers are capable of binding two nucleosomes
(Fig. 2b) (Walstein et al. 2021) providing another potential
mechanism for nucleosome clustering.

Besides oligomerization, CENP-C promotes core centro-
meric compaction by reducing the intrinsic elasticity of the
CENP-A nucleosome and by limiting the mobility of CENP-
A nucleosomes (Melters et al. 2019, 2023).
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Fig.2 Centromeric organiza- A
tion by centromeric proteins. a
Cartoon representing a CENP-A
nucleosome bound to a CCAN
complex (PDB 7Q00), not
including CENP-C. b CENP-A
nucleosomes organized by the
oligomerization of CENP-C
dimers (indicated in two shades
of green). A homo-dimer of
Cupin domains (PDB 7X85) is
highlighted in the box. ¢ CENP-
A nucleosome-stacking driven
by CENP-N (PDB 7U46). d
a-satellite DNA (indicated

in yellow) looping driven by
CENP-B dimers (indicated in
two shades of blue). The DNA
binding (PDB 1HLV) and
dimerization domains (PDB B
1UFI) of CENP-B are indicated

CENP-O/P/Q/U/R

CENP-A
Nucleosome

CENP-C
Oligomerization

CENP-N

CENP-N is capable of establishing contacts with the L1-loop
of CENP-A (Carroll et al. 2009, 2010; Chittori et al. 2018;
Pentakota et al. 2017; Tian et al. 2018), however, this inter-
action is incompatible when CENP-N is integrated into the
CCAN due to steric clashes (Pesenti et al. 2022; Yatskevich
et al. 2022), While demonstrating a CCAN-independent role
of CENP-N requires further investigation, recent work has
shown that CENP-N can bind a second nucleosome in solu-
tion via electrostatic interactions with the DNA, facilitating
the stacking of dinucleosomes and inducing a twisted dou-
ble helix conformation in CENP-A arrays (Fig. 2¢) (Zhou
et al. 2022). Furthermore, expression of mutants defective
in nucleosome-stacking properties resulted in significant
decompaction of centromeric chromatin (Zhou et al. 2022).

CENP-B

CENP-B targeting is dictated by the presence of CENP-B
boxes within the centromeric sequences (Masumoto et al.
1989; Muro et al. 1992), which, in certain HORs, can be

CCAN
_ CENP-N/L

CENP-H/I/K/M

CENP—T/W/S/X‘;

C D
Nucleosome Looping of
Stacking CENP-B boxes
DNA binding
domain

CENP-B
dimerization
domain

present in nearly every other aSat monomer. The affinity
for the CENP-B box is diminished by CpG methylation (Y.
Tanaka et al. 2005), which might explain the higher levels
of CENP-B found within the CDR (Altemose et al. 2022a;
Gershman et al. 2022).

CENP-B is dispensable for centromere formation and
function (Earnshaw et al. 1989; Hudson et al. 1998; Kapoor
et al. 1998; Masumoto et al. 1989; Perez-Castro et al. 1998).
Nonetheless, CENP-B has been shown to promote cen-
tromere formation and enhance centromere fidelity (Fachi-
netti et al. 2015; Hoffmann et al. 2020). In addition, it mod-
ulates the centromere's epigenetic landscape by recruiting
chromatin remodelers and histone chaperones (Okada et al.
2007; Otake et al. 2020).

CENP-B also develops structural functions. In highly
homogenous arrays containing a CENP-B box every two
aSat monomers, CENP-A is precisely positioned flanking
both sides of the motif (Henikoff et al. 2015), suggesting
that CENP-B might influence CENP-A phasing. Support-
ing this, CENP-B induces CENP-A nucleosome reposi-
tioning in in vitro reconstitutions (Chardon et al. 2022;
Yoda et al. 1998). Through its N-terminal DNA-binding
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domain, CENP-B introduces kinks in DNA (Tanaka et al.
2001). In addition, by virtue of a C-terminal dimerization
domain, CENP-B brings CENP-B boxes together creating
loops in aSat sequences (Fig. 2d) (Chardon et al. 2022).
Disruption of CENP-B dimerization results in impaired
compaction and clustering of centromeres in interphase,
and compromises centromere integrity in mitosis, sug-
gesting that CENP-B-mediated looping contributes to the
proper 3D organization of centromeric chromatin (Char-
don et al. 2022).

Condensin

Upon mitotic entry, chromosomes undergo intense con-
densation driven by the condensin complexes (Antonin
and Neumann 2016; Batty and Gerlich 2019). Centromeres
are particularly enriched in condensin (Gerlich et al. 2006;
Oliveira et al. 2005; Ono et al. 2004; Ribeiro et al. 2009;
Sacristan et al. 2024; Sutani et al. 2015; Walther et al.
2018), which plays a crucial role in ensuring centromere
integrity. In chicken cells, condensin-depleted chromo-
somes show a decrease of 50% in the stiffness of peri-
centromeric chromatin when subjected to pulling forces
(Ribeiro et al. 2009), and in humans, lack of condensin
leads to severe centromere defects, often resulting in
kinetochore fragmentation and merotelic attachments
(Samoshkin et al. 2009).

Animals have two condensin complexes: condensin I
and condensin II. Each of them has a differential distribu-
tion, abundance, and contribution to overall chromosome
folding (Davidson and Peters 2021; Gibcus et al. 2018;
Hoencamp and Rowland 2023; Uhlmann 2016; Walther
et al. 2018). Both condensin complexes also show slightly
different distributions within the centromere. In mitotic
cells, condensin II shows a larger overlap with the core
than condensin I (Ono et al. 2004). Conversely, in murine
oocytes, condensin I is more prominently localized at the
centromere compared to condensin II (Lee et al. 2011).
Additionally, depletion of each condensin results in specific
defects. Lack of condensin I, leads to an increased interki-
netochore distance in mitosis (Gerlich et al. 2006; Uchida
et al. 2009), which is consistent with impaired integrity of
pericentromeric heterochromatin (Oliveira et al. 2005). In
contrast, in mouse oocytes, the integrity of pericentromeric
major satellite sequences crucially depends on condensin 11
levels (El Yakoubi and Akera 2023; Lee et al. 2011). This
susceptibility creates a reproductive isolating between spe-
cies with size differences in their major satellite sequences
due to limiting condensin II levels in the oocytes of hybrids
(El Yakoubi and Akera 2023).
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Cohesin

At mitotic onset, WAPL initiates cohesin removal from
the chromosome arms, while at the centromere, Sororin,
and Sgol counteract WAPL's action to protect cohesin at
this location (Davidson and Peters 2021; Hoencamp and
Rowland 2023; Uhlmann 2016). Safeguarding cohesin
from WAPL is crucial to maintaining the tethering of sister
chromatids, allowing tension development upon microtu-
bule attachment (Tanaka et al. 2000).

The extent of centromeric cohesion distribution can
be considered the physical boundary that functionally
separates centromeres from the chromosome arm. The
mapping of cohesin subunits in the latest full genome
assemblies has revealed that cohesin specifically accu-
mulates within the pericentromere, showing very poor
enrichment at the active HOR, at least during interphase
(Sen Gupta et al. 2023). While the precise mechanisms
governing cohesin enrichment in these specific regions
remain elusive, emerging evidence implicates transcrip-
tion as a key factor. In Saccharomyces cerevisiae, cohesin
loading predominantly occurs at the core centromere,
facilitated by the Ctf19 complex (Hinshaw et al. 2017).
Recent work indicates that cohesin subsequently migrates
from the core towards the pericentromeric areas, where it
becomes trapped by convergently transcribed genes (Paldi
et al. 2020). Interestingly, in human cells, cohesin-rich
pericentromeric regions also exhibit active genes along-
side CTCF (CCCTC-binding factor) motifs (Sen Gupta
et al. 2023; Xiao et al. 2015). CTCF protein binding of
these motifs works as a barrier that impedes cohesin extru-
sion (Davidson and Peters 2021; Hoencamp and Rowland
2023). Similarly, the formation of a neocentromere in
chromosome 3 was associated with heterochromatization
of the pericentromere boundaries, coinciding with regions
enriched in CTCF and flanked by genes transcribed toward
the core (Naughton et al. 2022). Collectively, these obser-
vations underscore the role of transcription in establishing
pericentromeric boundaries, where potentially, convergent
transcription drives cohesin movement until it reaches
CTCF-enriched sites, facilitating cohesin accumulation
in these areas.

Super-resolution microscopy has revealed the existence
of a second pool of cohesin in the proximity of the core
centromere (Fig. 3) (Sacristan et al. 2024; Sen Gupta et al.
2023). Consistent with this, cohesin components in human
cells have recently been found associated with CENP-U
(Yan et al. 2024). In addition, two pools of Sgo1 mirroring
the distribution pattern of cohesin have also been reported
(Liu et al. 2013, 2015). As cohesin is not detected at HORs
during interphase (Sen Gupta et al. 2023) it remains uncer-
tain whether this secondary pool specifically accumulates
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Cohesin

Kinetochore

Bipartite
Core

Fig. 3 Bipartite higher-order organization of centromeric chromatin.
Cartoon representing the centromeric region of a mitotic chromo-
some. Each subdomain of the bipartite centromere (yellow blobs) is
associated with the flanking pericentromere, folded as a bottlebrush.
Condensin (purple) extends along the central axis of the pericen-
tromere and is enriched at each of the core centromere subdomains.
The two pools of cohesin, one at the boundary of the pericentromere
and one proximal to the core centromere are indicated in blue. A
bipartite kinetochore (green) is bound by independent microtubule
bundles

at the core during mitosis or if levels remain below detec-
tion for ChIP-seq approaches (Sen Gupta et al. 2023).
Cohesin can work in trans keeping sister chromatids
entrapped, or in cis, extruding loops (Davidson and Peters
2021; Hoencamp and Rowland 2023). It will be crucial to
investigate whether the two centromeric pools of cohesin
reflect different topological entrapments of centromeric
chromatin by cohesin.

A bottlebrush organization
of the pericentromere

The accumulation of cohesin in the distal pericentromere
suggests the formation of a primary intramolecular loop,
with the CENP-A at its apex (Sen Gupta et al. 2023; Yeh
et al. 2008) On the other hand, the elongation of the pericen-
tromere in the absence of condensin indicates that condensin
is required for the compaction of the loop (Gerlich et al.
2006; Ribeiro et al. 2009; Stephens et al. 2011). Most of
our understanding of how this compaction might occur has
been primarily shaped by studies in Saccharomyces cerevi-
siae (Lawrimore and Bloom 2022), where SMC complexes
adopt a distinct geometrical arrangement. Condensin extends
along the axis that connects the sister kinetochores, while
cohesin appears radially displaced from this axis (Stephens
et al. 2011). The observed distribution of SMC complexes

is compatible with a bottlebrush organization of the peri-
centromere, where the intramolecular loop is nested by con-
densin into arrays of loops, with condensin occupying the
central axis of the bottlebrush (Lawrimore et al. 2016). In
this model, the radial displacement of cohesin results from
its role in crosslinking the loops of the bottlebrush which
would help to support the mechanical properties of the
spring. Given the conserved distribution of cohesin (Paldi
et al. 2020; Sen Gupta et al. 2023) and the function of con-
densin in compacting the pericentromere (Lawrimore and
Bloom 2019; Lee et al. 2011; Ribeiro et al. 2009), a bottle-
brush organization would also align with the characteristics
of the vertebrate pericentromere (Fig. 3).

A bipartite core centromere

Zinkowski and Brinkley were the first to propose that the
centromere consists of repetitive subunits that, upon chro-
mosome condensation, coalesce into a compact higher-order
organization suitable for kinetochore assembly (Zinkowski
et al. 1991). Their hypothesis is supported by the obser-
vations that under different conditions, such as in MUGs
(mitotic unreplicated genomes) and chromatin fibers, cen-
tromeres appeared fragmented into distinct substructures
(Blower et al. 2002; Haaf and Ward 1994; Kyriacou and
Heun 2018; Ribeiro et al. 2010; Sullivan and Karpen 2004;
Vargiu et al. 2017; Zinkowski et al. 1991).

We recently observed that this higher-level structure of
the core centromere comprises two main subdomains, with
each subdomain tightly associated with its neighboring peri-
centromeric region (Fig. 3) (Sacristan et al. 2024). Of note,
ring-like configurations of aSat sequences (Di Tommaso et al.
2023) and kinetochore components have been reported, which
are particularly present in the absence of mature attachments
(Wynne and Funabiki 2016). The observed rings might reflect
a relaxed configuration of the bipartite centromere prior to
compaction triggered by microtubule attachment. A bipartite
centromere has crucial implications, particularly in the divi-
sion of the kinetochore plate into two distinct subdomains
that are functionally independent, as attested by the ability
of each subdomain to bind a discrete bundle of microtubules
(Sacristan et al. 2024). This unexpected behavior carries
inherent risks, as subdomains can interact with microtubules
originating from opposite spindle poles, resulting in merotelic
attachments. The biorientation of subdomains from the same
kinetochore could be a primary mechanism contributing to
chromosomal instability as split kinetochores are frequently
observed in lagging chromosomes (Cimini et al. 2001; Cojoc
et al. 2016; Sacristan et al. 2024).

SMC complexes are key regulators of the bipartite cen-
tromere. The assembly of the two subdomains relies on con-
densin loading during the G2/M transition, and the lack of it
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results in highly disorganized centromeres (Sacristan et al.
2024; Samoshkin et al. 2009). On the other hand, chromatids
depleted of cohesin exhibit subdomains severely separated
and engaged in merotelic attachments, suggesting that cohesin
plays a crucial role in keeping subdomains physically associ-
ated. Given the presence of the secondary pool of cohesin
proximal to the core centromere (Sacristan et al. 2024; Sen
Gupta et al. 2023; Yan et al. 2024) we hypothesize that this
specific pool is responsible for tethering the subdomains.

Outlook: from 'beads on a string'
to a bipartite centromere

Overall, many fundamental questions about centromere
architecture are still unanswered. Bipartition might rep-
resent one of several layers of complexity of centromere
folding. Supporting this, centromere fibers prepared under
low stringent conditions unfold into a discrete number
of steps, usually ranging between 2 and 5 (Vargiu et al.
2017). This differs from fiber preparations using harsher
conditions (Kyriacou and Heun 2018), or condensin deple-
tions (Sacristan et al. 2024; Samoshkin et al. 2009), where
the “beads on a string” organization of the centromere is
unveiled. While the observed substructures may include lin-
ear arrays of CENP-A nucleosomes, it is also plausible that
they constitute some basic form of nucleosome clustering.
Notably, in immunoelectron microscopy images, discrete
blocks of CENP-A appeared further organized into higher-
order fibers of 30 nm (Marshall et al. 2008). Considering the
crosslinking activities attributed to CENP-C and CENP-N,
it is tempting to speculate that they play a role in orches-
trating the assembly of basic blocks of CENP-A, which are
then further arranged by condensin into two subdomains.
Nonetheless, the potential contribution of CCAN compo-
nents to the bipartite configuration cannot be disregarded.
Besides the proposed mechanisms, other factors, such as the
topoisomerase IIA (Nielsen et al. 2020; Spence et al. 2007),
might be at play.

Given the distinct distributions of both condensin com-
plexes and cohesin, it is important to assess their specific
contributions to core centromere folding and the potential
bottlebrush organization of the vertebrate pericentromere. In
addition, despite significant variability in the length of active
HORs (Altemose et al. 2022a; Logsdon et al. 2024), interki-
netochore distances remain consistently uniform across chro-
mosomes suggesting that variations in cohesion distribution
or the extent of chromatin condensation might be necessary
to accommodate the heterogeneity of centromeric sequences
(Sen Gupta et al. 2023). Therefore, understanding how the
SMC complexes accumulate at their specific locations
remains fundamental to explaining the folding characteris-
tics and functioning of the centromere. The unique epigenetic

@ Springer

signature, accessibility, and transcriptional activity of centro-
meric chromatin could be major determinants of the distri-
bution of the SMC complexes. Finally, aberrant centromeric
structures have been associated with cancer and infertility
(Barra and Fachinetti 2018; Lagirand-Cantaloube et al. 2017,
Zielinska et al. 2019). Identifying the mechanisms disrupting
centromere structure will be thus paramount in unraveling the
origins of chromosomal instability.

More than 140 years since Fleming first described the
centromere (Flemming 1879), it is remarkable that we have
only just begun to scratch the surface of the intricately
complex nature of centromeric chromatin architecture. The
recent publication of the full centromere assemblies and the
continuous development of 3D-genome analyses and super-
resolution techniques open exciting possibilities to dissect
and work towards the understanding of this elusive structure.
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