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Regulation of chromatin states involves the dynamic interplay between

different histone modifications to control gene expression. Recent advances
have enabled mapping of histone marks in single cells, but most methods
are constrained to profile only one histone mark per cell. Here, we present
anintegrated experimental and computational framework, scChiX-seq
(single-cell chromatinimmunocleavage and unmixing sequencing), to map
several histone marks in single cells. scChIX-seq multiplexes two histone
marks together in single cells, then computationally deconvolves the signal
using training data from respective histone mark profiles. This framework
learns the cell-type-specific correlation structure between histone marks,
and therefore does not require a priori assumptions of their genomic
distributions. Using scChIX-seq, we demonstrate multimodal analysis of

histone marks in single cells across a range of mark combinations. Modeling
dynamics of in vitro macrophage differentiation enables integrated analysis
of chromatin velocity. Overall, scChIX-seq unlocks systematic interrogation

of the interplay between histone modifications in single cells.

Gene expressioninanimals relies on epigenetic marks such as histone
modifications to regulate the accessibility and function of the genome
in different cell types'. Large-scale efforts characterizing different
histone modifications in a variety of cell populations commonly use
chromatinimmunoprecipitation followed by sequencing (ChIP-seq)*®.
Alternative strategies to ChIP-seq based on enzyme tethering (chro-
matin immunocleavage, ChIC) have reduced the background signal
in profiling the epigenome’, and have enabled single-cell profiling of
histone modifications®'°", Tethering strategies involve incubating
cellswith an antibody against a histone modification of interest, which
then tethers either protein A-MNase''>'3% or protein A-Tn5""*" fusion
protein to generate targeted DNA fragments in single cells. However,
most experimental techniques to map single-cell histone modifications
are limited to only one histone modification per single cell.

We presentanintegrated experimental and computational frame-
work for multiplexing histone modifications in single cells. To profile
two histone modifications in single cells (Fig. 1a), we first generate

three genome-wide sortChIC' datasets: two datasets by incubating
cells with one of the two histone modification antibodies separately
(single-incubated; Fig. 1b), and the third by incubating cells with
both histone modification antibodies together (double-incubated;
Fig.1b). We then use our two single-incubated datasets as training data
to generate the possible pairs of genome-wide histone modification
profiles that, when added together, fit to a single-cell profile from the
double-incubated dataset (Fig. 1c). For each double-incubated cell, we
then deconvolve the multiplexed data by probabilistically assigning
each fragmentback to their respective histone modification.
scChiIX-seq links single-cell maps of different histone modifica-
tions, revealing relationships between histone modificationsin single
cells. In these linked maps, information derived from one chromatin
state, such as cell types, histone mark levels and pseudotimes, can
transfer to another chromatin state (Fig. 1d), unlocking joint analy-
sis of several histone modifications in single cells. We first validated
scChIX-sequsing simulation, purified blood cell types and whole bone
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marrow. We then applied scChiIX-seq to two complex biological sys-
tems, one in mouse organogenesis to uncover orthogonal dynamics
in H3K36me3 and H3K9me3, and the other in macrophage in vitro
differentiation to reveal coordinated dynamics between H3K4mel
and H3K36me3.

Results

Benchmarking across histone modification relationships

To test whether scChIX-seq is accurate for histone modification pat-
terns thatare mutually exclusive as well as highly overlapping, we apply
scChiIX-seqtosimulated single-cell data with known amounts of over-
lap to benchmark our method across different overlapping patterns
between histone modifications. We simulate single-cell histone mod-
ification data by modifying simATAC® to generate sparse count data
from different overlapping patterns from the same cell (Fig. 1e and
Extended Data Fig. 1a,b; Methods). Our simulations span three sce-
narios to cover varying degrees of overlapping patterns (Extended
DataFig. 1c). (1) Mutually exclusive scenario with only 1% of loci over-
lapping. (2) Intermediate scenario with 50% of loci overlapping.
(3) Correlated scenario with 99% of loci overlapping. In these simula-
tions, we provide a ground truth parameter p for each genomic locus
and then estimate this parameter using our statistical framework to
assessthe uncertainty inourinferences. Here, pis the expected fraction
of double-incubated readsinalocus thatbelongs to areference histone
modification (thatis, p = 0.5iflocusis exactly overlapping, p=1or O if
locusis exactly mutually exclusive). Applying scChIX-seq to each sce-
nario, we find that the distribution of our estimates pacross allloci are
comparable with the ground truth distribution of p (Extended Data
Fig.1c,d). Furthermore, scChiX-seq accurately recovers the different
cell types underlying the simulated data, and links the two histone
modification landscapesinto ajoint uniform manifold approximation
and projection (UMAP) (Extended Data Fig. 1e). Summarizing the three
scenarios, scChIX-seq can estimate p accurately for all degrees of over-
lap, with confidence intervals (Cl) better than p + 0.05(Fig. 1e (right)
and Extended Data Fig. 1f). Our simulation study confirms that
scChlX-seqis accurate in inferring several histone modifications in
single cells in both mutually exclusive as well as overlapping histone
modification patterns.

Validating with ground truth data from purified cell types
To validate our method experimentally, we generate a ground
truth sortChIC dataset by purifying three known cell types from
mouse bone marrow: B cells, granulocytes and natural killer (NK)
cells, using fluorescence-activated cell sorting (FACS) and applying
scChIX-seq (Methods). Of note, the sortChIC method is designed
to integrate FACS with histone modification mapping'®, so we can
enrich for a cell type and map histone modifications in one workflow.
We split bone marrow cells into three technical batches: one batch
incubated with anti-H3K27me3 antibody alone (single-incubated),
one with anti-H3K9me3 alone (single-incubated) and the third
with both anti-H3K27me3 and anti-H3K9me3 antibodies together
(double-incubated, H3K27me3+H3K9me3). We then sorted cellsinto
384-well plates, each plate containing all three cell types, and generate
targeted cut fragments (Extended DataFig.2a,b). We chose H3K27me3
and H3K9me3 because they have been shown to have amutually exclu-
sive relationship?, allowing us to verify whether we can infer the cor-
rect cell type as well as the generally mutually exclusive relationship.
Of note, although H3K27me3 and H3K9me3 are known to be nonover-
lapping, it is unclear how this relationship precisely changes to make
cell-type-specific patterns at different loci, and therefore modeling the
two relationshipsisstillneeded to accurately infer the two chromatin
profilesinindividual cells.

Fromthe double-incubated data alone, we would not know which
cut fragments correspond to H3K27me3 and which to H3K9me3, but
would observe only a superposition of the two profiles. We therefore

used the single-incubated sortChIC data to train a statistical model
of how cells from the same cell type combine their H3K27me3 and
H3K9me3 profiles to generate double-incubated cut fragments. This
model was then used to deconvolve the single-cell multiplexed signal
into their respective histone modifications (Methods).

Tolearnaninterpretablelatent space for H3K27me3 and H3K9me3,
we applied latent Dirichlet allocation (LDA)*** to the single-incubated
H3K27me3 and H3K9me3 datasets, which factorizes count matrices
based on a multinomial model (Methods). (Extended Data Fig. 2c,d).
LDA learns cell-type-specific vectors of probabilities. These parameters
model the probability that a cut fragment would fall into a specific
genomic region. These probabilities can therefore be interpreted as
genome-wide histone modification distributions that depend on cell
type, and each cell generates a high-dimensional sparse count vector
with n total fragments by drawing n independent trials from these
multinomial distributions.

Demultiplexing the double-incubated data involves two steps.
First, we used the training data to infer which genome-wide H3K27me3
distribution was added to which H3K9me3 distribution to generate
alinear combination of two distributions (H3K27me3+H3K9me3).
Second, we probabilistically assigned each double-incubated cut frag-
mentto either H3K27me3 or H3K9me3, given that we know the underly-
ing linear combination of the two profiles.

The deconvolved H3K27me3+H3K9me3 data generated two sets of
cuts for each cell: one set coming from H3K27me3 and the other from
H3K9me3. We projected the two sets of cuts onto the H3K27me3 or
H3K9me3 latent space (learned from LDA), respectively (Fig. 2a). Since
each deconvolved cell has a set of cuts in H3K27me3 and H3K9me3
simultaneously, we can link the UMAPs together, creating ajoint chro-
matin regulation space (Fig. 2a).

The double- and single-incubated cells in the H3K27me3 and
H3K9me3 UMAPs intermingle, suggesting that the model accu-
rately assigns cut fragments to their respective histone modification
(Extended Data Fig. 2e,f). Comparing the H3K27me3 deconvolved
pseudobulk signal with our ground truth single-incubated pseu-
dobulk shows high correlation for the expected cell type, and lower
for the other two cell types (Extended Data Fig. 2g). The H3K9me3
deconvolved pseudobulk signal also shows highest correlation with
the expected cell type, with lower correlation from other cell types
(Extended Data Fig. 2h). Finally, we compared the fragments per cell
obtained from scChiX-seq versus multi-CUT&TAG?*, and found that
scChIX-seqachieves higher sensitivity than multi-CUT&TAG (Extended
Data Fig. 2i). Overall, our ground truth dataset demonstrates that
scChIX-seqisaccurate and sensitive in assigning cut fragments to their
respective histone modification.

To quantify the accuracy of scChIX-seq in selecting the correct
H3K27me3-H3K9me3 cluster pair to mix together, we color each cell
by its ground truth label and plot its inferred H3K27me3-H3K9me3
pair on atwo-dimensional (2D) grid (Fig. 2b, left). The false discovery
rates (FDRs) of scChIX-seq predicting B cells, granulocytes or NK cells
are 10%, 3% and 1%, respectively (Fig. 2b, right). Similarly, scChIX-seq
has high specificity and sensitivity ininferring the correct cluster pairs
(Fig. 2b, right).

Next, scChIX-seq assigns each double-incubated cut fragment to
either H3K27me3 or H3K9me3 (Fig. 2c; Methods). The deconvolved B
cell repressive landscapes correspond with their respective ground
truth, exemplified in the Bcl2 (Fig. 2d) and Crim1 (Extended Data
Fig. 3a) locus. We also find cell-type-specific signal in H3K27me3
(Extended Data Fig. 3b) and H3K9me3 signal (Extended Data Fig. 3c).

Our model infers p, the expected fraction of double-incubated
fragmentsatalocusthat belongsto H3K27me3. Thatis, p = Qif all frag-
ments belong to H3K9me3 and p =1if they all belong to H3K27me3.
Plotting these probabilities across all loci reveals a bimodal distribu-
tionwith peaks near 0 and 1 (Extended Data Fig. 3d). Classifying these
loci as H3K9me3-specific (P < 0.5) or H3K27me3-specific (P> 0.5),

Nature Biotechnology


http://www.nature.com/naturebiotechnology

Article

https://doi.org/10.1038/s41587-022-01560-3

a
scChlIC-seq
[ ] A Histone modification
(]
scChIX framework for multimodal histone modification analysis
Observed signal .
3ee
i)
“é
Q
Q
=
Q
o
)
Linear
combination
Observed signal A
2
£ s 2% oo
a e o0 00
3] b
= b ° °e
Q B
@ Cc

scChiX for label transfer

duo-scChIC profile

96 pa-MNase [ ] A Histone modification Y Y Antibodies

Unmixed signal @ A
Observed signal @ + A

Probabilistic unmixing

scChIC profile

Cell types Observed signal @ Observed signal @ + A Observed signal 4
@ Label Unmix double signal and Link reference to new
reference map %’ project to reference map histone modification map R '.'. °J
—_— Q5 )
@ s e o pa
° : ° ° :o
®
Simulation to validate inference of cell types and degree of overlapping genomic regions
1.00 +
Mark1 Mark2
@ 2 eA 2 o075 g
< T c =
) S A - A R
G2 O o e S 0 0 : |
i 5 > 2 2 0504
Q| » > a H{
® A : 4
Simulate sparse counts Genomic regions  Run scChIX % Hm
with known amount of overlap UMAP2 Umap2 £ 0259
between two marks Celltypes = A B c N
04

Fig.1| Overview of the scChIX-seq method. a, Chromatin regulation of different
cell types (different colored cells) is regulated in part through several histone
modifications (two histone modifications shown as an example). b, scChIX-seq
uses three sortChIC antibody incubation conditions: two conditions each target
asingle histone modification (single-incubated) only and the third condition
targets both histone modifications simultaneously (double-incubated).

¢, Schematic of scChiX-seq for deconvolving multiplexed histone modifications.
The two single-incubated sortChiIC datasets (one targeting an orange histone
modification, the other ablue modification, each modification reveals three
clusters) are training data to define the possible pairs of histone modification
distributions that can be combined to generate a hypothetical double-incubated
cell. For each observed double-incubated cell, we then assign the cell to the most
probable pair of cell states, one from each histone modification. We then
probabilistically assign each pA-MNase cut into their respective histone
modification. Cartoons represent genome-wide distribution of histone
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modification signals in different modifications and cell types; x axes represent
genomic distance, and vertical ticks are arbitrary distance markers. d, Label
transfer allows joint analysis of two single-incubated sortChIC datasets targeting
functionally distinct histone modifications. Information derived from one
histone modification, such as cell types, histone mark levels and pseudotime, can
betransferred to another histone modification using the double-incubated cells
asalink. e, Simulation study shows that scChIX-seq can unbiasedly assign reads
to eachmark regardless of the amount of overlap there is between the two marks
across the genome. x axis of cartoon genome-wide distributions (middle-left) is
genomic distance. Right: ground truth probabilities versus inferred probabilities
from scChlIX. pis the expected fraction of double-incubated reads in agenomic
locus that belongs to mark 1. pis the estimate of the probability; n =101
simulation datapoints spread evenly between O and linclusive. Error bars are
95% Cl, centers are the mean.
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space have unmixed double-incubated cells whose deconvolved signal has

been projected onto their respective UMAPs. Lines connecting across datasets
connect where each double-incubated cell is located in each of the three histone
modification space. b, Matrix summarizing the cluster pair that scChiX-seq
selected for each double-incubated cell. Cells along the diagonal are predicted
tobe B cells, granulocytes and NK cells, respectively. Cells in the off-diagonal

are false negatives. Barplots summarizing FDR, sensitivity and specificity of
assigning each cell type (right). ¢, Zoom-in coverage plot and single-cell cut
fragments in B cells of mixed (H3K27me3+H3K9me3, gray bars), unmixed
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(H3K27me3 and H3K9me3, orange and blue bars). Positions of cut fragments are
shown for four single cells (single cells A, B, Cand D) for H3K27me3+H3K9me3
signal (gray ticks) as well as their unmixed outputs (orange and blue ticks).
Circled reads and arrow highlight examples of cut fragments being assigned

to either H3K27me3 (orange) or H3K9me3 (blue). d, Zoom-out of the Serpinb5
locus. Cut fragments from H3K27me3+H3K9me3 are colored based on whether
they have been assigned to H3K27me3 (orange) or H3K9me3 (blue). Ground truth
coverage are single-incubated sortChIC data targeting H3K27me3 (orange) and
H3K9me3 (blue). e, Heatmap of probabilities p of assigning reads to H3K27me3
(p=1,red) or H3K9me3 (p = 0, blue) around the Bc/2locus. Rows are single cells
(ordered by predicted cell type), columns are genomic regions (50 kb bins).
Transitions between H3K9me3- and H3K27me3-marked chromatin states are
independent of cell type. f, Same as e but at the CrimI locus, where transitions
from H3K9me3 to H3K27me3 (blue to red) are cell-type specific.
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we compare the GC content and distance to transcription start site
(TSS) of the two classes of loci (Extended Data Fig. 3e,f). We find
H3K9me3-specific regions to have lower GC content and increased
distance from TSSs compared with H3K27me3-specific regions. Of
note, we observe this difference across all three cell types, suggesting
that GC-poor and gene-poor regions of the genome is a general feature
of H3K9me3-specific regions™.

Summarizingthese probabilitiesin single cellsalong the genome
asaheatmap, the Bcl2locus reveals the mutual exclusive relationship
between H3K27me3 and H3K9me3, where the chromatin state is pre-
dominantly H3K9me3, then switches to H3K27me3, and then switches
back to H3K9me3 (Fig. 2e). For Bcl2, these transitions occur at the same
locationindependent of the celltype. However, we also find that these
transitions can be cell-type specific, as exemplified by the CrimIlocus
(Fig. 2f), where the H3K27me3 region extends further upstream of
CrimlIinNK cells compared with B cells and granulocytes. Our ground
truth experiment demonstrates that scChlX-seq can accurately map
two histone modifications in single cells, and the inferred probabili-
ties can be biologically interpreted as relationships between the two
histone modifications in single cells.

scChlX-seqreveals H3K4mel/H3K27me3 relationships inbone
marrow

We next apply scChiX-seqtointegrate active (H3K4mel) and repressive
(H3K27me3) chromatin states inacomplex mixture of cells by sampling
mouse bone marrow (Extended Data Fig. 4a,b). We use scChIX-seq to
transfer labels and link UMAPs between active and repressive histone
modifications (Fig. 3a,b) to perform a joint analysis of the two marks.

To define cell types from the H3K4mel sortChIC data, we ranked
the top 150 genes associated with different clusters from sortChIC
and used a publicly available scRNA-seq dataset to compare mRNA
abundances of cluster-specific genes across different blood cell types®
(Extended DataFig. 4c). scChIX-seq takes each H3K4mel+H3K27me3
cell and infers the most probable cluster pair (one from H3K4mel,
the other from H3K27me3), which systematically transfers cell-type
labels defined from H3K4mel onto the H3K27me3 data (Extended Data
Fig. 4d). We find that a small minority of double-incubated cells have
low-confidence cluster pair predictions. Plotting the cluster pairs onto
the H3K4mel+H3K27me3 UMAP confirms that the single-cell assign-
ment produces precise clusters where neighboring cells are probably
assigned to the same pair. Low-confidence predictions arise from cells
thatborder between clusters (Extended DataFig. 4e), which we remove
from further analysis. Overall, scChIX-seq allows systematic transfer of
cell-type labels from one histone modification to another.

We next deconvolve the double-incubated cellsinto their respec-
tive histone modification. The UMAPs from H3K4mel and H3K27me3
show that single-incubated and deconvolved single cells intermin-
gle, suggesting that deconvolution does not produce batch effects
(Extended DataFig. 4f,g). The deconvolved single cells provide anchors
to systematically link one histone modification with another (Fig. 3c).
Tovalidate the predicted cell typesinboth the single and deconvolved
datasets, we compared with data from cell types purified by FACS. For
H3K4mel clusters, we compared with publicly available ChIP-seq’.
Pearson correlation between ChIP-seq of B cells, erythroids, granulo-
cytesand NK cells versus sortChIC from single- and double-incubated
cells is highest for the predicted cell type (Extended Data Fig. 5a-d).
Although single-incubated cells have higher correlation with ChIP-seq
reference data than deconvolved cells for the matched cell type, the
deconvolved cells of the matched cell type consistently had higher
correlation with ChIP-seq than unmatched cell types. For H3K27me3
clusters, we used our ground truth sortChIC data purified from
FACS. Pearson correlation of sortChlIC signal between FACS-sorted
B cells, granulocytes and NK cells versus pseudobulks derived from
whole bone marrow is highest for the predicted cell type (Extended
DataFig.5e-g).

Classifying these loci as H3K27me3-specific or H3K4mel-specific
using a cluster-specific cutoff for p (Extended Data Fig. 5h), we again
compare the GC content and distance to TSS of the two classes of
loci. We find that H3K4mel-marked regions tend to be closer to TSSs
compared with H3K27me3 (Extended Data Fig. 5i), and that GC content
is higher in H3K27me3-specific compared with H3K4mel-specific
regions (Extended Data Fig. 5j). The increase in GC content for
H3K27me3-marked regions is consistent with previous studies show-
ing that GC-rich elements in transcriptionally inactive regions can
recruit PRC2 (ref. ).

We use thejoint landscape to reveal active and repressive histone
modification dynamics within cell types. To find differences in chro-
matin regulation between pro-B cells versus B cells, we select only
pro-BorBcellsandrecluster the cellsin both H3K4meland H3K27me3
separately (Extended Data Fig. 6a,b). With multimodal data, we can
transfer cell-type-specific H3K4mel signal onto the H3K27me3 UMAP
to distinguish pro-B and B cells with more confidence. Using pro-B
cell-specific genes, Pax5 (ref.”’) and Pten*®, we project the H3K4mel sig-
nalatlocioverlapping these genes ontoboth H3K4meland H3K27me3
landscapes, confirming a subset of pro-B cells within the B cell popula-
tion (Extended DataFig. 6¢). Similarly, we use marker genes associated
with more differentiated B cells, such as Irf4 (ref. %), Igkv3-2 locus®
and Cd72 (ref.*°) to confirm a more differentiated B cell population
(Extended DataFig. 6d). Plotting the heatmap of H3K4mel-H3K27me3
assignment probabilities at the /gK locus reveals that the chroma-
tin state is repressed in pro-B cells but becomes activated in B cells
(Fig. 3d), consistent with the progressive activation of the chromatin
state during B cell development®.

Next, werecluster neutrophils to analyze differences in chromatin
regulation along pseudotime (Extended Data Fig. 7a). Reclustering
neutrophils in H3K27me3 reveals a shared pseudotime trajectory
that varies smoothly between neutrophils in both the H3K27me3 and
H3K4mel landscapes. H3K4mel levels at the Retnlg locus—a marker
gene for mature neutrophils*—increases along pseudotime, while
H3K27me3 levels decreases (Extended Data Fig. 7b). The H3K27me3
gene loadings associated with pseudotime consists of a module of
Hox and other developmental genes (Extended Data Fig. 7c-e). Of
note, these genes have low levels of mMRNA abundances in neutrophils
(Extended DataFig. 7f), suggesting that this module is transcriptionally
silent. At alocus overlapping the Hoxa locus, we find that H3K27me3
was highly marked while H3K4mel was lowly marked across all neutro-
phils. Along pseudotime, H3K27me3 increases further, while H3K4mel
decreases further (Extended Data Fig. 7c). Our pseudotime analysis
suggests that dynamics in histone modifications can occur even in
regions associated with low-expressed genes.

H3K36me3/H3K9me3 relationships during mouse
organogenesis

Todemonstrate the method in more complex biological scenarios, we
applied scChIX-seq during mouse organogenesis (E9.5to E11.5) to study
H3K36me3 and H3K9me3 dynamics at single-cell resolution (Fig. 4a
and Extended DataFig. 8a,b). We took the top 250 cluster-specific bins
from the H3K36me3 data to identify cell types (Methods). These loci
associate with gene bodies of cell-type-specific genes. For example, we
find H3K36me3 signal around genes enriched in specific cell types, such
aserythroids (Sptb)*, white blood cells (Lcp2 (ref.**), endothelial cells
(Emcn)**, neural tube (Rfx4)*, neurons (Elavl4)*, Schwann precursors
(Cdhé)”, epithelial cells (Grhl2)*®, mesenchymal progenitors (Prx1)*
and cardiomyocytes (Gata6, Tpm1)*°*' (Extended Data Fig. 8c-1).

To uncover whether distinct H3K36me3 cell types could share
common H3K9me3 landscapes, we deconvolved the H3K36me3 +
H3K9me3 cells and projected each cell to both landscapes (Fig. 4b).
scChiX-seqreveals thaterythroid and white blood cells have both dis-
tinct active chromatin and heterochromatin, but the other nonblood
cell types show similar heterochromatin distribution. Assigning each
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where the active signal and the corresponding repressive signal are located for
each double-incubated cell. DC, dendritic cells; pDC, plasmacytoid dendritic
cells.d, Heatmap showing probability of assigning aread inaregion to either
H3K27me3 or H3K4mel at 5 kb resolution. Heatmap shows the /gk locus for
pro-B versus B cells. Rows are single cells, columns are 5 kb genomic regions.
Blue represents regions where cut fragments are probably coming from
H3K27me3, while red represents regions where cut fragments are probably
coming from H3K4mel.

double-incubated cell to aH3K36me3 and H3K9me3 cluster confirms
that cells with distinct H3K36me3 can share the same H3K9me3 cluster
(Fig. 4¢). Of note, the variable genes that show cell-type-specific dif-
ferences in both active chromatin and publicly available mRNA abun-
dances* (Extended Data Fig. 9a,b) have low signal across cell typesin
H3K9me3 (Extended DataFig. 9c), suggesting that using conventional
marker genes from RNA-seq would not reveal cell-type differences
inH3K9me3.

Differential expression across the three H3K9me3 clusters
reveals cluster-specific repressed loci (Extended Data Fig. 9d), with

the largest effect coming from erythroid-specific regions. These
erythroid-repressed regions are associated with decreased mRNA abun-
dances (Extended DataFig. 9e-g). Subsetting the dataand running LDA
ononlynonblood cellsin H3K9me3, we find that H3K9me3 varies over
organogenesis stages (Fig. 4d), suggesting that heterochromatin differ-
ences are stronger across organogenesis stages than between cell types.

Because the double-incubated cells have cut fragments associated
with both histone modifications, we hypothesized that the decon-
volved data could precisely quantify the ratio between the two histone
modifications, and how this ratio changes across cell types. Counting
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total reads from single-incubated data would lead to large cell-to-cell
technical variability because counts per cell can span several orders of
magnitude. However, comparing the counts of the two histone modi-
fication in the same cell could overcome this technical variability. We
therefore asked whether the global ratio of H3K36me3 and H3K9me3
inindividual cells varies. Plotting the ratio of H3K36me3 and H3K9me3
reveals that most cells have comparable ratios, but that erythroid cells
have lower ratios than other cell types (Fig. 4e,f). This lower ratio is
consistent with mass spectrometry studies showing aglobal decrease
in H3K36me3 but no change in H3K9me3 during erythroid matura-
tion*’. Of note, inferring this global change without scChIX-seq, such
as by counting total unique fragments from single-incubation data,
is challenging due to the large variability in total counts across cells
and theinability to distinguish cell types in certain H3K9me3 clusters
(Extended DataFig. 9h,i).

Insum, applying scChiIX-seq to H3K36me3 and H3K9me3 during
organogenesis reveals unique insights from multimodal analysis. The
complexrelationships between the two histone modifications as well
as their global changes would not have been elucidated by analyzing
single-incubated data alone.

Mark-specific pseudotimes and chromatin velocity

Finally, we applied scChIX-seq to study the dynamic relationships
between two active histone modifications, H3K4meland H3K36me3,
over anin vitro differentiation timecourse. We sorted blood progeni-
tors from mouse bone marrow, added macrophage colony-stimulating
factor (MCSF) and collected cells over 7 days (Fig. 5a and Extended Data
Fig.10a,b; Methods). Weincubated cells with either H3K4mel, H3K36me3
or both H3K4mel and H3K36me3, then performed scChlX-seq.

Genome tracks of H3K4mel and H3K36me3 signal for each day
shows upregulation of macrophage-specific genes, such as Mertk**
(Extended Data Fig. 10c). Heatmap of H3K4mel and H3K36me3
dynamics at gene bodies along pseudotime reveals that the two
histone modifications up- and downregulate genes with different
dynamics. H3K36me3 shows agradual up- or downregulation of signal
while H3K4mel reaches a new steady state earlier along pseudotime
(Fig. 5b). Summarizing log, fold change of the two histone modi-
fications genome-wide, we find that dynamics in H3K36me3 are
often larger than in H3K4mel (Extended Data Fig. 10d). Comparing
pseudotime progression with day of sample collection shows that
changes in H3K4mel peak at day 2 and then increases progressively
over the day while H3K36me3 dynamics peak around day 3 and 4
before relaxing towards steady state (Fig. 5c). The time of the larg-
est change in H3K4mel dynamics occurs 1 day before H3K36me3
(Fig.5d), suggesting that global changes in H3K4mel precede changes
in H3K36me3. Summarizing at the genome-wide level, UMAPs of
H3K4mel and H3K36me3 of single-incubated cells show that both
active marks move progressively towards a macrophage state during
the timecourse (Fig. 5e).

Using continuous pseudotime of H3K4mel and H3K36me3 as
our training data (Methods), for both H3K4mel and H3K36me3 we
infer where along pseudotime each double-incubated cell came from.
Plotting the inferred pseudotimes of each mark for each celluncovers
the dynamicrelationships between the two marks (Fig. 5e). H3K4mel
pseudotime initially progresses while H3K36me3 remains relatively
unchanged. AsH3K4mel pseudotime approaches 0.5, H3K36me3 then
progresses rapidly towards 1. This sigmoidal-like relationship between
H3K4mel versus H3K36me3 pseudotime progression is consistent
withH3K4meldynamics occurring before H3K36me3. Finally, we used
thisinferred pseudotime information to project the deconvolved cells
onto the H3K4mel and H3K36me3 UMAPs. Both UMAPs showed that
the single-incubated and deconvolved cells intermingle with each
other, suggesting that deconvolution was successful (Extended Data
Fig.10e,f). Using the deconvolved cells as anchors, we then linked the
two histone modification maps together (Fig. 5f).

Since we observed that H3K4mel dynamics occur before
H3K36me3, we asked whether we could model the H3K36me3 dynam-
ics as a first-order differential equation analogous to RNA velocity*
(Fig. 5g, top; Methods). Since our data come from a timecourse, we
directly fitted the exponential curves for dynamic genes along pseu-
dotime for H3K36me3 (Extended Data Fig. 10g), which avoids mak-
ing steady-state assumptions and leverages information from both
single-incubated and deconvolved cells across histone modifications.
The distribution of inferred rate constants from the exponential fit
show a median of approximately 2.3 per pseudotime (Extended Data
Fig.10h). Theserate constants were then used to predict the H3K36me3
levels for each cell over small pseudotime steps (At = 0.02; Fig. 5g).
Finally, summarizing the predictions of dynamic genes, we projected
the high-dimensional velocity vectors onto the first two principal
components (PCs). From the chromatin velocity summary, we found
that differentiation starts with large changes in H3K36me3 dynamics,
and then relaxes towards the macrophage state.

Insummary, we applied scChiX-seq to two active histone modifica-
tions to find dynamic relationships between activation states. We then
model these dynamics toinfer chromatin velocity during macrophage
differentiation.

Discussion

Here, we demonstrate that scChlX-seq can deconvolve multiplexed
histone modifications, expanding the number of histone marks that
can be profiled in single cells. Using simulations, purified cell types
and whole bone marrow, we demonstrate that scChIX-seq can accu-
rately map several histone marks. To show how scChIX-seq canreveal
unique biological insights in more challenging systems, we applied
scChiX-seqto study H3K36me3 and H3K9me3 dynamics during mouse
organogenesis to reveal the joint transcriptional and heterochromatin
relationshipsinsingle cells. scChIX-seq canidentify complex cell-type
relationships between histone modifications, such as when several
cell types can share a similar heterochromatin landscape. Finally, we
applied scChIX-seq to two active marks during macrophage in vitro
differentiation to quantify the relationship between two correlating
marks. Importantly, scChiX-seq is flexible in which histone modifica-
tions can be used. The correlation structure between modifications is
inferred from the model and therefore does not require a priori assump-
tions of specific features of the two modifications. Thus, scChIX-seq
complements arecent method that focuses ondifferencesin fragment
lengths between Pol2 serine-5 phosphate and H3K27me3 to assign
reads to their respective mark*®.

Recently, there have been new experimental innovations to
CUT&TAG that modify the pA-Tn5 complex to map several histone modi-
fications in single cells***"*°. One drawback of Tn5-based approaches
(for example, CUT&TAG) compared with MNase-based (for exam-
ple, sortChIC and CUT&RUN) used in this study is that Tn5 can have
biases to open chromatin®’. Current CUT&TAG methods suppress
this bias by using more stringent washing conditions”, but exceed-
ingly high salt conditions reduce the sensitivity and could wash away
weakly bound factors such as transcription factors®>*', On the flip
side, MNase-based approachesinvolve more experimental effort than
Tn5-based approaches, reducing the number of single cells that can
be processed per round. Although we demonstrate our scChIX-seq
method using an MNase-based approach (sortChIC), our computa-
tional and experimental framework can also be applied to Tn5-based
strategies. Furthermore, our scChlX-seq method may have synergies
with recent nanobody-based methods*”*%. For example, using two
nanobodies, each specific to a different species of immunoglobulin
G, one can profile four histone modifications by generating two sets
of scChiX-seq simultaneously: two antibodies raised from one species
and the other two antibodies raised from the second species.

A limitation in scChIX-seq is that the maximum number of cuts
at a specific base pair location is fundamentally limited by the copy
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Fig. 5| Applying scChIX-seq to two active marks reveals chromatin

velocity during in vitro macrophage differentiation. a, Schematic of mouse
macrophage in vitro differentiation timecourse experiment to study H3K4mel
and H3K36me3 in single cells. b, Heatmap of histone modification signal on the
bodies of dynamic genes over pseudotime. Rows are gene bodies and columns
aresingle-incubated cells ordered along pseudotime. Color labels of columns are
days from which the cells were recovered during the timecourse. ¢, Boxplots of
pseudotime estimates of single-incubated cells along the timecourse. Number
of cells per day for H3K4mel: n = 58 day 0, n =148 day 1, n = 249 day 2, n = 350 day
3,n=369day4,n=383day5,n=488day6,n=519 day 7. For H3K36me3: n =42
day0,n=125dayl,n=176 day2,n=301day3,n =384 day4,n=366 day5,n=522
day 6, n =567 day 7. Boxplots show 25th percentile, median and 75th percentile,

with the whiskers spanning 97% of the data. d, Estimate of the average difference
of pseudotime from one day to the next. Error bars indicate 95% Cl, calculated
by alinear model of the pseudotime differences between days. Statistics derived
from number of cells indicated in c. e, Estimates of two different pseudotimes
from asingle cell. Error bars are 95% Cl of the estimates. Each point is adouble-
incubated cell. f, Joint UMAP of H3K4mel and H3K36me3 from scChiX-seq,

lines connect single cells with multimodal information. g, Chromatin velocity

estimates of an upregulated gene (above) and adownregulated gene (below). Red
curveis the exponential relaxation fit according to the solution of the first-order
differentiation equation. h, High-dimensional chromatin velocities of dynamic
genes projected onto PCs1and 2. Vector field estimated by smoothing across
nearest neighbors of cells (Methods).
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numberinthatcell. Therefore, anucleosome that has several modifica-
tions in their histone tails would still be cut only once. Currently, our
binning strategy (5 kilobase (kb), 50 kb or gene bodies, depending on
the biological question) and multinomial model assumes that there is
no limit to the number of fragments that can be generated in one bin,
whichis anapproximation thatis valid whenthe bins arelarge and the
number of cuts within the bins are small (for example, due to dropouts).

We demonstrate that scChIX-seq canreveal biological insights by
multimodal analysis that would otherwise be obscured by analyzing
each modality separately. Overall, scChIX-seq unlocks multimodal
analysisinantibody-based chromatin profiling and enables joint analy-
sis of distinct histone modifications in single cells.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
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Methods

Animal experiments

All mice used in this study were Cast-EiJ/Bl6 mice and were bred and
maintained inthe Hubrecht Institute Animal Facility. Allmouse experi-
mentation was approved by the Animal Experimentation Committee
(DEC) from the Koninklijke Nederlandse Akademie van Wetenschap-
pen (KNAW) and complied with existing European Union legislation
andlocal standards.

Mouse bone marrow. Male 13-week-old C57BL/6 mice were used
to extract bone marrow cells. Femurs and tibia were extracted, the
bone ends were cut away to access the bone marrow, which was
flushed out using a 22G syringe with HBSS (- calcium, - magnesium,
- phenol red, Gibco, catalog no. 14175053) supplemented with
Pen-Strep and 1% fetal calf serum. The bone marrow was dissoci-
ated and debris removed by passing through a 70 um cell strainer
(Corning, catalog no. 431751). Cells were washed with 25 ml sup-
plemented HBSS before depleting the sample of unnucleated cells
using I0Test 3 Lysing solution (Beckman Coulter) following the
provider’sinstructions. Cells were washed an additional two times
with PBS before processing them by the sortChIC protocol for his-
tone modifications. For whole bone marrow experiments (that is,
not enriched for specific cell types), we processed cells using the
sortChIC protocol for unfixed cells (without ethanol fixation). For
the ground truth experiment with sorted cell types, we processed
cells using the sortChIC protocol for ethanol-fixed cells. For etha-
nol fixation, cells were resuspended in 70% ethanol and fixed for
1hat-20 °C. Afterwards cells were resuspended in Storage buffer
(42.5 ml H,0 RNAse free, 1 ml1 M HEPES pH 7.5 (Invitrogen), 1.5 ml
5MNacl, 3.6 pl spermidine (Sigma Aldrich, catalog no. S2626-5G),
protease inhibitor (Sigma Aldrich, catalog no.5056489001),200 pl
0.5 M EDTA, 5 pl dimethylsulfoxide) and frozen at -80°C, before
processing by the sortChIC protocol.

Mouse organogenesis. No randomization or blinding was per-
formed. Sex of embryos was not known at the time of collection.
Four to five embryos were pooled for each reported timepoint
(E9.5, E10.5, E11.5) before single-cell isolation. Pooled embryos
were dissociated in TrypleE for 10 min atroom temperature. Undi-
gested portions were physically removed and the remainder filtered
through a 30 um filter before the single-cell suspension was split
into three samples for each timepoint and each scChIX-seq experi-
ment. Per timepoint, two single-cell samples were used each for a
single antibody incubation (H3K36me3 or H3K9me3) and one sam-
ple for the double antibody incubation (H3K36me3 + H3K9me3).
Antibody incubation was performed as described inthe scChlX-seq
protocol before single-cell capture using flow cytometry. A DNA
library was prepared for each sample using the sortChIC protocol
for unfixed cells.

In vitro macrophage differentiation. For in vitro differentia-
tion of bone marrow-derived macrophages, bone marrow was
collected aseptically by flushing tibia and femurs from eutha-
nized wild-type male C57BL/6 mice with sterile RPMI and 10%
FCS through a 70 pm cell strainer (Corning). To enrich for stem
and progenitor cells, lineage marker-positive (Lin*) cells were
depleted by magnetic-activated cell sorting using a mouse Line-
age Cell Depletion kit (Miltenyi Biotec). Lin™ cells were cultured
on nontissue-culture-treated plates (Corning) for 7 days in RPMI
medium supplemented with 10% FCS, 100 IU ml™* penicillin,
100 mg ml'streptomycin and 10 ng ml' recombinant murine MCSF
(Peprotech). Medium was refreshed after 3 days. Every 24 h, sus-
pension cells were collected and adherent cells were harvested
by incubating 10 min in 2 mM EDTA/0.5% BSA in PBS. Suspension
and adherent cells were combined and stained with CellTrace

fluorescent labels (Thermo Fisher), according to manufacturer’s
instructions. Briefly, cells were pelleted and resuspended in 37 °C
PBS containing fluorescent dyes (working concentrations Cell-
Trace CSFE (CTC): 2.5 uM; CellTrace Yellow (CTY): 2.5 pM; Cell-
Trace Far Red (CTFR): 0.5 uM) at a concentration of 1,000,000
cells ml™, Cells were incubated at 37 °C protected from light for
20 min. Staining reactions were stopped by adding two volumes
of RPMI/10% FCS and incubating for 5 min at room temperature,
protected from light, after which cells were washed twice in PBS.
The following combinations of labels were used: unstained (day 0),
CTC(day1),CTY (day 2), CTFR (day 3), CTC + CTY (day 4), CTC + CTFR
(day 5), CTY + CTFR (day 6) and CTC + CTY + CTFR (day 7). After
harvesting and staining, cells were fixed in 70% ethanol for 1 h and
stored for later by the sortChIC protocol for fixed cells.

Cell preparation without ethanol fixation for sortChIC
experiments

Cells from whole bone marrow (H3K4mel+H3K27me3) and mouse
embryos (H3K36me3+H3K9me3) were processed using the sortChIC
method without ethanol fixation. Cells were processed in 0.5 ml
protein low-binding tubes. Following steps were performed on ice.
Cells were resuspended in 500 pl wash buffer (47.5 ml H,0 RNAse
free,1ml 1M HEPES pH 7.5 (Invitrogen), 1.5 ml 5M NacCl, 3.6 pl pure
spermidine solution (Sigma Aldrich)). Cells were pelleted at 600g
for3 min and resuspended in400 pl wash buffer 1 (wash buffer with
0.05% saponin (Sigma Aldrich), protease inhibitor cocktail (Sigma
Aldrich), 4 ul 0.5 M EDTA) containing the primary antibody (1:100
dilution for the antibody, saponin has to be prepared fresh every
time as a 10% solution in PBS). Cells were incubated overnight at
4°Conaroller, before being washed once with 500 pl wash buffer
2 (wash buffer with 0.05% saponin, protease inhibitor). Afterwards
cells were resuspended in 500 pl wash buffer 2 containing Protein
A-Micrococcal Nuclease (pA-MNase) (3 ng ml™) and incubated for
lhat4°Conaroller.

Finally, cells were washed an additional two times with 500 pl
wash buffer 2 before passing it througha 70 pm cell strainer (Corning,
catalog no. 431751) and sorting G1 cells based on Hoechst staining on
a BD Influx FACS machine into 384-well plates containing 50 nl wash
buffer 3 (wash buffer containing 0.05% saponin) and 5 pl sterile filtered
mineral oil (Sigma Aldrich) per well. Small volumes were distributed
using a Nanodrop Il system (Innovadyme).

Cell preparation with ethanol fixation and surface antibody
incubation for sortChIC experiments

Cells from sorted bone marrow (H3K27me3+H3K9me3) and mac-
rophage in vitro differentiation (H3K4mel+H3K36me3) were
processed using the ethanol fixation protocol. Sorted bone mar-
row cells were also incubated with surface antibody to enrich for
known cell types. For the ethanol-fixed cells the above described
sortChIC protocol was adapted. Wash buffers were used as
described above, except that 0.05% saponin was exchanged for
0.05% Tween. Ethanol-fixed cells were thawed on ice. Cells were
spun at 400g for 5 min and washed once with 400 pl wash buffer
1. Cells were spun again at 400g and resuspended in 400 pl wash
buffer 1. Cell suspension was splitinto three samples each having a
volume of 400 pl and incubated with one or two antibodies (1:100
dilution for the antibody) overnight on a roller at 4 °C. The next
day, cellswere spun at 400g, washed once with 400 pl wash buffer
2 and resuspended in 500 pl wash buffer 2 containing pA-MNase
(3 ng mI™!) and incubated for 1 h on a rotator at 4 °C. Next, cells
were spun at400g and resuspended in 400 pl wash buffer 2 (with
addition of 5% blocking rat serum). To sort for defined cell types
in the ground truth bone marrow experiment, surface antibodies
were added according to these concentrations and were incubated
for 30 min onice:
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antibody info

GR1 A647, anti-mouse Ly-6G/Ly-6C (Gr-1) Antibody,
clone: RB6-8C5

NK1 A488, anti-mouse NK-1.1 Antibody, clone: PK136

CD19 BV421, anti-mouse CD19 Antibody, clone: 6D5

working concentration
1:8,000

1: 400

1:200

BD FACsoftwarev.1.2.0.142 was used to collect data from the FACS
machine during cell sorting; see Supplemental Fig. 1 for the gating
strategy.

Finally, samples were washed once with 500 pl wash buffer 2
before passing them through a 70 pm cell strainer (Corning, catalog
no. 431751) and sorting on a BD Influx FACS machine, with surface
antibody specific gating, into 384-well plates containing 50 nl wash
buffer 3 (wash buffer containing 0.05% Tween) and 5 pl sterile filtered
mineral oil (Sigma Aldrich) per well. Small volumes were distributed
using a Nanodrop Il system (Innovadyme).

MNase activation for sortChIC experiments

Targeted fragmentation was started by the addition of 5 pul wash
buffer 2 containing 4 mM CacCl,. For digestion, plates were incubated
for 30 min in a PCR machine set at 4 °C. Afterwards the reaction was
stopped by adding 100 nl of a stop solution containing 40 mM EGTA,
1.5% NP40, and 10 nl 2 mg mI™ proteinase K. Plates were incubated
in a PCR machine for further 20 min at 4 °C, before chromatin was
released and pA-MNase permanently destroyed by proteinase K diges-
tion at 65 °C for 6 h followed by 80 °C for 20 min to heat inactivate
proteinase K. Afterwards plates were stored at -80 °C until further
processing.

Library preparation for sortChIC experiments

DNA fragments were blunt ended by adding 150 nl end repair mix per
well and incubating for 30 min at 37 °C followed by 20 min at 75 °C
for enzyme inactivation. End repair mix per well: Klenow large (NEB,
catalog no. M0210L) 2.5 nl, T4 PNK (NEB, catalog no. M0201L) 2.5 nl,
dNTPs 10 mM 6 nl, ATP 100 mM 3.5 nl, MgCl, 25 mM 10 nl, PEG8000
50% 7.5 nl, PNK buffer 10x (NEB, catalog no. B0201S) 35 nl, BSA 20 ng
1.8 nl, nuclease-free water 81.3 nl.

Blunt fragments were subsequently A-tailed by adding 150 nl per
well of A-tailing mix and incubated for 15 min at 72 °C. Through the
strong preference of AmpliTaq360toincorporate dATP asasingle base
overhang even in the presence of other nucleotides, a general AINTP
removal was not necessary. A-tailing mix per well: AmpliTaq 360 (Thermo
Fisher Scientific, catalog no. 4398828) 1 nl, dATPs 100 mM 1 nl, KCI1M
25nl,PEG800050%7.5 nl,BSA 20 ng 0.8 nl, nuclease-free water114.8 nl.

Fragments were ligated to T-tail containing forked adapters
containing a T7 polymerase binding site for in vitro transcription
(IVT)-based amplification.

Top strand: 5-GGTGATGCCGGTAATACGACTCACTATAGGGAGTT
CTACAGTCCGACGATCNNNACACACTAT-3’

Bottom strand: 5-TAGTGTGTNNNGATCGTCGGACTGTAGAACT
CCCTATAGTGAGTCGTATTACCGGCGAGCTT-3’

The three random nucleotides (NNN) were the unique molecular
identifier used for read deduplication and the eight bases afterwards
represent the cell barcodes, which were different for each of the 384
wells. For afull list of adapters and the cell barcodes for each well, see
the excelsheetinSupplemental Table 1. Cell barcodes for each 384-well
platesare also found as atext filein the scChIX-seq Github repository:

(https://github.com/jakeyeung/scChlX/blob/main/inst/extdata/
cellbarcodes_384_NLA annotated.bc).

For ligation, 50 nl of 5 uM adapter in 50 mM Tris pH 7 was added to
eachwellwith aMosquito HTS (ttp labtech). After centrifugation, 150 nl
of ligation mix was added before incubating plates for 20 min at 4 °C,
followed by 16 h at 16 °C for ligation and 10 min at 65 °C to inactivate
ligase. Adapter ligation mix per well: T4 ligase (400,000 U ml™, NEB,
catalog no. M0202L) 25 nl, MgCl, 1M 3.5 nl, TrisIM pH 7.510.5nl, DTT
0.1M 52.5nl, ATP 100 mM 3.5 nl, PEG8000 50% 10 nl, BSA 20 ng 1nl,
nuclease-free water 44 nl.

Before pooling, 1 plnuclease-free water was added to each well to
minimize material loss. Ligation products were pooled by centrifuga-
tion into oil coated VBLOK200 Reservoir (ClickBio) at 500g for 2 min
andtheliquid face was transferredinto 1.5 mlEppendorftubes and then
purified by centrifugation at 13,000g for 1 min and transferred into a
fresh tube twice. DNA fragments were purified using Ampure XP beads
(Beckman Coulter, prediluted one in eight inbead binding buffer:1M
NacCl,20%PEG8000,20 mM Tris pH 8,1 mM EDTA) atabead to sample
ratio of 0.8. After 15 minincubation at room temperature, beads were
washed twice with1 ml80% ethanol resuspending the beads during the
firstwashand resuspendedin 20 plnuclease-free water. After 2 min elu-
tion, the supernatant was transferred into afresh 0.5 mltube. A second
cleanup was performed adding 26 pl undiluted Ampure XP beads and
the beads were resuspended in 8 pl nuclease-free water. The cleaned
DNAwas thenlinear amplified by IVT by adding 12 pl of MEGAscript T7
Transcription Kit (Fisher Scientific, catalog no. AMB13345) for 12 h at
37°C. Template DNA was removed by addition of 2 pul ™ TurboDNAse
(IVT kit) and incubation for 15 min at 37 °C. The RNA produced was
further purified using RNA Clean XP beads (Beckman Coulter) at a
beads to sample ratio of 0.8 and samples were resuspended in 22 pl
of nuclease-free water. RNA was fragmented by mixing in 4.4 pl frag-
mentation buffer (200 mM Tris-acetate pH 8.1, 500 mM KOAc, 150 mM
MgOACc) and incubation for 2 min at 94 °C. Fragmentation was stopped
by transferring samplestoice,adding 2.64 pul 0.5 M EDTA and another
bead cleanup; samples wereresuspended in12 plnuclease-free water.

RNA (5 pl) was primed for reverse transcription by adding 0.5 pl
10 mM dNTPs and 1 pl 20 mM randomhexamerRT primer (5’-GCCTT
GGCACCCGAGAATTCCANNNNNN-3’) and hybridizingit by incubation
at 65 °Cfor 5 minfollowed by direct cool down onice. Reverse transcrip-
tionwas performed by further addition of 2 pl first strand buffer (part
of Invitrogen kit, catalog no. 18064014),1ul 0.1 M DTT, 0.5 pl RNA-
seOUT (Invitrogen, catalog no. LS10777019) and 0.5 pl Superscriptll
(Invitrogen, catalog no.18064014) and incubating the mixture at 25 °C
for 10 min followed by 1 h at 42 °C. Single-stranded DNA was purified
through incubation with 0.5 pl RNAseA (Thermo Fisher, catalog no.
ENO0S531) and incubation for 30 minat 37 °C.

Afinal PCR amplification to add the Illuminasmall RNA barcodes
and handles was performed by adding 25 pl of NEBNext Ultra Il Q5
Master Mix (NEB, catalog no. M0492L), 11 pl nuclease-free water and
2 pl of 10 pM RP1and RPIx primers.

PCR protocol for sortChIC experiments

Activation for 30 s at 98 °C, 8-12 cycles (depending on starting mate-
rial),10sat 98 °C,30 s at 60 °C, 30 s at 72 °C, final amplification 10 min
at72°C.

PCR products were cleaned by two consecutive DNA bead
clean-ups with abead to sample ratio of 0.8. Final product was eluted
in 7 pl nuclease-free water. The abundance and quality of the final
library were assessed by QUBIT and bioanalyzer.

Data processing

All DNA libraries were sequenced on a lllumina NextSeq500 with
2 x 75 bp. Weran the raw fastq files through the Single-Cell MultiOmics
(SCMO) workflow (github.com/BuysDB/SingleCellMultiOmics®). The
workflow comprises of six steps.
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(1) Demultiplex raw fastq files using demux.py (SCMO). (2) Trim
fastqfilesby removing adapters using cutadapt (v.3.5). (3) Map trimmed
fastqfiles usingbwa (v.0.7.17-r1188). (4) Tag bam files with cell barcode
information, using bamtagmultiome.py (SCMO). (5) Generate count
tables using bamToCountTable.py (SCMO). (6) Run dimensionality
reduction of count matrices using run_LDA_model.R. See an example
of the pipeline in the scChiX-seq Github repository™.

Unmixing scChIX-seq signal

Single-cell epigenomics techniques (for example, sortChIC, CUT&RUN
and CUT&TAG) generate a vector of counts indicating the number of
cutfragments that mapineachgenomicregionforeach cell. We model
the vector of counts fromadouble-incubated cell yasalinear combina-
tion of two multinomial distributions: one coming from a cluster c of
histone modification 1, parameterized by p, the other from another
cluster d of histone modification 2 g,. The log-likelihood for a linear
combination of two multinomials is:

G
Lica) = 10g(P (YD, Gur w)) 3, Ve log (wpeg + 1 - w)qag). (1)
g=1

y is the number of cuts across the genome for a double-incubated cell.
p.gand g, are cluster-specific probabilities indicating the likelihood
that a cut fragment maps to region gin histone modifications1and 2,
respectively. w is the mixing fraction of histone modification 1in the
double-incubated cell, which we estimate by maximizing the
log-likelihood given y, p.and g,,.

Applying single-cell techniques to complex tissues generates
datawith many clusters. Therefore, given adouble-incubated cell, we
do not know which pair of clusters (c,d) were combined to generate
the observed counts. We therefore calculate the log-likelihood for all
possible pairs of clusters learned from the training data and then select
the cluster pair with the highest probability for each cell.

Cluster-specific probabilities p.and g, are learned by applying
LDA (withk =30 topics) using the topicmodels R package’* to the train-
ing data (that s, single-incubated cells), which are count matrices.

After assigning each cell to the most probable cluster pair (¢, d),
we assign y;;, the jth read mapped to region gin cell i, to histone mark
1with probability P; ;:

wPé,g

pPi=— %
Wpeg+(1—w)qy,

2

ij =

This assignment generates a pair of vectors y;; and y,,; that are
linked because they both come from cell i. Unmixed counts y; ;and y,;
are then projected back onto the space inferred from training data of
histone modification1and 2, respectively. The links between histone
modification1and 2 are used to transfer labels and create linked UMAPs
between the two histone modifications.

Latent Dirichlet allocation
LDA s a probabilistic matrix decomposition model that is useful when
theinputdataisamatrix of counts. LDA uses hierarchical multinomial
models to estimate the relative frequencies of cuts in each genomic
regioninsingle cells.
To generate the genomic location of the jth read for cell i:
Choose atopic z ;by sampling from the cell-specific distribution
of topics:

U, ~ Dirichlet (a)

zjj ~ Multinomial (D,»,l)

Choose genomic region w;; by sampling from the topic-specific
distribution of genomic regions:

V, ~ Dirichlet (6)

wij ~ Multinomial(f/zid,l)

TheDirichlet distributions are priors to prevent overfitting when there
arefew cutsintheregion. We used the LDA model implemented by the
topicmodels R package, using the Gibbs sampling implementation with
hyperparameters & =1.67, 6 = 0.1, where K is the number of topics.
We estimate p. and g, for each cluster in histone modification 1
{P1, P>, ... bc} and modification 2 {gy, §,, ..., gp} by averaging the estimated
probabilities across cells assigned to each cluster for each gene g:

1 K
Pgc = 77 Z Z |/g,kUk,i
I

where Cis the set of cells that belong to cluster c.

Simulation of single- and double-incubated histone
modificationdata

To simulate multimodal single-cell histone modification data with
varying degrees of overlap, we extended simATAC® to allow generat-
ing cell-type profiles from histone modifications of varying mutually
exclusive relationships.

For each cell type, we first run simATAC to generate sparse count
dataof10,000 lociacross 750 cells partitioned into three technical rep-
licates of 250 cells each. The high-dimensional count data are sparse.
Countsfromeachlocusare generated accordingto aPoisson likelihood
with locus-specific means (1) matching real single-cell ATAC-seq from
K562 cells (GSE99172).

Inour 750 cells, cells1-250 represent single-incubated cells from
mark1; cells 251-500 from mark 2; cells 501-750 from double-incubated
cells. Cells from mark 1 have counts generated from locus-specific
meansA. Cells from mark 2 also have counts generated from A, but we
swap the topx% of bins with highest A with bins with lowest A, allowing
precisely defined sets of mutually exclusive and overlapping bins. We
usex =1%,50% and 99% to benchmark our method from mostly overlap-
ping (thatisx =1%) to mostly mutually exclusive (thatisx =99%) Cells
from mark 3 are generated by adding counts generated from mark 1
and mark 2 to simulate double-incubated cells.

To generate cell-type-specific profiles, we repeat the above witha
cell-type-specific random seed and shuffle the order of the bins. This
generates count datawhereAis cell-type specific, but the distribution
of Aare preserved genome-wide.

Estimating the top cluster-specific bins

We use the LDA matrix factorization to identify the top cluster-specific
binsinthe data. Werank the bin loadings for each cell type and take the
top 150 (whole bone marrow) or 250 (mouse organogenesis) bins with
thelargest loadings.

Inferring pseudotime in differentiation data

To analyze the macrophage differentiation data, we first removed
erythroblasts, plasmacytoid dendritic cells, and innate lymphocyte
cells from the data, which were concentrated at day O and not consid-
ered to be part of the macrophage differentiation trajectory. We then
ran LDA (k=30 topics) and performed principal component analysis
(PCA) on the LDA outputs, which retrieves the principal components
that explain the largest amount of variance after denoising the data.
We used the first principal component for H3K4mel and H3K36me3
to define pseudotime, which we found correlates with the day along
the timecourse.

Unmixing scChIX-seq signal from continuous pseudotime
To apply scChIX-seq on continuous pseudotime, we modify the
log-likelihood (equation (1)) to account for a continuous variable:
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G
L(ty, 1) = log (P(JIB (t1), G (t2), w)) ¥ yglog (wpg (&) + (1 — w) ¢ (£2))
g=1
€)

wheret, €[0, 1]is pseudotime from histone modificationlandt, € [0, 1]
is pseudotime from modification 2.

To estimate pseudotime, we ran LDA to denoise the count matrix,
and thenranPCA to estimate largest principal components explaining
the variance in the data. We took the first principal component as our
pseudotime estimate for both marks, which captured the epigenomic
changes over the 7-day timecourse.

pg (t)is estimated by fitting the signal from histone modifica-
tion1at genomic region g with a lowess curve along pseudotime.
We estimate g, analogously but using signal from histone
modification 2.

To infer the pseudotime of histone modifications 1 and 2 simul-
taneously given a vector of counts from a double-incubated cell, we
estimate ¢,and ¢, that minimizes the log-likelihood L from equation (3).
We estimate the variance-covariance matrix of ¢, and ¢, by the square
root of theinverse of the Hessian matrix, whichwe use to calculate the
standard errors.

Since the ¢, and ¢, are constrained between 0 and 1, we use the
L-BFGS-B optimization algorithm implemented in R. Since estimates
from a single cell can sometimes be noisy due to low counts, we sum
the counts across the 25-nearest neighbors (estimated from the latent
space inferred by LDA) for each double-incubated cell.

Chromatin velocity during macrophage differentiation

We assume that dynamic genomic regions in H3K36me3 can be mod-

eled using a first-order differential equation

dKse (1)
t

- Ks () — VK36 (O - @

We estimate the time constant y for each genomic region by fitting an
exponential relaxation function across pseudotime

Ky () =yo+A(1—e), (5)

where y, is the signal at =0 and A is the predicted H3K36me3 levels
at steady state. Fitting the y directly from the pseudotime allows us to
leverage signal from both single- and deconvolved cells.

To predict future values of H3K36me3 levels for each cell at
each genomic region, we use the Euler method and plug in the
estimated y, H3K4mel levels at time t and time step 4 0of 0.02 pseu-
dotime units:

Kzg (E+1) = K36 () + h (Ky () — VK36 (D)) - (6)

Finally, we project the single- and double-incubated H3K36me3
signal onto the first two principal components and project the
predicted future values onto the PCA. We use the velocity grid flow
visualization as implemented in velocyto®® to visualize the velocity
vectors onthe PCA space.

Comparison with multi-CUT&TAG

Raw fastq files (R1, R2 and R3) from the single-cell experiments
were downloaded from Gene Expression Omnibus accession num-
ber GSE171554. The first 42 bases of the reads in R1 and R2 were
trimmed to remove the barcodes and the bases common to all Tn5
adapter sequences. The 16-base cell barcodes in R3 were added to
the fastq headers of R1and R2. The trimmed and cell-barcoded R1
and R2 reads were then aligned to the mm10 mouse genome using
Burrows-Wheeler aligner (bwa v.0.7.17-r1188). Fragments that start
at same location and have the same cell barcode were considered

duplicates and discarded. Cells with more than 100 fragments with
MAPQ scores in R1 greater than or equal to 40 were kept for com-
parison with scChiX-seq.

Reporting summary
Furtherinformation onresearch designis availablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

The data discussed in this publication have been deposited in NCBI's
Gene Expression Omnibus and are accessible through Gene Expression
Omnibus Series accession number GSE155280 (ref. ).

Code availability

We developed the SingleCellMultiOmics package, in which there are
modules used for processing sortChIC data (https://github.com/
BuysDB/SingleCellMultiOmics)*?, and an R package that implements
scChiX-seq and contains snakemake workflows for processing data
and example notebooks for downstream analyses (https://github.
com/jakeyeung/scChIX)>.
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Extended Data Fig. 1| Benchmarking scChIX-seq across arange of

overlapping patterns. Left column: simulation results in a mutually exclusive
scenario (thatis 1% of loci are overlapping). Middle column: results for an
intermediate amount of overlap (that is 50% of loci are overlapping). Right
column: results for highly correlated scenario (that is 99% of loci are over-

lapping). (a) Distribution of unique fragment cuts per cell in simulation.

(b) Sparsity of the input matrix. Note that in the mutually exclusive scenario,
the double-incubated marks is less sparse than single-incubated marks because
loci with zero reads in one mark often have non-zero reads in another mark.

signal belonging to markl: p = %) for each locus genome-wide. (d) Estimated
1+52

degree of overlap from scChIX-seq. () UMAP representation of the three cell
types underlying simulation. UMAPs from the two marks are linked by
double-incubated cells that are deconvolved by scChIX-seq. (f) Empirical 95%
confidence interval across therangeof p = sli_lsz (from O to1). Range obtained by
aggregating results from the three overlapping patterns. n=101 simulation
datapoints spread evenly between O and 1inclusive. Error bars are empirial 95%

confidenceintervals, centers are the mean.

(c) Distribution of the degree of overlap (defined as fraction of double-incubated
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Extended Data Fig. 2| scChIX-seq accurately deconvolves double-incubated
signalinto their respective histone modifications. (a) Histogram of

unique fragment cuts per cell. (b) Histogram of fraction of unique fragments
starting with a “TA” motif. (c, d) UMAP of latent Dirichlet allocation (LDA)
embedding using k=30 topics for H3K27me3 (c) and H3K9me3 (d). (e, f) UMAP
representation of H3K27me3 (left) and H3K9me3 (right) data colored by
unmixed or single-incubated cells (e) or ground truth cell type labels defined

by FACS (f). (g, h) Genome-wide Pearson correlation between deconvolved
H3K27me3 (g) and H3K9me3 (h) signal versus ground truth sortChiC purified
by FACS. Shared genomic regions were calculated by using 1 kb bins across the
genome. (i) Comparison of fragments per cell obtained from Multi-CUT&TAG
versus scChIX-seq. Multi-CUT&TAG data came from a mixture of embryonic and
trophoblast stem cells in vitro, while scChIX-seq came from sorted bone marrow
cells in vivo.n=1806 cells for Multi-CUT&TAG, n=290 for scChIX-seq.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3| Coverage tracks of deconvolved cells and genome
statistics. (a) Coverage tracks for B cells visualizing the H3K27me3+H3K9me3,
deconvolved H3K27me3 or H3K9me3, and ground truth H3K27me3 or H3K9me3
histone modification levels for three different genomic regions. Double-
incubated signal in grey, H3K27me3 single, and unmixed signal in orange, and
H3K9me3 single and unmixed signal in blue. Under each coverage track are

cut fragments of single cells. Each row of the single cells track are cuts from an
individual cell. Shown are a subset of cells, which were chosen for their high
number of cuts in the region. Rows are in decreasing order of total number of
cuts. (b) H3K27me3 coverage tracks showing the region around Paxs for the
ground truth H3K27me3 pseudobulk signal from single-incubated cells and for
the deconvolved H3K27me3 pseudobulk signal from double-incubated cells
for three cell types: B cells (grey), granulocytes (green), and NK cells (blue).

(c) H3K9me3 (top) and H3K27me3 (bottom) coverage tracks showing the region
around Auts2 for ground truth (single-incubated) and for the unmixed (unmixed)
for B cells (grey), granulocytes (green) and NK cells (blue), respectively.d
Distribution of assignment probability estimates in the genome for the three cell
types. Vertical dotted lines represent cutoffs to define H3K9me3-specific (that
is p < 0.5) or H3K27me3-specific regions (that is p>0.5). e Boxplot distributions
of GC content in H3K27me3-marked and H3K9me3-marked regions. fBoxplot
distributions of distance to TSS in the two classes of regions. Distances are
measured from the center of the 50 kb locus to the nearest TSS. Number of bins
ineach boxplot: n=9962 for B cells p < 0.5, n=15877 for B cells p>0.5, n=12483 for
granulocytes p < 0.5,n=13345 for granulocytes p>0.5,n=7337 for NK cellsp < 0.5,
n=18491 for NK cells p>0.5. Boxplots show 25th percentile, median and 75th
percentile, with the whiskers spanning 97% of the data.

Nature Biotechnology


http://www.nature.com/naturebiotechnology

Article

https://doi.org/10.1038/s41587-022-01560-3

a I H3K4me1 [ H3K27me3 [l H3K4me1 + H3K27me3 b I H3K4me1 I H3K27me3 [ H3K4me1 + H3K27me3
: : : 125- : : :
60- : : : : :
100-
€ 40- 75-
3
Q
o 50-
20
25-
o " . : || o- : el e mai
2 4 6 2 4 6 4 6 0 025 050 075 10 02 05 075 1 0 025 050 075 1
log,(Unique Fragments per Cell) Fraction of Fragments beginning with “TA” motif
C .
. Neutrophils
Baso/Eosino 2
topic23 “.
D
L]
Erythroblasts s topicta ] ‘
B cells ——
& Innate Lymph o ¢
(0]
=
[2]
Eiev pDCs DCs 3 topicd p
] & ’ m [ ]
cg_ “e [0]
g E topic12 4 ':"
5 Pro-B cells <
umap1 ®
I topic1 ‘
€ H3K36me3 + H3K27me3 UMAP
‘g . topic11 4 .*
P % . topic21 o "
5(“:"":%“"’ g % *? ‘
» - oo a8
i< s T e O e s e e
< PR\ RS XF RS
@@@0 @ © ° <<\°Q‘\\ & g \/*&Q \k°<3\\\ &
e & & FOSIN
I 0 \(\Q
Cell type * Erythroblasts @
* Pro-B Innate Lymphs H3K4me1 clusters
« Becells e Neutrophils
* cDCs * pDC
~ « Baso/Eo Low-confidence
3 ’.& predictions
g
umap1

® Single-incubated  ® Unmixed

H3K4me1
Y.
pre
% F

Extended Data Fig. 4 | See next page for caption.

g

® Single-incubated  ® Unmixed

H3K27me3

Nature Biotechnology


http://www.nature.com/naturebiotechnology

Article

https://doi.org/10.1038/s41587-022-01560-3

Extended Data Fig. 4 | Inferring cluster pairs from H3K4mel+H3K27me3
transfers cell type labels. (a) Histogram of unique fragment cuts per cell.

(b) Histogram of fraction of unique fragments starting with a “TA” motif.

(c) UMAP of H3K4mel sortChIC data, cells colored by cell type. (d) Assignment
plot showing individual H3K4mel+H3K27me3 cells (represented as dots)
assigned to a pair of topics (x-axis labels are H3K4mel clusters, named by
their associated cell type, while y-axis are H3K27me3 clusters). Cells along the

diagonal are high-confidence predictions that match a H3K4mel cluster with
aH3K27me3 topics, and are colored by the H3K4mel-derived cell type labels.
(e) UMAP of H3K4mel+H3K27me3 sortChlIC. Cells are colored by their cell type
inferred from cluster pairs. Low-confidence predictions are colored in grey.

(f, g) UMAP representation of H3K4mel (f) and H3K27me3 (g). Cells are
colored by whether the epigenome was generated by single-incubation or by
unmixing by scChIX-seq.
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Extended Data Fig. 5| See next page for caption.
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Extended Data Fig. 5| Histone modification signal of deconvolved cell types
correlates with public H3K4mel ChIP-seq and H3K27me3 sortChIC ground
truth data. (a-d) Pearson correlation between publicly available H3K4mel
ChIP-seq’ data of purified B cells (a), erythroid (b), granulocytes (c), or NK

cells (d) versus H3K4mel profiles of different cell types derived from scChIX-
seq. Single: pseudobulk profiles generated by single incubation, unmixed:
pseudobulk profiles deconvolved by scChIX-seq. (e-g) Pearson correlation
between H3K27me3 sortChIC from FACS-purified B cells (e), granuloytes (f), NK
cells (g) versus H3K27me3 sortChIC derived from pseudobulks of whole bone
marrow without FACS purification. Single: pseudobulk profiles generated by

single incubation, unmixed: pseudobulk profiles deconvolved by scChIX-seq.

(h) Distribution of assignment probability estimates p in the genome for the
three cell types. Vertical dotted lines represent cutoffs for p to define H3K27me3-
specificand H3K4mel-specific regions. p is the expected fraction of reads that
belong to H3K4melin a specific genomic locus. (i) Boxplot distributions of GC
content for the two classes of regions. (j) Boxplot distributions of distance to
TSSin the two classes of regions. Distances are measured from the center of the
5kblocusto the nearest TSS. Boxplots show 25th percentile, median and 75th
percentile, with the whiskers spanning 97% of the data.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Re-clustering on B cells reveals heterogeneity within
B cells. (a) UMAP visualization of H3K4meland H3K27me3 (single signal and
unmixed signal), colored by cell types derived from H3K4mel and transferred
to H3K27me3. Black rectangle indicates the B cell population used to re-cluster
in(b,c,d). (b) UMAP of pro-B and B cells only. (c,d) Projection of H3K4mel signal

of marker genes for pro-B (c) or for differentiated B cells (d). H3K4mel signal
ismeasured in all cells of the H3K4mel UMAP (that is both single- and double-
incubated have H3K4melsignal in the H3K4mel UMAP). Double- (colored) but
notsingle-incubated (grey) cells have H3K4melsignal in the H3K27me3 UMAP.
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Extended Data Fig. 7| H3K4mel and H3K27me3 signal during neutrophil
maturation. (a) UMAP visualization of H3K4mel and H3K27me3, lines

join H3K4meland H3K27me3 UMAPs of double-incubated neutrophils.
Heterogeneity within neutrophils are colored as neutrophil pseudotime.

(b) H3K4mel and H3K27me3 modification levels at the Retnlg (a mature
neutrophil marker gene) locus along neutrophil pseudotime. (c) H3K4mel
and H3K27me3 modification levels at the Hoxa along neutrophil pseudotime.
(d) UMAP of H3K27me3 signal across single cells colored by weights of a topic

containing high H3K27me3 levels at many Hox and developmental gene loci
(Hox topic). (e) Topic weights of the top 150 genes associated with lociin the
Hox topic for H3K27me3. (f) Neutrophil mRNA abundance of genes in the Hox
topic compared to other genes derived from publicly available scRNA-seq data®.
Number of genes per boxplot: n=17986 for All Genes, n=127 for genes in the
Hox topic. Boxplots show 25th percentile, median and 75th percentile, with the
whiskers spanning 97% of the data.
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Extended Data Fig. 9 | H3K9me3-specific regions across cell types.

(a) Heatmap of H3K36me3 signal for the top 250 H3K36me3-specific loci
(rows) across cell types (columns). (b) Heatmap of mRNA abundances for the
genes associated with the H3K36me3-specific lociin (a) across pseudobulks.
Data processed from publicly available scRNA-seq data from Cao et al.**.

(c) Heatmap of H3K9me3 signal for the same top 250 H3K36me3-specific loci
asin (a). The H3K36me3 and H3K9me3 heatmaps are mean-centered and scaled
using acommon mean and standard deviation calculated across both marks.
(d) Heatmap of H3K9me3 signal across pseudobulks at H3K9me3-variable loci.
(e) Relative mRNA abundances* at n=364 genes associated with erythroblast-
repressed loci across nine cell types. (f) mRNA abundance of an erythroblast-
repressed gene, Nell2, across pseudobulks. (g) Genome browser plot of around

the Nell2locus, an erythroblast-specific region for H3K9me3. Top of plot is
pseudobulk H3K9me3 CPM signals, below are cut locations of individual cells
(black marks). Cells are ordered by cell type (color-coded as in heatmaps).

(h, i) Total unique fragments across cell types for single-incubated cells for
H3K36me3 (h) and H3K9me3 (i), showing that the variability of the number of
cuts across cells can span orders of magnitude. Number of single-incubated
H3K36me3 cells for each boxplot: n=154 erythroid, n=36 white blood cells, n=60
endothelial, n=250 neural tube progenitors, n=272 neurons, n=58 Schwann

cell precursors, n=154 epithelial, n=570 mesenchymal progenitors, n=160
cardiomyocytes. For H3K9me3: n=207 erythroid, n=26 white blood cells, n=736
non-blood cell types. Boxplotsin (e), (h), (i) show 25th percentile, medianand
75th percentile, with the whiskers spanning 97% of the data.
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Extended Data Fig.10 | See next page for caption.
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Extended Data Fig. 10 | Distinct dynamics of H3K4mel and H3K36me3 during
macrophage in vitro differentiation. (a) Density plots of total number of

cuts across cells for H3K4mel, H3K36me3, and H3K4mel+H3K36me3 labeled
cells. (b) Density plots of fraction of cuts starting with a TA motif across cells

for H3K4mel, H3K36me3, and H3K4mel+H3K36me3 labeled cells. (c) Genome-
browser plot around gene body of Mertk, a macrophage-specific gene. Tracks

are bigwigs from pseudobulks averaged across the time course. (d) Log2 fold
change estimates along pseudotime on gene bodies in the genome. Colored dots

are considered significant (log2 fold change in H3K36me3 > 3.5, zscore in both
H3K36me3 and H3K4mel >2) and used for chromatin velocity estimates. (e, f)
UMAP of H3K4mel (e) and H3K36me3 (f) of single-incubated and deconvolved
cells showing intermingling of the two types of cells. (g) Examples of H3K4mel
and H3K36me3 for an upregulated (above) and downregulated (below) gene
along pseudotime. (h) Histogram of estimates of the rate constant y for the 209
dynamic genes highlightedin (d).
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

D The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.
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For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
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|X| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  BD FACS™ Sortware 1.2.0.142 was used to collect data from the FACS machine during cell sorting.

Data analysis Python package for processing fastq files into bams: https://github.com/BuysDB/SingleCellMultiOmics
R package associated with deconvolving the signal: https://github.com/jakeyeung/scChiX
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reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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- A description of any restrictions on data availability

Data has been uploaded to Gene Expresion Omnibus (GEO) accession number: GSE155280.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No sample-size calculation was performed. The number of plates we used was based on our estimates of the number of different cell types
we expected to see. For the ground truth experiment, we expected only a few cell types, and therefore used 9 plates (i.e. 3 plates per
antibody condition). For organogenesis where we expected more cell types, we used 33 plates (13 plates for H3K36me3, 10 plates for
H3K9me3, and 10 plates for dual-incubation). For macrophage in vitro differentiation, we used 8 plates per antibody condition.
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Data exclusions  Cells that did not pass quality controls were excluded from the analysis. We removed all cells that had fewer than 50 percent of reads starting
with a TA sequence (removed for low MNase specificity). In bone marrow H3K27me3 and H3K9me3 samples, we further removed cells that
had fewer than 1000 unique cuts. In bone marrow H3K4me1, we removed cells that had fewer than 500 unique cuts. For mouse
organogenesis, we removed cells that had fewer than 1000 unique cuts. For macrophage differentiation, we removed cells that had fewer
than 3000 unique cuts.

Replication We performed experiments across multiple plates and found the results across these technical replicates to be reproducible. When projecting
cells across technical replicates onto a low-dimensional manifold, we did not observe effects coming from differences in technical replicates.

Randomization  We used blocking in the experimental plate design to reduce unexplained variability, within each block the cells were randomly assigned onto
the plates. In the ground truth experiment, we minimized effects across plates by sorting different cell types onto the same plate. The location
of each cell was not randomly assigned to the well on the plate. For macrophage in vitro differentiation, samples were collected over 7 days,
but FACS sorting was done onto plates to pool 7 days of samples evenly onto the plates to reduce batch effect. For organogenesis experiment,
different plates corresponded to different stages of development.

Blinding No blinding was done because the experiments did not involve conditions that would induce a bias from the experimentalist.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
X Antibodies []IBX] chip-seq
Eukaryotic cell lines |:| |Z Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Human research participants

Clinical data
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Dual use research of concern

Antibodies

Antibodies used H3K4mel: rabbit anti-mouse H3K4mel, polyclonal, Ab8895, Lot: GR3206285-1, Abcam
H3K27me3: rabbit anti-mouse H3K27me3, monoclonal, Identifier: 9733S, NEB
H3K9me3: rabbit anti-mouse H3K9me3, polyclonal, Ab8898, Lot: GR3217826-1, Abcam
H3K36me3: rabbit anti-mouse H3K36me3, monoclonal, clone: RM155, Merck
GR1: A647, rat anti-mouse Ly-6G/Ly-6C, monoclonal, clone: RB6-8C5, Lot: 108420, Biolegend
NK1: A488, rat anti-mouse anti NK-1.1, clone: PK136, Lot: 108717, Biolegend
CD19: BC421, rat anti-mouse CD19, clone: 6D5, Lot: 11537, Biolegend
Haematopoietic stem and progenitor enrichment pool: mix of biotinylated antibodies against CD5, CD11b, CD19, CD45R/B220, Ly6G/
C(Gr-1), TER119, 7-4, part of #19856, Stemcell

Validation We validated antibodies by performing sortChIC on K562 cells and confirmed that we reproduced the publicly available ChIP-seq




Validation

signals from the ENCODE project.

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals

Wild animals
Field-collected samples

Ethics oversight

Male 13-week-old C57BL/6 mice were used to extract bone marrow cells. Embryos from E9.5, E10.5, and E11.5 were used to extract
cells for mouse organogenesis study. Mice were kept in 12h:12h light:dark cycles in controlled ambient temperature and humidity,
food and water ad libitum.

No wild animals were used in this study.
No field-collected samples were used in this study.

Experimental procedures were approved by the Dier Experimenten Commissie of the Royal Netherlands Academy of Arts and
Sciences and performed according to the guidelines.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

ChlIP-seq

Data deposition

|Z| Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE155280

May remain private before publication.

GEO Accession number: GSE155280

Files in database submission bam

Genome browser session
(e.g. UCSC)

Methodology

Replicates
Sequencing depth

Antibodies

Peak calling parameters

Data quality

Software

bigwigs
processed count tables

Bigwig files can be downloaded and directly viewed using IGV viewer

Validation experiments using ground truth cell types were performed across three technical plates. Experiments from whole bone
marrow were performed across two technical plates.

In validation experiments, we sequenced to a mean depth of 48343 unique cut fragments per cell. In experiments from whole bone
marrow, we sequenced to a mean depth of 9041 unique cut fragments per cell.

H3K4me1l: rabbit anti-mouse H3K4mel, polyclonal, Ab8895, Lot: GR3206285-1, Abcam
H3K27me3: rabbit anti-mouse H3K27me3, monoclonal, Identifier: 9733S, NEB
H3K9me3: rabbit anti-mouse H3K9me3, polyclonal, Ab8898, Lot: GR3217826-1, Abcam
H3K36me3: rabbit anti-mouse H3K36me3, monoclonal, clone: RM155, Merck

No peak calling was performed in this study.

We removed all cells that had fewer than 50 percent of reads starting with a TA sequence (removed for low MNase specificity).

For ground truth bone marrow study: H3K27me3 and H3K9me3 samples, we further removed cells that had fewer than 1000 unique
cuts.

For whole bone marrow study: H3K27me3 and H3K4me1 used cut off of 1000 and 500 unique cuts, respectively.

For mouse organogenesis, we removed cells that had fewer than 1000 unique cuts.

For macrophage differentiation, we removed cells that had fewer than 3000 unique cuts.

Python package for processing fastq files into bams: https://github.com/BuysDB/SingleCellMultiOmics
R package associated with deconvolving the signal: https://github.com/jakeyeung/scChIX
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Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation

Instrument
Software

Cell population abundance

Gating strategy

Ethanol fixed cells were thawed on ice. Cells were spun at 400 g for 5 minutes and washed once with 400 microlitre Wash
Buffer 1 (47.5 mI H20 RNAse free, 1 ml 1 M HEPES pH 7.5 (Invitrogen), 1.5 ml 5M NaCl, 3:6 ul pure spermidine

solution (Sigma Aldrich), 0:05% saponin). Cells were spun again at 400 g and resuspended in 400 microlitre Wash Buffer 1.
Cell suspension was split into 3 samples each having a volume of 400 microlitre and incubated with one or two antibodies
(1:100 dilution for H3K27me3, H3K9me3 and H3K27me3+H3K9me3) overnight on a roller at 4 degrees Celsius. The next day
cells were spun at 400 g, washed once with 400 microlitre Wash Buffer 2 and resuspended in 500 microlitre Wash Buffer 2
containing pA-MNase (3 ng/mL) and incubated for 1 hour on a rotator at 4 degrees Celsius.

Next, cells were spun at 400 g and resuspended in 400 microliter Wash Buffer 2 (with addition of 5% blocking rat serum).
Surface antibodies were added according to these concentrations and were incubated for 30 minutes on ice:

GR1 & A647, anti-mouse Ly-6G/Ly-6C (Gr-1) Antibody, clone: RB6-8C5 & 1:8000
NK1 & A488, anti-mouse NK-1.1 Antibody, clone: PK136 & 1:400
CD19 & BV421, anti-mouse CD19 Antibody, clone: 6D5 & 1:200

Finally, samples were washed once with 500 microlitre Wash Buffer 2 before passing them through a 70 micron cell strainer
(Corning, 431751) and sorting on a BD Influx FACS machine, with surface antibody specific gating, into 384 well plates
containing 50 nanoliter Wash buffer 3 (Wash buffer containing 0.05 % Tween) and 5 microlitre sterile filtered mineral oil
(Sigma Aldrich) per well. Small volumes were distributed using a Nanodrop Il system (Innovadyme).

BD Influx System

BD FACS™ Sortware 1.2.0.142

Purity of the sorted cell populations was assessed by performing scChIX and doing dimensionality reduction of chromatin
levels across the genome in single cells.

We used a forward scatter gate to remove debris (low FSC) and trigger pulse width to remove doublets (high trigger pulse
width). We selected GR1+ cells as granulocytes, NK1.1+, GR1- cells as NK cells, and NK1.1-, GR1-, CD19+ cells are B cells.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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