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scChIX-seq infers dynamic relationships 
between histone modifications in single cells

Jake Yeung    1,2,3  , Maria Florescu    1,3, Peter Zeller1,3, 
Buys Anton de Barbanson    1, Max D. Wellenstein1 & 
Alexander van Oudenaarden    1 

Regulation of chromatin states involves the dynamic interplay between 
different histone modifications to control gene expression. Recent advances 
have enabled mapping of histone marks in single cells, but most methods 
are constrained to profile only one histone mark per cell. Here, we present 
an integrated experimental and computational framework, scChIX-seq 
(single-cell chromatin immunocleavage and unmixing sequencing), to map 
several histone marks in single cells. scChIX-seq multiplexes two histone 
marks together in single cells, then computationally deconvolves the signal 
using training data from respective histone mark profiles. This framework 
learns the cell-type-specific correlation structure between histone marks, 
and therefore does not require a priori assumptions of their genomic 
distributions. Using scChIX-seq, we demonstrate multimodal analysis of 
histone marks in single cells across a range of mark combinations. Modeling 
dynamics of in vitro macrophage differentiation enables integrated analysis 
of chromatin velocity. Overall, scChIX-seq unlocks systematic interrogation 
of the interplay between histone modifications in single cells.

Gene expression in animals relies on epigenetic marks such as histone 
modifications to regulate the accessibility and function of the genome 
in different cell types1. Large-scale efforts characterizing different 
histone modifications in a variety of cell populations commonly use 
chromatin immunoprecipitation followed by sequencing (ChIP–seq)2–8. 
Alternative strategies to ChIP–seq based on enzyme tethering (chro-
matin immunocleavage, ChIC) have reduced the background signal 
in profiling the epigenome9, and have enabled single-cell profiling of 
histone modifications8,10–19. Tethering strategies involve incubating 
cells with an antibody against a histone modification of interest, which 
then tethers either protein A-MNase10,12,18,19 or protein A-Tn511,13–17 fusion 
protein to generate targeted DNA fragments in single cells. However, 
most experimental techniques to map single-cell histone modifications 
are limited to only one histone modification per single cell.

We present an integrated experimental and computational frame-
work for multiplexing histone modifications in single cells. To profile 
two histone modifications in single cells (Fig. 1a), we first generate 

three genome-wide sortChIC18 datasets: two datasets by incubating 
cells with one of the two histone modification antibodies separately 
(single-incubated; Fig. 1b), and the third by incubating cells with 
both histone modification antibodies together (double-incubated;  
Fig. 1b). We then use our two single-incubated datasets as training data 
to generate the possible pairs of genome-wide histone modification 
profiles that, when added together, fit to a single-cell profile from the 
double-incubated dataset (Fig. 1c). For each double-incubated cell, we 
then deconvolve the multiplexed data by probabilistically assigning 
each fragment back to their respective histone modification.

scChIX-seq links single-cell maps of different histone modifica-
tions, revealing relationships between histone modifications in single 
cells. In these linked maps, information derived from one chromatin 
state, such as cell types, histone mark levels and pseudotimes, can 
transfer to another chromatin state (Fig. 1d), unlocking joint analy-
sis of several histone modifications in single cells. We first validated 
scChIX-seq using simulation, purified blood cell types and whole bone 
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used the single-incubated sortChIC data to train a statistical model 
of how cells from the same cell type combine their H3K27me3 and 
H3K9me3 profiles to generate double-incubated cut fragments. This 
model was then used to deconvolve the single-cell multiplexed signal 
into their respective histone modifications (Methods).

To learn an interpretable latent space for H3K27me3 and H3K9me3, 
we applied latent Dirichlet allocation (LDA)22,23 to the single-incubated 
H3K27me3 and H3K9me3 datasets, which factorizes count matrices 
based on a multinomial model (Methods). (Extended Data Fig. 2c,d). 
LDA learns cell-type-specific vectors of probabilities. These parameters 
model the probability that a cut fragment would fall into a specific 
genomic region. These probabilities can therefore be interpreted as 
genome-wide histone modification distributions that depend on cell 
type, and each cell generates a high-dimensional sparse count vector 
with n total fragments by drawing n independent trials from these 
multinomial distributions.

Demultiplexing the double-incubated data involves two steps. 
First, we used the training data to infer which genome-wide H3K27me3 
distribution was added to which H3K9me3 distribution to generate 
a linear combination of two distributions (H3K27me3+H3K9me3).  
Second, we probabilistically assigned each double-incubated cut frag-
ment to either H3K27me3 or H3K9me3, given that we know the underly-
ing linear combination of the two profiles.

The deconvolved H3K27me3+H3K9me3 data generated two sets of 
cuts for each cell: one set coming from H3K27me3 and the other from 
H3K9me3. We projected the two sets of cuts onto the H3K27me3 or 
H3K9me3 latent space (learned from LDA), respectively (Fig. 2a). Since 
each deconvolved cell has a set of cuts in H3K27me3 and H3K9me3 
simultaneously, we can link the UMAPs together, creating a joint chro-
matin regulation space (Fig. 2a).

The double- and single-incubated cells in the H3K27me3 and 
H3K9me3 UMAPs intermingle, suggesting that the model accu-
rately assigns cut fragments to their respective histone modification 
(Extended Data Fig. 2e,f). Comparing the H3K27me3 deconvolved 
pseudobulk signal with our ground truth single-incubated pseu-
dobulk shows high correlation for the expected cell type, and lower 
for the other two cell types (Extended Data Fig. 2g). The H3K9me3 
deconvolved pseudobulk signal also shows highest correlation with 
the expected cell type, with lower correlation from other cell types 
(Extended Data Fig. 2h). Finally, we compared the fragments per cell 
obtained from scChIX-seq versus multi-CUT&TAG24, and found that 
scChIX-seq achieves higher sensitivity than multi-CUT&TAG (Extended 
Data Fig. 2i). Overall, our ground truth dataset demonstrates that 
scChIX-seq is accurate and sensitive in assigning cut fragments to their 
respective histone modification.

To quantify the accuracy of scChIX-seq in selecting the correct 
H3K27me3-H3K9me3 cluster pair to mix together, we color each cell 
by its ground truth label and plot its inferred H3K27me3-H3K9me3 
pair on a two-dimensional (2D) grid (Fig. 2b, left). The false discovery 
rates (FDRs) of scChIX-seq predicting B cells, granulocytes or NK cells 
are 10%, 3% and 1%, respectively (Fig. 2b, right). Similarly, scChIX-seq 
has high specificity and sensitivity in inferring the correct cluster pairs 
(Fig. 2b, right).

Next, scChIX-seq assigns each double-incubated cut fragment to 
either H3K27me3 or H3K9me3 (Fig. 2c; Methods). The deconvolved B 
cell repressive landscapes correspond with their respective ground 
truth, exemplified in the Bcl2 (Fig. 2d) and Crim1 (Extended Data  
Fig. 3a) locus. We also find cell-type-specific signal in H3K27me3 
(Extended Data Fig. 3b) and H3K9me3 signal (Extended Data Fig. 3c).

Our model infers p, the expected fraction of double-incubated 
fragments at a locus that belongs to H3K27me3. That is, p = 0 if all frag-
ments belong to H3K9me3 and p = 1 if they all belong to H3K27me3. 
Plotting these probabilities across all loci reveals a bimodal distribu-
tion with peaks near 0 and 1 (Extended Data Fig. 3d). Classifying these 
loci as H3K9me3-specific (P < 0.5) or H3K27me3-specific (P ≥ 0.5), 

marrow. We then applied scChIX-seq to two complex biological sys-
tems, one in mouse organogenesis to uncover orthogonal dynamics 
in H3K36me3 and H3K9me3, and the other in macrophage in vitro 
differentiation to reveal coordinated dynamics between H3K4me1 
and H3K36me3.

Results
Benchmarking across histone modification relationships
To test whether scChIX-seq is accurate for histone modification pat-
terns that are mutually exclusive as well as highly overlapping, we apply 
scChIX-seq to simulated single-cell data with known amounts of over-
lap to benchmark our method across different overlapping patterns 
between histone modifications. We simulate single-cell histone mod-
ification data by modifying simATAC20 to generate sparse count data 
from different overlapping patterns from the same cell (Fig. 1e and 
Extended Data Fig. 1a,b; Methods). Our simulations span three sce-
narios to cover varying degrees of overlapping patterns (Extended 
Data Fig. 1c). (1) Mutually exclusive scenario with only 1% of loci over-
lapping. (2) Intermediate scenario with 50% of loci overlapping.  
(3) Correlated scenario with 99% of loci overlapping. In these simula-
tions, we provide a ground truth parameter p for each genomic locus 
and then estimate this parameter using our statistical framework to 
assess the uncertainty in our inferences. Here, p is the expected fraction 
of double-incubated reads in a locus that belongs to a reference histone 
modification (that is, p = 0.5 if locus is exactly overlapping, p = 1 or 0 if 
locus is exactly mutually exclusive). Applying scChIX-seq to each sce-
nario, we find that the distribution of our estimates ̂p across all loci are 
comparable with the ground truth distribution of p (Extended Data 
Fig. 1c,d). Furthermore, scChIX-seq accurately recovers the different 
cell types underlying the simulated data, and links the two histone 
modification landscapes into a joint uniform manifold approximation 
and projection (UMAP) (Extended Data Fig. 1e). Summarizing the three 
scenarios, scChIX-seq can estimate p accurately for all degrees of over-
lap, with confidence intervals (CI) better than ̂p ± 0.05 (Fig. 1e (right) 
and Extended Data Fig. 1f). Our simulation study confirms that 
scChIX-seq is accurate in inferring several histone modifications in 
single cells in both mutually exclusive as well as overlapping histone 
modification patterns.

Validating with ground truth data from purified cell types
To validate our method experimentally, we generate a ground 
truth sortChIC dataset by purifying three known cell types from 
mouse bone marrow: B cells, granulocytes and natural killer (NK) 
cells, using fluorescence-activated cell sorting (FACS) and applying 
scChIX-seq (Methods). Of note, the sortChIC method is designed 
to integrate FACS with histone modification mapping18, so we can 
enrich for a cell type and map histone modifications in one workflow. 
We split bone marrow cells into three technical batches: one batch 
incubated with anti-H3K27me3 antibody alone (single-incubated), 
one with anti-H3K9me3 alone (single-incubated) and the third 
with both anti-H3K27me3 and anti-H3K9me3 antibodies together 
(double-incubated, H3K27me3+H3K9me3). We then sorted cells into 
384-well plates, each plate containing all three cell types, and generate 
targeted cut fragments (Extended Data Fig. 2a,b). We chose H3K27me3 
and H3K9me3 because they have been shown to have a mutually exclu-
sive relationship21, allowing us to verify whether we can infer the cor-
rect cell type as well as the generally mutually exclusive relationship.  
Of note, although H3K27me3 and H3K9me3 are known to be nonover-
lapping, it is unclear how this relationship precisely changes to make 
cell-type-specific patterns at different loci, and therefore modeling the 
two relationships is still needed to accurately infer the two chromatin 
profiles in individual cells.

From the double-incubated data alone, we would not know which 
cut fragments correspond to H3K27me3 and which to H3K9me3, but 
would observe only a superposition of the two profiles. We therefore 
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Fig. 1 | Overview of the scChIX-seq method. a, Chromatin regulation of different 
cell types (different colored cells) is regulated in part through several histone 
modifications (two histone modifications shown as an example). b, scChIX-seq 
uses three sortChIC antibody incubation conditions: two conditions each target 
a single histone modification (single-incubated) only and the third condition 
targets both histone modifications simultaneously (double-incubated).  
c, Schematic of scChIX-seq for deconvolving multiplexed histone modifications. 
The two single-incubated sortChIC datasets (one targeting an orange histone 
modification, the other a blue modification, each modification reveals three 
clusters) are training data to define the possible pairs of histone modification 
distributions that can be combined to generate a hypothetical double-incubated 
cell. For each observed double-incubated cell, we then assign the cell to the most 
probable pair of cell states, one from each histone modification. We then 
probabilistically assign each pA-MNase cut into their respective histone 
modification. Cartoons represent genome-wide distribution of histone 

modification signals in different modifications and cell types; x axes represent 
genomic distance, and vertical ticks are arbitrary distance markers. d, Label 
transfer allows joint analysis of two single-incubated sortChIC datasets targeting 
functionally distinct histone modifications. Information derived from one 
histone modification, such as cell types, histone mark levels and pseudotime, can 
be transferred to another histone modification using the double-incubated cells 
as a link. e, Simulation study shows that scChIX-seq can unbiasedly assign reads 
to each mark regardless of the amount of overlap there is between the two marks 
across the genome. x axis of cartoon genome-wide distributions (middle-left) is 
genomic distance. Right: ground truth probabilities versus inferred probabilities 
from scChIX. p is the expected fraction of double-incubated reads in a genomic 
locus that belongs to mark 1. ̂p is the estimate of the probability; n = 101 
simulation datapoints spread evenly between 0 and 1 inclusive. Error bars are  
95% CI, centers are the mean.

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Article https://doi.org/10.1038/s41587-022-01560-3

a

d

H3K27me3 + H3K9me3

H3K27me3

H3K9me3

Ground truth labels

b

K27me3 predicted celltypes

K9
m

e3
 p

re
di

ct
ed

 c
el

lty
pe

s

c

NK cells

1-
FD

R

0

1.0

Sp
ec

ifi
ci

ty

Se
ns

iti
vi

ty

B cells

0.75

0.25

B cells

Granulocytes

NK cells

Gran
u

NK cells

B cells
Gran

u

NK cells

B cells
Gran

u

NK cells

Granu

B cells

NK cells

Gran
u

B cells

UMAP1

U
M

AP
2

UMAP1

U
M

AP
2

UMAP1

U
M

AP
2

104,000 kb 105,000 kb 107,000 kb 108,000 kb
5.2 Mb

K27me3 + K9me3

10

550
Unmixed
K27me3

10

120

Unmixed
K9me3

10

120

Single cell A

Single cell B

Single cell C

Single cell D

B cells

H3K27me3 + H3K9me3

Ground truth H3K27me3
Unmixed H3K27me3

Ground truth H3k9me3
Unmixed H3K9me3

Refseq genes

M
ix

ed

Single cell A
Single cell B
Single cell C
Single cell D

U
nm

ix
ed Single cell A

Single cell B
Single cell C
Single cell D

U
nm

ix
ed Single cell A

Single cell B
Single cell C
Single cell D

Chr1

e Chr1
102 Mb 112 MbSe

rp
in

b5

10 Mb C
dh

7
C

dh
19

C
nt

na
p5

b

Bc
l2

B 
ce

lls
G

ra
nu

lo
cy

te
s

N
K 

ce
lls

Genomic regions

Chr17
77 Mb 79 MbPr

kd
3

Ei
f2

ak
2

C
rim

1

Genomic regions

2 Mb

f

B 
ce

lls
G

ra
nu

lo
cy

te
s

N
K 

ce
lls10

Probability

K27me3K9me3

Cdh20 Rnf152 Pign Zcchc2 Phlpp1 Bcl2 Serpinb5 Serpinb3c D830032E09Rik

Fig. 2 | scChIX-seq accurately deconvolves multiplexed histone modifications 
in single cells. a, UMAP representation of the H3K27me3 (n = 367) and H3K9me3 
(n = 376) histone modification space derived from the two single-incubated 
datasets (right two panels), and the H3K27me3+H3K9me3 space (left panel, 
n = 290) derived from the double-incubated data. Cells are colored by their 
ground truth cell-type labels. The cells in the H3K27me3- and H3K9me3-only 
space have unmixed double-incubated cells whose deconvolved signal has 
been projected onto their respective UMAPs. Lines connecting across datasets 
connect where each double-incubated cell is located in each of the three histone 
modification space. b, Matrix summarizing the cluster pair that scChIX-seq 
selected for each double-incubated cell. Cells along the diagonal are predicted 
to be B cells, granulocytes and NK cells, respectively. Cells in the off-diagonal 
are false negatives. Barplots summarizing FDR, sensitivity and specificity of 
assigning each cell type (right). c, Zoom-in coverage plot and single-cell cut 
fragments in B cells of mixed (H3K27me3+H3K9me3, gray bars), unmixed 

(H3K27me3 and H3K9me3, orange and blue bars). Positions of cut fragments are 
shown for four single cells (single cells A, B, C and D) for H3K27me3+H3K9me3 
signal (gray ticks) as well as their unmixed outputs (orange and blue ticks). 
Circled reads and arrow highlight examples of cut fragments being assigned 
to either H3K27me3 (orange) or H3K9me3 (blue). d, Zoom-out of the Serpinb5 
locus. Cut fragments from H3K27me3+H3K9me3 are colored based on whether 
they have been assigned to H3K27me3 (orange) or H3K9me3 (blue). Ground truth 
coverage are single-incubated sortChIC data targeting H3K27me3 (orange) and 
H3K9me3 (blue). e, Heatmap of probabilities p of assigning reads to H3K27me3 
(p = 1, red) or H3K9me3 (p = 0, blue) around the Bcl2 locus. Rows are single cells 
(ordered by predicted cell type), columns are genomic regions (50 kb bins). 
Transitions between H3K9me3- and H3K27me3-marked chromatin states are 
independent of cell type. f, Same as e but at the Crim1 locus, where transitions 
from H3K9me3 to H3K27me3 (blue to red) are cell-type specific.
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we compare the GC content and distance to transcription start site 
(TSS) of the two classes of loci (Extended Data Fig. 3e,f). We find 
H3K9me3-specific regions to have lower GC content and increased 
distance from TSSs compared with H3K27me3-specific regions. Of 
note, we observe this difference across all three cell types, suggesting 
that GC-poor and gene-poor regions of the genome is a general feature 
of H3K9me3-specific regions21.

Summarizing these probabilities in single cells along the genome 
as a heatmap, the Bcl2 locus reveals the mutual exclusive relationship 
between H3K27me3 and H3K9me3, where the chromatin state is pre-
dominantly H3K9me3, then switches to H3K27me3, and then switches 
back to H3K9me3 (Fig. 2e). For Bcl2, these transitions occur at the same 
location independent of the cell type. However, we also find that these 
transitions can be cell-type specific, as exemplified by the Crim1 locus 
(Fig. 2f), where the H3K27me3 region extends further upstream of 
Crim1 in NK cells compared with B cells and granulocytes. Our ground 
truth experiment demonstrates that scChIX-seq can accurately map 
two histone modifications in single cells, and the inferred probabili-
ties can be biologically interpreted as relationships between the two 
histone modifications in single cells.

scChIX-seq reveals H3K4me1/H3K27me3 relationships in bone 
marrow
We next apply scChIX-seq to integrate active (H3K4me1) and repressive 
(H3K27me3) chromatin states in a complex mixture of cells by sampling 
mouse bone marrow (Extended Data Fig. 4a,b). We use scChIX-seq to 
transfer labels and link UMAPs between active and repressive histone 
modifications (Fig. 3a,b) to perform a joint analysis of the two marks.

To define cell types from the H3K4me1 sortChIC data, we ranked 
the top 150 genes associated with different clusters from sortChIC 
and used a publicly available scRNA-seq dataset to compare mRNA 
abundances of cluster-specific genes across different blood cell types25 
(Extended Data Fig. 4c). scChIX-seq takes each H3K4me1+H3K27me3 
cell and infers the most probable cluster pair (one from H3K4me1, 
the other from H3K27me3), which systematically transfers cell-type 
labels defined from H3K4me1 onto the H3K27me3 data (Extended Data 
Fig. 4d). We find that a small minority of double-incubated cells have 
low-confidence cluster pair predictions. Plotting the cluster pairs onto 
the H3K4me1+H3K27me3 UMAP confirms that the single-cell assign-
ment produces precise clusters where neighboring cells are probably 
assigned to the same pair. Low-confidence predictions arise from cells 
that border between clusters (Extended Data Fig. 4e), which we remove 
from further analysis. Overall, scChIX-seq allows systematic transfer of 
cell-type labels from one histone modification to another.

We next deconvolve the double-incubated cells into their respec-
tive histone modification. The UMAPs from H3K4me1 and H3K27me3 
show that single-incubated and deconvolved single cells intermin-
gle, suggesting that deconvolution does not produce batch effects 
(Extended Data Fig. 4f,g). The deconvolved single cells provide anchors 
to systematically link one histone modification with another (Fig. 3c). 
To validate the predicted cell types in both the single and deconvolved 
datasets, we compared with data from cell types purified by FACS. For 
H3K4me1 clusters, we compared with publicly available ChIP–seq5. 
Pearson correlation between ChIP–seq of B cells, erythroids, granulo-
cytes and NK cells versus sortChIC from single- and double-incubated 
cells is highest for the predicted cell type (Extended Data Fig. 5a–d). 
Although single-incubated cells have higher correlation with ChIP–seq 
reference data than deconvolved cells for the matched cell type, the 
deconvolved cells of the matched cell type consistently had higher 
correlation with ChIP–seq than unmatched cell types. For H3K27me3 
clusters, we used our ground truth sortChIC data purified from 
FACS. Pearson correlation of sortChIC signal between FACS-sorted 
B cells, granulocytes and NK cells versus pseudobulks derived from 
whole bone marrow is highest for the predicted cell type (Extended  
Data Fig. 5e–g).

Classifying these loci as H3K27me3-specific or H3K4me1-specific 
using a cluster-specific cutoff for p (Extended Data Fig. 5h), we again 
compare the GC content and distance to TSS of the two classes of 
loci. We find that H3K4me1-marked regions tend to be closer to TSSs 
compared with H3K27me3 (Extended Data Fig. 5i), and that GC content 
is higher in H3K27me3-specific compared with H3K4me1-specific 
regions (Extended Data Fig. 5j). The increase in GC content for 
H3K27me3-marked regions is consistent with previous studies show-
ing that GC-rich elements in transcriptionally inactive regions can 
recruit PRC2 (ref. 26).

We use the joint landscape to reveal active and repressive histone 
modification dynamics within cell types. To find differences in chro-
matin regulation between pro-B cells versus B cells, we select only 
pro-B or B cells and recluster the cells in both H3K4me1 and H3K27me3 
separately (Extended Data Fig. 6a,b). With multimodal data, we can 
transfer cell-type-specific H3K4me1 signal onto the H3K27me3 UMAP 
to distinguish pro-B and B cells with more confidence. Using pro-B 
cell-specific genes, Pax5 (ref. 27) and Pten28, we project the H3K4me1 sig-
nal at loci overlapping these genes onto both H3K4me1 and H3K27me3 
landscapes, confirming a subset of pro-B cells within the B cell popula-
tion (Extended Data Fig. 6c). Similarly, we use marker genes associated 
with more differentiated B cells, such as Irf4 (ref. 27), Igkv3-2 locus29 
and Cd72 (ref. 30) to confirm a more differentiated B cell population 
(Extended Data Fig. 6d). Plotting the heatmap of H3K4me1-H3K27me3 
assignment probabilities at the IgK locus reveals that the chroma-
tin state is repressed in pro-B cells but becomes activated in B cells  
(Fig. 3d), consistent with the progressive activation of the chromatin 
state during B cell development29.

Next, we recluster neutrophils to analyze differences in chromatin 
regulation along pseudotime (Extended Data Fig. 7a). Reclustering 
neutrophils in H3K27me3 reveals a shared pseudotime trajectory 
that varies smoothly between neutrophils in both the H3K27me3 and 
H3K4me1 landscapes. H3K4me1 levels at the Retnlg locus—a marker 
gene for mature neutrophils31—increases along pseudotime, while 
H3K27me3 levels decreases (Extended Data Fig. 7b). The H3K27me3 
gene loadings associated with pseudotime consists of a module of 
Hox and other developmental genes (Extended Data Fig. 7c–e). Of 
note, these genes have low levels of mRNA abundances in neutrophils 
(Extended Data Fig. 7f), suggesting that this module is transcriptionally 
silent. At a locus overlapping the Hoxa locus, we find that H3K27me3 
was highly marked while H3K4me1 was lowly marked across all neutro-
phils. Along pseudotime, H3K27me3 increases further, while H3K4me1 
decreases further (Extended Data Fig. 7c). Our pseudotime analysis 
suggests that dynamics in histone modifications can occur even in 
regions associated with low-expressed genes.

H3K36me3/H3K9me3 relationships during mouse 
organogenesis
To demonstrate the method in more complex biological scenarios, we 
applied scChIX-seq during mouse organogenesis (E9.5 to E11.5) to study 
H3K36me3 and H3K9me3 dynamics at single-cell resolution (Fig. 4a 
and Extended Data Fig. 8a,b). We took the top 250 cluster-specific bins 
from the H3K36me3 data to identify cell types (Methods). These loci 
associate with gene bodies of cell-type-specific genes. For example, we 
find H3K36me3 signal around genes enriched in specific cell types, such 
as erythroids (Sptb)32, white blood cells (Lcp2 (ref. 33), endothelial cells 
(Emcn)34, neural tube (Rfx4)35, neurons (Elavl4)36, Schwann precursors 
(Cdh6)37, epithelial cells (Grhl2)38, mesenchymal progenitors (Prx1)39 
and cardiomyocytes (Gata6, Tpm1)40,41 (Extended Data Fig. 8c–l).

To uncover whether distinct H3K36me3 cell types could share 
common H3K9me3 landscapes, we deconvolved the H3K36me3 + 
H3K9me3 cells and projected each cell to both landscapes (Fig. 4b). 
scChIX-seq reveals that erythroid and white blood cells have both dis-
tinct active chromatin and heterochromatin, but the other nonblood 
cell types show similar heterochromatin distribution. Assigning each 
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double-incubated cell to a H3K36me3 and H3K9me3 cluster confirms 
that cells with distinct H3K36me3 can share the same H3K9me3 cluster 
(Fig. 4c). Of note, the variable genes that show cell-type-specific dif-
ferences in both active chromatin and publicly available mRNA abun-
dances42 (Extended Data Fig. 9a,b) have low signal across cell types in 
H3K9me3 (Extended Data Fig. 9c), suggesting that using conventional 
marker genes from RNA-seq would not reveal cell-type differences  
in H3K9me3.

Differential expression across the three H3K9me3 clusters 
reveals cluster-specific repressed loci (Extended Data Fig. 9d), with 

the largest effect coming from erythroid-specific regions. These 
erythroid-repressed regions are associated with decreased mRNA abun-
dances (Extended Data Fig. 9e–g). Subsetting the data and running LDA 
on only nonblood cells in H3K9me3, we find that H3K9me3 varies over 
organogenesis stages (Fig. 4d), suggesting that heterochromatin differ-
ences are stronger across organogenesis stages than between cell types.

Because the double-incubated cells have cut fragments associated 
with both histone modifications, we hypothesized that the decon-
volved data could precisely quantify the ratio between the two histone 
modifications, and how this ratio changes across cell types. Counting 

Pro-B cells
B cells
DC
Baso/eosino
Erythroblasts
Innate lymphocytes 
Neutrophils
pDC

H3K27me3: single + unmixed cellsH3K4me1: single + unmixed cells

a b

c

d

H3K27me3: single-incubated cellsH3K4me1: single-incubated cells

10
Probability

Chr6
69.7 Mb 71.1 MbIg

kv
6

Ig
kv

3

Ig
kv

5
Ig

kv
4

Ig
kv

8
Ig

kv
18

Ig
kv

12

C
d8

a

2 Mb

Transfer labels,
link UMAPs using
H3K4me1 + H3K27me3

UMAP1

U
M

AP
2

UMAP1

U
M

AP
2

Pr
o-

B 
ce

lls
B 

ce
lls

K4me1K27me3

Genomic regions

UMAP1

U
M

AP
2

UMAP1

U
M

AP
2

Fig. 3 | scChIX-seq enables joint analysis of distinct histone modifications 
in single cells. a, UMAP of sortChIC signal of H3K4me1 in bone marrow (n = 639 
cells). Clusters are colored by cell type. Latent space calculated using LDA with 
50 kb bins. b, UMAP of sortChIC signal of H3K27me3 in whole bone marrow 
(n = 517 cells). Cell types in H3K27me3 are inferred by transferring labels from 
H3K4me1. c, H3K4me1 and H3K27me3 UMAPs linked together by deconvolved 
double-incubated cells (n = 1,711 cells). H3K4me1 and H3K27me3 portions of the 
double-incubated cells are projected onto their respective UMAPs. Lines connect 

where the active signal and the corresponding repressive signal are located for 
each double-incubated cell. DC, dendritic cells; pDC, plasmacytoid dendritic 
cells. d, Heatmap showing probability of assigning a read in a region to either 
H3K27me3 or H3K4me1 at 5 kb resolution. Heatmap shows the Igk locus for  
pro-B versus B cells. Rows are single cells, columns are 5 kb genomic regions.  
Blue represents regions where cut fragments are probably coming from 
H3K27me3, while red represents regions where cut fragments are probably 
coming from H3K4me1.

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Article https://doi.org/10.1038/s41587-022-01560-3

a

b
Erythroid

White blood cells

Endothelial

Neural tube progenitors

Neurons

Schwann cell progenitors

Epithelial

Mesenchymal progenitors

Cardiomycotyes

H3K36me3 H3K9me3

e

UMAP1

U
M

AP
2

d

log2(K36/K9)

lo
g 2(

K3
6/

K9
)

f

H3K9me3 pseudotime

E9.5 E10.5 E11.5

E9.5 E10.5 E11.5

pa-MNase Histone modificationAntibodies

H3K36me3 H3K9me3

Erythroid

WBCs

Nonblood

Eryt
hro

id

White
 blood cells

Endothelia
l

Neural
 tu

be pro
genito

rs

Neuro
ns

Schwan
n cell p

recurso
r

Epith
elia

l

Mese
nchym

al 
pro

genito
rs

Card
iomyo

cyte
s

c

H3K36me3
H3K9me3
H3K36me3 + H3K9me3

UMAP1

U
M

AP
2

UMAP1

U
M

AP
2

UMAP1U
M

AP
2

UMAP1U
M

AP
2

H3K36me3 clusters

Stage

H
3K

9m
e3

 c
lu

st
er

s

Eryt
hro

id

White
 blood cells

Endothelia
l

Neural
 tu

be pro
gs

Neuro
ns

Schwan
n cell p

re.

Epith
elia

l

Mese
nchym

al 
pro

gs

Card
iomyo

cyte
s

−6

−4

−2

0

−6 −4 −2 0

Fig. 4 | Applying scChIX-seq to mouse organogenesis reveals shared 
heterchromatin landscapes and cell-type-specific differences in 
H3K36me3:H3K9me3 ratios. a, Schematic of mouse organogenesis experiment 
to study H3K36me3 and H3K9me3 in single cells. b, Joint UMAP of mouse 
organogenesis after deconvolution from scChIX-seq (n = 2,911 H3K36me3 cells, 
n = 2,166 H3K9me3 cells). c, Assignment of several H3K36me3 cell types to one 
H3K9me3 cluster. The H3K36me3 (columns) and H3K9me3 (rows) label for each 
double-incubated cells (n = 1,197 cells) are plotted onto a matrix to H3K36me3 
cell types to H3K9me3 clusters. Cells are colored by their cell-type label as in  
b. d, Subclustering of nonblood cells for H3K9me3, represented as a UMAP. 

Arrow denotes a pseudotime axis. Pseudotime defined as the first PC of the 2D 
UMAP. e, Joint UMAP of deconvolved double-incubated cells (n = 1,197 cells), 
colored by the log ratio of number of H3K36me3 cuts versus number of H3K9me3 
cuts. f, Boxplot of H3K36me3:H3K9me3 ratio across cell types. Number of 
double-incubated cells for each cell type: n = 163 erythroid, n = 17 white blood 
cells, n = 24 endothelial, n = 136 neural tube progenitors, n = 197 neurons, n = 46 
Schwann cell precursors, n = 73 epithelial, n = 458 mesenchymal progenitors 
and n = 83 cardiomyocytes. Boxplots show 25th percentile, median and 75th 
percentile, with the whiskers spanning 97% of the data.

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Article https://doi.org/10.1038/s41587-022-01560-3

total reads from single-incubated data would lead to large cell-to-cell 
technical variability because counts per cell can span several orders of 
magnitude. However, comparing the counts of the two histone modi-
fication in the same cell could overcome this technical variability. We 
therefore asked whether the global ratio of H3K36me3 and H3K9me3 
in individual cells varies. Plotting the ratio of H3K36me3 and H3K9me3 
reveals that most cells have comparable ratios, but that erythroid cells 
have lower ratios than other cell types (Fig. 4e,f). This lower ratio is 
consistent with mass spectrometry studies showing a global decrease 
in H3K36me3 but no change in H3K9me3 during erythroid matura-
tion43. Of note, inferring this global change without scChIX-seq, such 
as by counting total unique fragments from single-incubation data, 
is challenging due to the large variability in total counts across cells 
and the inability to distinguish cell types in certain H3K9me3 clusters 
(Extended Data Fig. 9h,i).

In sum, applying scChIX-seq to H3K36me3 and H3K9me3 during 
organogenesis reveals unique insights from multimodal analysis. The 
complex relationships between the two histone modifications as well 
as their global changes would not have been elucidated by analyzing 
single-incubated data alone.

Mark-specific pseudotimes and chromatin velocity
Finally, we applied scChIX-seq to study the dynamic relationships 
between two active histone modifications, H3K4me1 and H3K36me3, 
over an in vitro differentiation timecourse. We sorted blood progeni-
tors from mouse bone marrow, added macrophage colony-stimulating 
factor (MCSF) and collected cells over 7 days (Fig. 5a and Extended Data  
Fig. 10a,b; Methods). We incubated cells with either H3K4me1, H3K36me3 
or both H3K4me1 and H3K36me3, then performed scChIX-seq.

Genome tracks of H3K4me1 and H3K36me3 signal for each day 
shows upregulation of macrophage-specific genes, such as Mertk44 
(Extended Data Fig. 10c). Heatmap of H3K4me1 and H3K36me3 
dynamics at gene bodies along pseudotime reveals that the two 
histone modifications up- and downregulate genes with different 
dynamics. H3K36me3 shows a gradual up- or downregulation of signal 
while H3K4me1 reaches a new steady state earlier along pseudotime  
(Fig. 5b). Summarizing log2 fold change of the two histone modi-
fications genome-wide, we find that dynamics in H3K36me3 are 
often larger than in H3K4me1 (Extended Data Fig. 10d). Comparing 
pseudotime progression with day of sample collection shows that 
changes in H3K4me1 peak at day 2 and then increases progressively 
over the day while H3K36me3 dynamics peak around day 3 and 4 
before relaxing towards steady state (Fig. 5c). The time of the larg-
est change in H3K4me1 dynamics occurs 1 day before H3K36me3  
(Fig. 5d), suggesting that global changes in H3K4me1 precede changes 
in H3K36me3. Summarizing at the genome-wide level, UMAPs of 
H3K4me1 and H3K36me3 of single-incubated cells show that both 
active marks move progressively towards a macrophage state during  
the timecourse (Fig. 5e).

Using continuous pseudotime of H3K4me1 and H3K36me3 as 
our training data (Methods), for both H3K4me1 and H3K36me3 we 
infer where along pseudotime each double-incubated cell came from. 
Plotting the inferred pseudotimes of each mark for each cell uncovers 
the dynamic relationships between the two marks (Fig. 5e). H3K4me1 
pseudotime initially progresses while H3K36me3 remains relatively 
unchanged. As H3K4me1 pseudotime approaches 0.5, H3K36me3 then 
progresses rapidly towards 1. This sigmoidal-like relationship between 
H3K4me1 versus H3K36me3 pseudotime progression is consistent 
with H3K4me1 dynamics occurring before H3K36me3. Finally, we used 
this inferred pseudotime information to project the deconvolved cells 
onto the H3K4me1 and H3K36me3 UMAPs. Both UMAPs showed that 
the single-incubated and deconvolved cells intermingle with each 
other, suggesting that deconvolution was successful (Extended Data 
Fig. 10e,f). Using the deconvolved cells as anchors, we then linked the 
two histone modification maps together (Fig. 5f).

Since we observed that H3K4me1 dynamics occur before 
H3K36me3, we asked whether we could model the H3K36me3 dynam-
ics as a first-order differential equation analogous to RNA velocity45  
(Fig. 5g, top; Methods). Since our data come from a timecourse, we 
directly fitted the exponential curves for dynamic genes along pseu-
dotime for H3K36me3 (Extended Data Fig. 10g), which avoids mak-
ing steady-state assumptions and leverages information from both 
single-incubated and deconvolved cells across histone modifications. 
The distribution of inferred rate constants from the exponential fit 
show a median of approximately 2.3 per pseudotime (Extended Data 
Fig. 10h). These rate constants were then used to predict the H3K36me3 
levels for each cell over small pseudotime steps (Δt = 0.02; Fig. 5g). 
Finally, summarizing the predictions of dynamic genes, we projected 
the high-dimensional velocity vectors onto the first two principal 
components (PCs). From the chromatin velocity summary, we found 
that differentiation starts with large changes in H3K36me3 dynamics, 
and then relaxes towards the macrophage state.

In summary, we applied scChIX-seq to two active histone modifica-
tions to find dynamic relationships between activation states. We then 
model these dynamics to infer chromatin velocity during macrophage 
differentiation.

Discussion
Here, we demonstrate that scChIX-seq can deconvolve multiplexed 
histone modifications, expanding the number of histone marks that 
can be profiled in single cells. Using simulations, purified cell types 
and whole bone marrow, we demonstrate that scChIX-seq can accu-
rately map several histone marks. To show how scChIX-seq can reveal 
unique biological insights in more challenging systems, we applied 
scChIX-seq to study H3K36me3 and H3K9me3 dynamics during mouse 
organogenesis to reveal the joint transcriptional and heterochromatin 
relationships in single cells. scChIX-seq can identify complex cell-type 
relationships between histone modifications, such as when several 
cell types can share a similar heterochromatin landscape. Finally, we 
applied scChIX-seq to two active marks during macrophage in vitro 
differentiation to quantify the relationship between two correlating 
marks. Importantly, scChIX-seq is flexible in which histone modifica-
tions can be used. The correlation structure between modifications is 
inferred from the model and therefore does not require a priori assump-
tions of specific features of the two modifications. Thus, scChIX-seq 
complements a recent method that focuses on differences in fragment 
lengths between Pol2 serine-5 phosphate and H3K27me3 to assign 
reads to their respective mark46.

Recently, there have been new experimental innovations to 
CUT&TAG that modify the pA-Tn5 complex to map several histone modi-
fications in single cells24,47–49. One drawback of Tn5-based approaches 
(for example, CUT&TAG) compared with MNase-based (for exam-
ple, sortChIC and CUT&RUN) used in this study is that Tn5 can have 
biases to open chromatin50. Current CUT&TAG methods suppress 
this bias by using more stringent washing conditions51, but exceed-
ingly high salt conditions reduce the sensitivity and could wash away 
weakly bound factors such as transcription factors50,51. On the flip 
side, MNase-based approaches involve more experimental effort than 
Tn5-based approaches, reducing the number of single cells that can 
be processed per round. Although we demonstrate our scChIX-seq 
method using an MNase-based approach (sortChIC), our computa-
tional and experimental framework can also be applied to Tn5-based 
strategies. Furthermore, our scChIX-seq method may have synergies 
with recent nanobody-based methods47,48. For example, using two 
nanobodies, each specific to a different species of immunoglobulin 
G, one can profile four histone modifications by generating two sets 
of scChIX-seq simultaneously: two antibodies raised from one species 
and the other two antibodies raised from the second species.

A limitation in scChIX-seq is that the maximum number of cuts 
at a specific base pair location is fundamentally limited by the copy 
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Fig. 5 | Applying scChIX-seq to two active marks reveals chromatin 
velocity during in vitro macrophage differentiation. a, Schematic of mouse 
macrophage in vitro differentiation timecourse experiment to study H3K4me1 
and H3K36me3 in single cells. b, Heatmap of histone modification signal on the 
bodies of dynamic genes over pseudotime. Rows are gene bodies and columns 
are single-incubated cells ordered along pseudotime. Color labels of columns are 
days from which the cells were recovered during the timecourse. c, Boxplots of 
pseudotime estimates of single-incubated cells along the timecourse. Number 
of cells per day for H3K4me1: n = 58 day 0, n = 148 day 1, n = 249 day 2, n = 350 day 
3, n = 369 day 4, n = 383 day 5, n = 488 day 6, n = 519 day 7. For H3K36me3: n = 42 
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with the whiskers spanning 97% of the data. d, Estimate of the average difference 
of pseudotime from one day to the next. Error bars indicate 95% CI, calculated 
by a linear model of the pseudotime differences between days. Statistics derived 
from number of cells indicated in c. e, Estimates of two different pseudotimes 
from a single cell. Error bars are 95% CI of the estimates. Each point is a double-
incubated cell. f, Joint UMAP of H3K4me1 and H3K36me3 from scChIX-seq, 
lines connect single cells with multimodal information. g, Chromatin velocity 
estimates of an upregulated gene (above) and a downregulated gene (below). Red 
curve is the exponential relaxation fit according to the solution of the first-order 
differentiation equation. h, High-dimensional chromatin velocities of dynamic 
genes projected onto PCs 1 and 2. Vector field estimated by smoothing across 
nearest neighbors of cells (Methods).
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number in that cell. Therefore, a nucleosome that has several modifica-
tions in their histone tails would still be cut only once. Currently, our 
binning strategy (5 kilobase (kb), 50 kb or gene bodies, depending on 
the biological question) and multinomial model assumes that there is 
no limit to the number of fragments that can be generated in one bin, 
which is an approximation that is valid when the bins are large and the 
number of cuts within the bins are small (for example, due to dropouts).

We demonstrate that scChIX-seq can reveal biological insights by 
multimodal analysis that would otherwise be obscured by analyzing 
each modality separately. Overall, scChIX-seq unlocks multimodal 
analysis in antibody-based chromatin profiling and enables joint analy-
sis of distinct histone modifications in single cells.
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Methods
Animal experiments
All mice used in this study were Cast-EiJ/Bl6 mice and were bred and 
maintained in the Hubrecht Institute Animal Facility. All mouse experi-
mentation was approved by the Animal Experimentation Committee 
(DEC) from the Koninklijke Nederlandse Akademie van Wetenschap-
pen (KNAW) and complied with existing European Union legislation 
and local standards.

Mouse bone marrow. Male 13-week-old C57BL/6 mice were used 
to extract bone marrow cells. Femurs and tibia were extracted, the 
bone ends were cut away to access the bone marrow, which was 
flushed out using a 22G syringe with HBSS (– calcium, – magnesium, 
– phenol red, Gibco, catalog no. 14175053) supplemented with 
Pen-Strep and 1% fetal calf serum. The bone marrow was dissoci-
ated and debris removed by passing through a 70 μm cell strainer 
(Corning, catalog no. 431751). Cells were washed with 25 ml sup-
plemented HBSS before depleting the sample of unnucleated cells 
using IOTest 3 Lysing solution (Beckman Coulter) following the 
providerʼs instructions. Cells were washed an additional two times 
with PBS before processing them by the sortChIC protocol for his-
tone modifications. For whole bone marrow experiments (that is, 
not enriched for specific cell types), we processed cells using the 
sortChIC protocol for unfixed cells (without ethanol fixation). For 
the ground truth experiment with sorted cell types, we processed 
cells using the sortChIC protocol for ethanol-fixed cells. For etha-
nol fixation, cells were resuspended in 70% ethanol and fixed for 
1 h at –20 °C. Afterwards cells were resuspended in Storage buffer 
(42.5 ml H2O RNAse free, 1 ml 1 M HEPES pH 7.5 (Invitrogen), 1.5 ml 
5 M NaCl, 3.6 μl spermidine (Sigma Aldrich, catalog no. S2626-5G), 
protease inhibitor (Sigma Aldrich, catalog no. 5056489001), 200 μl 
0.5 M EDTA, 5 μl dimethylsulfoxide) and frozen at –80∘C, before 
processing by the sortChIC protocol.

Mouse organogenesis. No randomization or blinding was per-
formed. Sex of embryos was not known at the time of collection. 
Four to five embryos were pooled for each reported timepoint 
(E9.5, E10.5, E11.5) before single-cell isolation. Pooled embryos 
were dissociated in TrypleE for 10 min at room temperature. Undi-
gested portions were physically removed and the remainder filtered 
through a 30 μm filter before the single-cell suspension was split 
into three samples for each timepoint and each scChIX-seq experi-
ment. Per timepoint, two single-cell samples were used each for a 
single antibody incubation (H3K36me3 or H3K9me3) and one sam-
ple for the double antibody incubation (H3K36me3 + H3K9me3). 
Antibody incubation was performed as described in the scChIX-seq 
protocol before single-cell capture using flow cytometry. A DNA 
library was prepared for each sample using the sortChIC protocol 
for unfixed cells.

In vitro macrophage differentiation. For in vitro differentia-
tion of bone marrow-derived macrophages, bone marrow was 
collected aseptically by flushing tibia and femurs from eutha-
nized wild-type male C57BL/6 mice with sterile RPMI and 10% 
FCS through a 70 μm cell strainer (Corning). To enrich for stem 
and progenitor cells, lineage marker-positive (Lin+) cells were 
depleted by magnetic-activated cell sorting using a mouse Line-
age Cell Depletion kit (Miltenyi Biotec). Lin– cells were cultured 
on nontissue-culture-treated plates (Corning) for 7 days in RPMI 
medium supplemented with 10% FCS, 100 IU ml–1 penicillin, 
100 mg ml–1 streptomycin and 10 ng ml–1 recombinant murine MCSF 
(Peprotech). Medium was refreshed after 3 days. Every 24 h, sus-
pension cells were collected and adherent cells were harvested 
by incubating 10 min in 2 mM EDTA/0.5% BSA in PBS. Suspension 
and adherent cells were combined and stained with CellTrace 

fluorescent labels (Thermo Fisher), according to manufacturer’s 
instructions. Briefly, cells were pelleted and resuspended in 37 °C 
PBS containing fluorescent dyes (working concentrations Cell-
Trace CSFE (CTC): 2.5 μM; CellTrace Yellow (CTY): 2.5 μM; Cell-
Trace Far Red (CTFR): 0.5 μM) at a concentration of 1,000,000 
cells ml–1. Cells were incubated at 37 °C protected from light for 
20 min. Staining reactions were stopped by adding two volumes 
of RPMI/10% FCS and incubating for 5 min at room temperature, 
protected from light, after which cells were washed twice in PBS. 
The following combinations of labels were used: unstained (day 0),  
CTC (day 1), CTY (day 2), CTFR (day 3), CTC + CTY (day 4), CTC + CTFR  
(day 5), CTY + CTFR (day 6) and CTC + CTY + CTFR (day 7). After 
harvesting and staining, cells were fixed in 70% ethanol for 1 h and 
stored for later by the sortChIC protocol for fixed cells.

Cell preparation without ethanol fixation for sortChIC 
experiments
Cells from whole bone marrow (H3K4me1+H3K27me3) and mouse 
embryos (H3K36me3+H3K9me3) were processed using the sortChIC 
method without ethanol fixation. Cells were processed in 0.5 ml 
protein low-binding tubes. Following steps were performed on ice. 
Cells were resuspended in 500 μl wash buffer (47.5 ml H2O RNAse 
free, 1 ml 1 M HEPES pH 7.5 (Invitrogen), 1.5 ml 5M NaCl, 3.6 μl pure 
spermidine solution (Sigma Aldrich)). Cells were pelleted at 600g 
for 3 min and resuspended in 400 μl wash buffer 1 (wash buffer with 
0.05% saponin (Sigma Aldrich), protease inhibitor cocktail (Sigma 
Aldrich), 4 μl 0.5 M EDTA) containing the primary antibody (1:100 
dilution for the antibody, saponin has to be prepared fresh every 
time as a 10% solution in PBS). Cells were incubated overnight at 
4 °C on a roller, before being washed once with 500 μl wash buffer 
2 (wash buffer with 0.05% saponin, protease inhibitor). Afterwards 
cells were resuspended in 500 μl wash buffer 2 containing Protein 
A-Micrococcal Nuclease (pA-MNase) (3 ng ml–1) and incubated for 
1 h at 4 °C on a roller.

Finally, cells were washed an additional two times with 500 μl 
wash buffer 2 before passing it through a 70 μm cell strainer (Corning, 
catalog no. 431751) and sorting G1 cells based on Hoechst staining on 
a BD Influx FACS machine into 384-well plates containing 50 nl wash 
buffer 3 (wash buffer containing 0.05% saponin) and 5 μl sterile filtered 
mineral oil (Sigma Aldrich) per well. Small volumes were distributed 
using a Nanodrop II system (Innovadyme).

Cell preparation with ethanol fixation and surface antibody 
incubation for sortChIC experiments
Cells from sorted bone marrow (H3K27me3+H3K9me3) and mac-
rophage in vitro differentiation (H3K4me1+H3K36me3) were 
processed using the ethanol fixation protocol. Sorted bone mar-
row cells were also incubated with surface antibody to enrich for 
known cell types. For the ethanol-fixed cells the above described 
sortChIC protocol was adapted. Wash buffers were used as 
described above, except that 0.05% saponin was exchanged for 
0.05% Tween. Ethanol-fixed cells were thawed on ice. Cells were 
spun at 400g for 5 min and washed once with 400 μl wash buffer 
1. Cells were spun again at 400g and resuspended in 400 μl wash 
buffer 1. Cell suspension was split into three samples each having a 
volume of 400 μl and incubated with one or two antibodies (1:100 
dilution for the antibody) overnight on a roller at 4 °C. The next 
day, cells were spun at 400g, washed once with 400 μl wash buffer 
2 and resuspended in 500 μl wash buffer 2 containing pA-MNase 
(3 ng ml–1) and incubated for 1 h on a rotator at 4 °C. Next, cells 
were spun at 400g and resuspended in 400 μl wash buffer 2 (with 
addition of 5% blocking rat serum). To sort for defined cell types 
in the ground truth bone marrow experiment, surface antibodies 
were added according to these concentrations and were incubated 
for 30 min on ice:
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antibody info

GR1 A647, anti-mouse Ly-6G/Ly-6C (Gr-1) Antibody,

clone: RB6-8C5

NK1 A488, anti-mouseNK-1.1 Antibody, clone: PK136

CD19 BV421, anti-mouseCD19Antibody, clone: 6D5

working concentration

1 ∶ 8,000

1 ∶ 400

1 ∶ 200

BD FAC software v.1.2.0.142 was used to collect data from the FACS 
machine during cell sorting; see Supplemental Fig. 1 for the gating 
strategy.

Finally, samples were washed once with 500 μl wash buffer 2 
before passing them through a 70 μm cell strainer (Corning, catalog 
no. 431751) and sorting on a BD Influx FACS machine, with surface 
antibody specific gating, into 384-well plates containing 50 nl wash 
buffer 3 (wash buffer containing 0.05% Tween) and 5 μl sterile filtered 
mineral oil (Sigma Aldrich) per well. Small volumes were distributed 
using a Nanodrop II system (Innovadyme).

MNase activation for sortChIC experiments
Targeted fragmentation was started by the addition of 5 μl wash  
buffer 2 containing 4 mM CaCl2. For digestion, plates were incubated 
for 30 min in a PCR machine set at 4 °C. Afterwards the reaction was 
stopped by adding 100 nl of a stop solution containing 40 mM EGTA, 
1.5% NP40, and 10 nl 2 mg ml−1 proteinase K. Plates were incubated  
in a PCR machine for further 20 min at 4 °C, before chromatin was 
released and pA-MNase permanently destroyed by proteinase K diges-
tion at 65 °C for 6 h followed by 80 °C for 20 min to heat inactivate 
proteinase K. Afterwards plates were stored at –80 °C until further 
processing.

Library preparation for sortChIC experiments
DNA fragments were blunt ended by adding 150 nl end repair mix per 
well and incubating for 30 min at 37 °C followed by 20 min at 75 °C 
for enzyme inactivation. End repair mix per well: Klenow large (NEB, 
catalog no. M0210L) 2.5 nl, T4 PNK (NEB, catalog no. M0201L) 2.5 nl, 
dNTPs 10 mM 6 nl, ATP 100 mM 3.5 nl, MgCl2 25 mM 10 nl, PEG8000 
50% 7.5 nl, PNK buffer 10× (NEB, catalog no. B0201S) 35 nl, BSA 20 ng 
1.8 nl, nuclease-free water 81.3 nl.

Blunt fragments were subsequently A-tailed by adding 150 nl per 
well of A-tailing mix and incubated for 15 min at 72 °C. Through the 
strong preference of AmpliTaq 360 to incorporate dATP as a single base 
overhang even in the presence of other nucleotides, a general dNTP 
removal was not necessary. A-tailing mix per well: AmpliTaq 360 (Thermo 
Fisher Scientific, catalog no. 4398828) 1 nl, dATPs 100 mM 1 nl, KCl 1 M 
25 nl, PEG8000 50% 7.5 nl, BSA 20 ng 0.8 nl, nuclease-free water 114.8 nl.

Fragments were ligated to T-tail containing forked adapters 
containing a T7 polymerase binding site for in vitro transcription 
(IVT)-based amplification.

Top strand: 5′-GGTGATGCCGGTAATACGACTCACTATAGGGAGTT 
CTACAGTCCGACGATCNNNACACACTAT-3′

Bottom strand: 5′-TAGTGTGTNNNGATCGTCGGACTGTAGAACT 
CCCTATAGTGAGTCGTATTACCGGCGAGCTT-3′

The three random nucleotides (NNN) were the unique molecular 
identifier used for read deduplication and the eight bases afterwards 
represent the cell barcodes, which were different for each of the 384 
wells. For a full list of adapters and the cell barcodes for each well, see 
the excel sheet in Supplemental Table 1. Cell barcodes for each 384-well 
plates are also found as a text file in the scChIX-seq Github repository: 

(https://github.com/jakeyeung/scChIX/blob/main/inst/extdata/ 
cellbarcodes_384_NLA_annotated.bc).

For ligation, 50 nl of 5 μM adapter in 50 mM Tris pH 7 was added to 
each well with a Mosquito HTS (ttp labtech). After centrifugation, 150 nl 
of ligation mix was added before incubating plates for 20 min at 4 °C, 
followed by 16 h at 16 °C for ligation and 10 min at 65 °C to inactivate 
ligase. Adapter ligation mix per well: T4 ligase (400,000 U ml–1, NEB, 
catalog no. M0202L) 25 nl, MgCl2 1 M 3.5 nl, Tris 1 M pH 7.5 10.5 nl, DTT 
0.1 M 52.5 nl, ATP 100 mM 3.5 nl, PEG8000 50% 10 nl, BSA 20 ng 1 nl, 
nuclease-free water 44 nl.

Before pooling, 1 μl nuclease-free water was added to each well to 
minimize material loss. Ligation products were pooled by centrifuga-
tion into oil coated VBLOK200 Reservoir (ClickBio) at 500g for 2 min 
and the liquid face was transferred into 1.5 ml Eppendorf tubes and then 
purified by centrifugation at 13,000g for 1 min and transferred into a 
fresh tube twice. DNA fragments were purified using Ampure XP beads 
(Beckman Coulter, prediluted one in eight in bead binding buffer: 1 M 
NaCl, 20% PEG8000, 20 mM Tris pH 8, 1 mM EDTA) at a bead to sample 
ratio of 0.8. After 15 min incubation at room temperature, beads were 
washed twice with 1 ml 80% ethanol resuspending the beads during the 
first wash and resuspended in 20 μl nuclease-free water. After 2 min elu-
tion, the supernatant was transferred into a fresh 0.5 ml tube. A second 
cleanup was performed adding 26 μl undiluted Ampure XP beads and 
the beads were resuspended in 8 μl nuclease-free water. The cleaned 
DNA was then linear amplified by IVT by adding 12 μl of MEGAscript T7 
Transcription Kit (Fisher Scientific, catalog no. AMB13345) for 12 h at 
37 °C. Template DNA was removed by addition of 2 μl–1 TurboDNAse 
(IVT kit) and incubation for 15 min at 37 °C. The RNA produced was 
further purified using RNA Clean XP beads (Beckman Coulter) at a 
beads to sample ratio of 0.8 and samples were resuspended in 22 μl 
of nuclease-free water. RNA was fragmented by mixing in 4.4 μl frag-
mentation buffer (200 mM Tris-acetate pH 8.1, 500 mM KOAc, 150 mM 
MgOAc) and incubation for 2 min at 94 °C. Fragmentation was stopped 
by transferring samples to ice, adding 2.64 μl 0.5 M EDTA and another 
bead cleanup; samples were resuspended in 12 μl nuclease-free water.

RNA (5 μl) was primed for reverse transcription by adding 0.5 μl 
10 mM dNTPs and 1 μl 20 mM randomhexamerRT primer (5′-GCCTT 
GGCACCCGAGAATTCCANNNNNN-3′) and hybridizing it by incubation 
at 65 °C for 5 min followed by direct cool down on ice. Reverse transcrip-
tion was performed by further addition of 2 μl first strand buffer (part 
of Invitrogen kit, catalog no. 18064014), 1 μl 0.1 M DTT, 0.5 μl RNA-
seOUT (Invitrogen, catalog no. LS10777019) and 0.5 μl SuperscriptII 
(Invitrogen, catalog no. 18064014) and incubating the mixture at 25 °C 
for 10 min followed by 1 h at 42 °C. Single-stranded DNA was purified 
through incubation with 0.5 μl RNAseA (Thermo Fisher, catalog no. 
EN0531) and incubation for 30 min at 37 °C.

A final PCR amplification to add the Illumina small RNA barcodes 
and handles was performed by adding 25 μl of NEBNext Ultra II Q5 
Master Mix (NEB, catalog no. M0492L), 11 μl nuclease-free water and 
2 μl of 10 μM RP1 and RPIx primers.

PCR protocol for sortChIC experiments
Activation for 30 s at 98 °C, 8–12 cycles (depending on starting mate-
rial), 10 s at 98 °C, 30 s at 60 °C, 30 s at 72 °C, final amplification 10 min  
at 72 °C.

PCR products were cleaned by two consecutive DNA bead 
clean-ups with a bead to sample ratio of 0.8. Final product was eluted 
in 7 μl nuclease-free water. The abundance and quality of the final 
library were assessed by QUBIT and bioanalyzer.

Data processing
All DNA libraries were sequenced on a Illumina NextSeq500 with 
2 × 75 bp. We ran the raw fastq files through the Single-Cell MultiOmics  
(SCMO) workflow (github.com/BuysDB/SingleCellMultiOmics52). The 
workflow comprises of six steps.

http://www.nature.com/naturebiotechnology
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(1) Demultiplex raw fastq files using demux.py (SCMO). (2) Trim 
fastq files by removing adapters using cutadapt (v.3.5). (3) Map trimmed 
fastq files using bwa (v.0.7.17-r1188). (4) Tag bam files with cell barcode 
information, using bamtagmultiome.py (SCMO). (5) Generate count 
tables using bamToCountTable.py (SCMO). (6) Run dimensionality 
reduction of count matrices using run_LDA_model.R. See an example 
of the pipeline in the scChIX-seq Github repository53.

Unmixing scChIX-seq signal
Single-cell epigenomics techniques (for example, sortChIC, CUT&RUN 
and CUT&TAG) generate a vector of counts indicating the number of 
cut fragments that map in each genomic region for each cell. We model 
the vector of counts from a double-incubated cell y⃗ as a linear combina-
tion of two multinomial distributions: one coming from a cluster c of 
histone modification 1, parameterized by p⃗c, the other from another 
cluster d of histone modification 2 q⃗d. The log-likelihood for a linear 
combination of two multinomials is:

L(c,d) = log(P (y⃗|p⃗c, q⃗d,w)) ∝
G

∑
g=1
yg log (wpc,g + (1 −w)qd,g) . (1)

y⃗  is the number of cuts across the genome for a double-incubated cell. 
pc,g and qd,g are cluster-specific probabilities indicating the likelihood 
that a cut fragment maps to region g in histone modifications 1 and 2, 
respectively. w is the mixing fraction of histone modification 1 in the 
double-incubated cell, which we estimate by maximizing the 
log-likelihood given y⃗, p⃗c and q⃗d.

Applying single-cell techniques to complex tissues generates 
data with many clusters. Therefore, given a double-incubated cell, we 
do not know which pair of clusters (c,d) were combined to generate 
the observed counts. We therefore calculate the log-likelihood for all 
possible pairs of clusters learned from the training data and then select 
the cluster pair with the highest probability for each cell.

Cluster-specific probabilities p⃗c and q⃗d are learned by applying 
LDA (with k = 30 topics) using the topicmodels R package54 to the train-
ing data (that is, single-incubated cells), which are count matrices.

After assigning each cell to the most probable cluster pair ( ̂c, ̂d), 
we assign yi,j, the jth read mapped to region g in cell i, to histone mark 
1 with probability Pi,j:

Pi,j =
wp ̂c,g

wp ̂c,g + (1 −w)q ̂d,g
. (2)

This assignment generates a pair of vectors y⃗1,i and y⃗2,i that are 
linked because they both come from cell i. Unmixed counts y⃗1,i and y⃗2,i 
are then projected back onto the space inferred from training data of 
histone modification 1 and 2, respectively. The links between histone 
modification 1 and 2 are used to transfer labels and create linked UMAPs 
between the two histone modifications.

Latent Dirichlet allocation
LDA is a probabilistic matrix decomposition model that is useful when 
the input data is a matrix of counts. LDA uses hierarchical multinomial 
models to estimate the relative frequencies of cuts in each genomic 
region in single cells.

To generate the genomic location of the jth read for cell i:
Choose a topic zi,j by sampling from the cell-specific distribution 

of topics:

U⃗i ∼ Dirichlet (α)

zi,j ∼ Multinomial (U⃗i, 1)

Choose genomic region wi,j by sampling from the topic-specific 
distribution of genomic regions:

V⃗k ∼ Dirichlet (δ)

wi,j ∼ Multinomial (V⃗zi,j , 1)

The Dirichlet distributions are priors to prevent overfitting when there 
are few cuts in the region. We used the LDA model implemented by the 
topicmodels R package, using the Gibbs sampling implementation with 
hyperparameters α = 1.67, δ = 0.1, where K is the number of topics23.

We estimate p⃗c and q⃗d for each cluster in histone modification 1 
{p⃗1, p⃗2, ..., p⃗C}  and modification 2 {q⃗1, q⃗2, ..., q⃗D}  by averaging the estimated 
probabilities across cells assigned to each cluster for each gene g:

pg,c =
1
|C| ∑i∈C

K

∑
k=1
Vg,kUk,i

where C is the set of cells that belong to cluster c.

Simulation of single- and double-incubated histone 
modification data
To simulate multimodal single-cell histone modification data with 
varying degrees of overlap, we extended simATAC55 to allow generat-
ing cell-type profiles from histone modifications of varying mutually 
exclusive relationships.

For each cell type, we first run simATAC to generate sparse count 
data of 10,000 loci across 750 cells partitioned into three technical rep-
licates of 250 cells each. The high-dimensional count data are sparse. 
Counts from each locus are generated according to a Poisson likelihood 
with locus-specific means (λ) matching real single-cell ATAC-seq from 
K562 cells (GSE99172).

In our 750 cells, cells 1–250 represent single-incubated cells from 
mark 1; cells 251–500 from mark 2; cells 501–750 from double-incubated 
cells. Cells from mark 1 have counts generated from locus-specific 
means λ. Cells from mark 2 also have counts generated from λ, but we 
swap the top x% of bins with highest λ with bins with lowest λ, allowing 
precisely defined sets of mutually exclusive and overlapping bins. We 
use x = 1%, 50% and 99% to benchmark our method from mostly overlap-
ping (that is x = 1%) to mostly mutually exclusive (that is x = 99%) Cells 
from mark 3 are generated by adding counts generated from mark 1 
and mark 2 to simulate double-incubated cells.

To generate cell-type-specific profiles, we repeat the above with a 
cell-type-specific random seed and shuffle the order of the bins. This 
generates count data where λ is cell-type specific, but the distribution 
of λ are preserved genome-wide.

Estimating the top cluster-specific bins
We use the LDA matrix factorization to identify the top cluster-specific 
bins in the data. We rank the bin loadings for each cell type and take the 
top 150 (whole bone marrow) or 250 (mouse organogenesis) bins with 
the largest loadings.

Inferring pseudotime in differentiation data
To analyze the macrophage differentiation data, we first removed 
erythroblasts, plasmacytoid dendritic cells, and innate lymphocyte 
cells from the data, which were concentrated at day 0 and not consid-
ered to be part of the macrophage differentiation trajectory. We then 
ran LDA (k = 30 topics) and performed principal component analysis 
(PCA) on the LDA outputs, which retrieves the principal components 
that explain the largest amount of variance after denoising the data. 
We used the first principal component for H3K4me1 and H3K36me3 
to define pseudotime, which we found correlates with the day along 
the timecourse.

Unmixing scChIX-seq signal from continuous pseudotime
To apply scChIX-seq on continuous pseudotime, we modify the 
log-likelihood (equation (1)) to account for a continuous variable:
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L (t1, t2) = log (P (y⃗|p⃗ (t1) , q⃗ (t2) ,w)) ∝
G

∑
g=1
yg log (wpg (t1) + (1 −w)qg (t2))

(3)

where t1 ∈ [0, 1] is pseudotime from histone modification 1 and t2 ∈ [0, 1] 
is pseudotime from modification 2.

To estimate pseudotime, we ran LDA to denoise the count matrix, 
and then ran PCA to estimate largest principal components explaining 
the variance in the data. We took the first principal component as our 
pseudotime estimate for both marks, which captured the epigenomic 
changes over the 7-day timecourse.

pg (t) is estimated by fitting the signal from histone modifica-
tion 1 at genomic region g with a lowess curve along pseudotime. 
We estimate qg analogously but using signal from histone  
modification 2.

To infer the pseudotime of histone modifications 1 and 2 simul-
taneously given a vector of counts from a double-incubated cell, we 
estimate t1 and t2 that minimizes the log-likelihood L from equation (3). 
We estimate the variance-covariance matrix of t1 and t2 by the square 
root of the inverse of the Hessian matrix, which we use to calculate the 
standard errors.

Since the t1 and t2 are constrained between 0 and 1, we use the 
L-BFGS-B optimization algorithm implemented in R. Since estimates 
from a single cell can sometimes be noisy due to low counts, we sum 
the counts across the 25-nearest neighbors (estimated from the latent 
space inferred by LDA) for each double-incubated cell.

Chromatin velocity during macrophage differentiation
We assume that dynamic genomic regions in H3K36me3 can be mod-
eled using a first-order differential equation

dK36 (t)
dt

= K4 (t) − γK36 (t) . (4)

We estimate the time constant γ for each genomic region by fitting an 
exponential relaxation function across pseudotime

K36 (t) = y0 + A (1 − e−γt) , (5)

where y0 is the signal at t = 0 and A is the predicted H3K36me3 levels 
at steady state. Fitting the γ directly from the pseudotime allows us to 
leverage signal from both single- and deconvolved cells.

To predict future values of H3K36me3 levels for each cell at 
each genomic region, we use the Euler method and plug in the 
estimated γ, H3K4me1 levels at time t and time step h of 0.02 pseu-
dotime units:

K36 (t + 1) = K36 (t) + h (K4 (t) − γK36 (t)) . (6)

Finally, we project the single- and double-incubated H3K36me3 
signal onto the first two principal components and project the  
predicted future values onto the PCA. We use the velocity grid flow 
visualization as implemented in velocyto56 to visualize the velocity 
vectors on the PCA space.

Comparison with multi-CUT&TAG
Raw fastq files (R1, R2 and R3) from the single-cell experiments 
were downloaded from Gene Expression Omnibus accession num-
ber GSE171554. The first 42 bases of the reads in R1 and R2 were 
trimmed to remove the barcodes and the bases common to all Tn5 
adapter sequences. The 16-base cell barcodes in R3 were added to 
the fastq headers of R1 and R2. The trimmed and cell-barcoded R1 
and R2 reads were then aligned to the mm10 mouse genome using 
Burrows-Wheeler aligner (bwa v.0.7.17-r1188). Fragments that start 
at same location and have the same cell barcode were considered 

duplicates and discarded. Cells with more than 100 fragments with 
MAPQ scores in R1 greater than or equal to 40 were kept for com-
parison with scChIX-seq.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data discussed in this publication have been deposited in NCBI’s 
Gene Expression Omnibus and are accessible through Gene Expression 
Omnibus Series accession number GSE155280 (ref. 57).

Code availability
We developed the SingleCellMultiOmics package, in which there are 
modules used for processing sortChIC data (https://github.com/ 
BuysDB/SingleCellMultiOmics)52, and an R package that implements 
scChIX-seq and contains snakemake workflows for processing data 
and example notebooks for downstream analyses (https://github. 
com/jakeyeung/scChIX)53.
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Extended Data Fig. 1 | Benchmarking scChIX-seq across a range of 
overlapping patterns. Left column: simulation results in a mutually exclusive 
scenario (that is 1% of loci are overlapping). Middle column: results for an 
intermediate amount of overlap (that is 50% of loci are overlapping). Right 
column: results for highly correlated scenario (that is 99% of loci are over
lapping). (a) Distribution of unique fragment cuts per cell in simulation.  
(b) Sparsity of the input matrix. Note that in the mutually exclusive scenario,  
the double-incubated marks is less sparse than single-incubated marks because 
loci with zero reads in one mark often have non-zero reads in another mark.  
(c) Distribution of the degree of overlap (defined as fraction of double-incubated 

signal belonging to mark1: p = S1
S1+S2

) for each locus genome-wide. (d) Estimated 

degree of overlap from scChIX-seq. (e) UMAP representation of the three cell 
types underlying simulation. UMAPs from the two marks are linked by 
double-incubated cells that are deconvolved by scChIX-seq. (f ) Empirical 95% 

confidence interval across the range of ̂p =
̂S1

̂S1+ ̂S2
 (from 0 to 1). Range obtained by 

aggregating results from the three overlapping patterns. n=101 simulation 
datapoints spread evenly between 0 and 1 inclusive. Error bars are empirial 95% 
confidence intervals, centers are the mean.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | scChIX-seq accurately deconvolves double-incubated 
signal into their respective histone modifications. (a) Histogram of 
unique fragment cuts per cell. (b) Histogram of fraction of unique fragments 
starting with a “TA” motif. (c, d) UMAP of latent Dirichlet allocation (LDA) 
embedding using k=30 topics for H3K27me3 (c) and H3K9me3 (d). (e, f ) UMAP 
representation of H3K27me3 (left) and H3K9me3 (right) data colored by 
unmixed or single-incubated cells (e) or ground truth cell type labels defined 

by FACS (f). (g, h) Genome-wide Pearson correlation between deconvolved 
H3K27me3 (g) and H3K9me3 (h) signal versus ground truth sortChIC purified 
by FACS. Shared genomic regions were calculated by using 1 kb bins across the 
genome. (i) Comparison of fragments per cell obtained from Multi-CUT&TAG 
versus scChIX-seq. Multi-CUT&TAG data came from a mixture of embryonic and 
trophoblast stem cells in vitro, while scChIX-seq came from sorted bone marrow 
cells in vivo. n=1806 cells for Multi-CUT&TAG, n=290 for scChIX-seq.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Coverage tracks of deconvolved cells and genome 
statistics. (a) Coverage tracks for B cells visualizing the H3K27me3+H3K9me3, 
deconvolved H3K27me3 or H3K9me3, and ground truth H3K27me3 or H3K9me3 
histone modification levels for three different genomic regions. Double-
incubated signal in grey, H3K27me3 single, and unmixed signal in orange, and 
H3K9me3 single and unmixed signal in blue. Under each coverage track are 
cut fragments of single cells. Each row of the single cells track are cuts from an 
individual cell. Shown are a subset of cells, which were chosen for their high 
number of cuts in the region. Rows are in decreasing order of total number of 
cuts. (b) H3K27me3 coverage tracks showing the region around Pax5 for the 
ground truth H3K27me3 pseudobulk signal from single-incubated cells and for 
the deconvolved H3K27me3 pseudobulk signal from double-incubated cells  
for three cell types: B cells (grey), granulocytes (green), and NK cells (blue).  

(c) H3K9me3 (top) and H3K27me3 (bottom) coverage tracks showing the region 
around Auts2 for ground truth (single-incubated) and for the unmixed (unmixed) 
for B cells (grey), granulocytes (green) and NK cells (blue), respectively. d 
Distribution of assignment probability estimates in the genome for the three cell 
types. Vertical dotted lines represent cutoffs to define H3K9me3-specific (that 
is p < 0.5) or H3K27me3-specific regions (that is p≥0.5). e Boxplot distributions 
of GC content in H3K27me3-marked and H3K9me3-marked regions. f Boxplot 
distributions of distance to TSS in the two classes of regions. Distances are 
measured from the center of the 50 kb locus to the nearest TSS. Number of bins 
in each boxplot: n=9962 for B cells p < 0.5, n=15877 for B cells p≥0.5, n=12483 for 
granulocytes p < 0.5, n=13345 for granulocytes p≥0.5, n=7337 for NK cells p < 0.5, 
n=18491 for NK cells p≥0.5. Boxplots show 25th percentile, median and 75th 
percentile, with the whiskers spanning 97% of the data.
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Extended Data Fig. 4 | Inferring cluster pairs from H3K4me1+H3K27me3 
transfers cell type labels. (a) Histogram of unique fragment cuts per cell.  
(b) Histogram of fraction of unique fragments starting with a “TA” motif.  
(c) UMAP of H3K4me1 sortChIC data, cells colored by cell type. (d) Assignment 
plot showing individual H3K4me1+H3K27me3 cells (represented as dots) 
assigned to a pair of topics (x-axis labels are H3K4me1 clusters, named by 
their associated cell type, while y-axis are H3K27me3 clusters). Cells along the 

diagonal are high-confidence predictions that match a H3K4me1 cluster with 
a H3K27me3 topics, and are colored by the H3K4me1-derived cell type labels. 
(e) UMAP of H3K4me1+H3K27me3 sortChIC. Cells are colored by their cell type 
inferred from cluster pairs. Low-confidence predictions are colored in grey.  
(f, g) UMAP representation of H3K4me1 (f) and H3K27me3 (g). Cells are 
colored by whether the epigenome was generated by single-incubation or by 
unmixing by scChIX-seq.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Histone modification signal of deconvolved cell types 
correlates with public H3K4me1 ChIP-seq and H3K27me3 sortChIC ground 
truth data. (a-d) Pearson correlation between publicly available H3K4me1 
ChIP-seq5 data of purified B cells (a), erythroid (b), granulocytes (c), or NK 
cells (d) versus H3K4me1 profiles of different cell types derived from scChIX-
seq. Single: pseudobulk profiles generated by single incubation, unmixed: 
pseudobulk profiles deconvolved by scChIX-seq. (e-g) Pearson correlation 
between H3K27me3 sortChIC from FACS-purified B cells (e), granuloytes (f), NK 
cells (g) versus H3K27me3 sortChIC derived from pseudobulks of whole bone 
marrow without FACS purification. Single: pseudobulk profiles generated by 

single incubation, unmixed: pseudobulk profiles deconvolved by scChIX-seq. 
(h) Distribution of assignment probability estimates p in the genome for the 
three cell types. Vertical dotted lines represent cutoffs for p to define H3K27me3-
specific and H3K4me1-specific regions. p is the expected fraction of reads that 
belong to H3K4me1 in a specific genomic locus. (i) Boxplot distributions of GC 
content for the two classes of regions. ( j) Boxplot distributions of distance to 
TSS in the two classes of regions. Distances are measured from the center of the 
5 kb locus to the nearest TSS. Boxplots show 25th percentile, median and 75th 
percentile, with the whiskers spanning 97% of the data.
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Extended Data Fig. 6 | Re-clustering on B cells reveals heterogeneity within 
B cells. (a) UMAP visualization of H3K4me1 and H3K27me3 (single signal and 
unmixed signal), colored by cell types derived from H3K4me1 and transferred 
to H3K27me3. Black rectangle indicates the B cell population used to re-cluster 
in (b,c,d). (b) UMAP of pro-B and B cells only. (c,d) Projection of H3K4me1 signal 

of marker genes for pro-B (c) or for differentiated B cells (d). H3K4me1 signal 
is measured in all cells of the H3K4me1 UMAP (that is both single- and double-
incubated have H3K4me1 signal in the H3K4me1 UMAP). Double- (colored) but 
not single-incubated (grey) cells have H3K4me1 signal in the H3K27me3 UMAP.
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Extended Data Fig. 7 | H3K4me1 and H3K27me3 signal during neutrophil 
maturation. (a) UMAP visualization of H3K4me1 and H3K27me3, lines 
join H3K4me1 and H3K27me3 UMAPs of double-incubated neutrophils. 
Heterogeneity within neutrophils are colored as neutrophil pseudotime.  
(b) H3K4me1 and H3K27me3 modification levels at the Retnlg (a mature 
neutrophil marker gene) locus along neutrophil pseudotime. (c) H3K4me1 
and H3K27me3 modification levels at the Hoxa along neutrophil pseudotime. 
(d) UMAP of H3K27me3 signal across single cells colored by weights of a topic 

containing high H3K27me3 levels at many Hox and developmental gene loci 
(Hox topic). (e) Topic weights of the top 150 genes associated with loci in the 
Hox topic for H3K27me3. (f ) Neutrophil mRNA abundance of genes in the Hox 
topic compared to other genes derived from publicly available scRNA-seq data25. 
Number of genes per boxplot: n=17986 for All Genes, n=127 for genes in the 
Hox topic. Boxplots show 25th percentile, median and 75th percentile, with the 
whiskers spanning 97% of the data.

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Article https://doi.org/10.1038/s41587-022-01560-3

Erythroid
White Blood Cells

Endothelial
Neural Tube Progs

Neurons
Schwann Precursors

Epithelial
Mesenchymal Progs
Cardiomyocytes

White blood cells: Lcp2
6

0

C
PM

5

0

Neural Tube Progenitors: Rfx4

C
PM

8

Erythroblast: Sptb

0

C
PM

c

g

d

h

e

i

f

j

k

Endothelial: Emcn
8

0

C
PM

Neuron-specific Elavl4
6

0

C
PM

6

Schwann Precursors: Cdh6

0

C
PM

Epithelial: Grhl2
4

0

C
PM

Mesenchymal Progenitors: Prx1
4

0

C
PM

Cardiomyocytes: Gata6
4

0

C
PM

l Cardiomyocytes: Tpm1

a

100

0

250

750

0

250

750

0

250

750

Total number of cuts

co
un

t

b

0.00 0.25 0.50 0.75 1.00

0

250

750

0

250

750

0

250

750

co
un

t

H3K36me3

H3K9me3

K36+K9

H3K36me3

H3K9me3

K36+K9

101 102 103 104 105

TA fraction

Extended Data Fig. 8 | Cell typing mouse organogenesis dataset using 
H3K36me3 using marker genes. (a) Histogram of unique fragment cuts per cell. 
(b) Histogram of fraction of unique fragments starting with a “TA” motif. (c-l) 

Genome browser plots of cell type-specific H3K36me3 loci showing pseudobulk 
CPM signals (colored lines, top) and cut locations of individual cells (bottom, 
black marks). Cells are ordered by cell type (color-coded on the left).

http://www.nature.com/naturebiotechnology


Nature Biotechnology

Article https://doi.org/10.1038/s41587-022-01560-3

Neu
ron

s

Sch
wan

nC
ell

Prec
urs

or

Neu
ral

Tu
be

Neu
ral

Prog
s

Epit
he

lia
l

Mes
en

ch
ym

alP
rog

s

Whit
eB

loo
dC

ell
s

End
oth

eli
al

Eryt
hro

id

Card
iom

yo
cy

tes

m
R

N
A 

ab
un

da
nc

e 
lo

g(
C

PM
 +

 1
)

Nell2

a

-10 10 -3 4

H3K36me3 H3K9me3Pseudobulk RNA-seq from Cao et al.

-3 3
Scaled scChIC signal Scaled scChIC signalScaled RNA-seq signal

Cells CellsPseudobulks
G

en
om

ic
 b

in
s 

co
ve

rin
g 

TS
S

G
en

es

Erythroid

WhiteBloodCells

Endothelial

Neural Tube Progs

Neurons

Schwann Cell Progs

Epithelial

Mesenchymal Progs

Cardiomyocytes

f

G
en

om
ic

 b
in

s 
co

ve
rin

g 
TS

S

b c

g

H3K9me3: Nell2 locus
4

0

C
PM

Neu
ron

s

Neu
ral

Tu
be

Neu
ral

Prog
s

Sch
wan

nC
ell

Prec
urs

or

Mes
en

ch
ym

alP
rog

s

Epit
he

lia
l

Card
iom

yo
cy

tes

End
oth

eli
al

Whit
eB

loo
dC

ell
s

Eryt
hro

id

m
R

N
A 

ab
un

da
nc

e 
(z

sc
or

e)

Eryth-repressed locied H3K9me3 pseudobulk

D
yn

am
ic

 5
0 

kb
 b

in
s

−2 0 2

Zscore

Er
yt

h-
re

pr
es

se
d 

lo
ci

3.0

3.5

4.0

4.5

Eryt
hro

id

Whit
eB

loo
dC

ell
s

Non
Bloo

d
3.0

3.5

4.0

Eryt
hro

id

Whit
eB

loo
dC

ell
s

End
oth

eli
al

Neu
ral

Tu
be

Neu
ral

Prog
s

Neu
ron

s

Sch
wan

nC
ell

Prec
urs

or

Epit
he

lia
l

Mes
en

ch
ym

al 
Prog

s

Card
iom

yo
cy

tes

lo
g 10

(to
ta

l c
ou

nt
s)

h

lo
g 10

(to
ta

l c
ou

nt
s)

H3K36me3 H3K9me3

0

5

10

-2

0

2

i

Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | H3K9me3-specific regions across cell types.  
(a) Heatmap of H3K36me3 signal for the top 250 H3K36me3-specific loci  
(rows) across cell types (columns). (b) Heatmap of mRNA abundances for the 
genes associated with the H3K36me3-specific loci in (a) across pseudobulks. 
Data processed from publicly available scRNA-seq data from Cao et al.42.  
(c) Heatmap of H3K9me3 signal for the same top 250 H3K36me3-specific loci 
as in (a). The H3K36me3 and H3K9me3 heatmaps are mean-centered and scaled 
using a common mean and standard deviation calculated across both marks. 
(d) Heatmap of H3K9me3 signal across pseudobulks at H3K9me3-variable loci. 
(e) Relative mRNA abundances42 at n=364 genes associated with erythroblast-
repressed loci across nine cell types. (f ) mRNA abundance of an erythroblast-
repressed gene, Nell2, across pseudobulks. (g) Genome browser plot of around 

the Nell2 locus, an erythroblast-specific region for H3K9me3. Top of plot is 
pseudobulk H3K9me3 CPM signals, below are cut locations of individual cells 
(black marks). Cells are ordered by cell type (color-coded as in heatmaps).  
(h, i) Total unique fragments across cell types for single-incubated cells for 
H3K36me3 (h) and H3K9me3 (i), showing that the variability of the number of 
cuts across cells can span orders of magnitude. Number of single-incubated 
H3K36me3 cells for each boxplot: n=154 erythroid, n=36 white blood cells, n=60 
endothelial, n=250 neural tube progenitors, n=272 neurons, n=58 Schwann 
cell precursors, n=154 epithelial, n=570 mesenchymal progenitors, n=160 
cardiomyocytes. For H3K9me3: n=207 erythroid, n=26 white blood cells, n=736 
non-blood cell types. Boxplots in (e), (h), (i) show 25th percentile, median and 
75th percentile, with the whiskers spanning 97% of the data.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Distinct dynamics of H3K4me1 and H3K36me3 during 
macrophage in vitro differentiation. (a) Density plots of total number of 
cuts across cells for H3K4me1, H3K36me3, and H3K4me1+H3K36me3 labeled 
cells. (b) Density plots of fraction of cuts starting with a TA motif across cells 
for H3K4me1, H3K36me3, and H3K4me1+H3K36me3 labeled cells. (c) Genome-
browser plot around gene body of Mertk, a macrophage-specific gene. Tracks 
are bigwigs from pseudobulks averaged across the time course. (d) Log2 fold 
change estimates along pseudotime on gene bodies in the genome. Colored dots 

are considered significant (log2 fold change in H3K36me3 > 3.5, zscore in both 
H3K36me3 and H3K4me1 > 2) and used for chromatin velocity estimates. (e, f ) 
UMAP of H3K4me1 (e) and H3K36me3 (f) of single-incubated and deconvolved 
cells showing intermingling of the two types of cells. (g) Examples of H3K4me1 
and H3K36me3 for an upregulated (above) and downregulated (below) gene 
along pseudotime. (h) Histogram of estimates of the rate constant γ for the 209 
dynamic genes highlighted in (d).
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