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Post-translational histone modifications modulate chromatin activity

to affect gene expression. How chromatin states underlie lineage
choiceinsingle cellsis relatively unexplored. We develop sort-assisted
single-cell chromatinimmunocleavage (sortChlC) and map active
(H3K4mel and H3K4me3) and repressive (H3K27me3 and H3K9me3)
histone modifications in the mouse bone marrow. During differentiation,
hematopoietic stem and progenitor cells (HSPCs) acquire active
chromatin states mediated by cell-type-specifying transcription factors,
which are unique for each lineage. By contrast, most alterations in
repressive marks during differentiation occur independent of the final
cell type. Chromatin trajectory analysis shows that lineage choice at the
chromatin level occurs at the progenitor stage. Joint profiling of H3K4mel
and H3K9me3 demonstrates that cell types within the myeloid lineage
have distinct active chromatin but share similar myeloid-specific heteroc-
hromatin states. This implies a hierarchical regulation of chromatin during
hematopoiesis: heterochromatin dynamics distinguish differentiation
trajectories and lineages, while euchromatin dynamics reflect cell types

withinlineages.

Hematopoietic stem cells (HSCs) reside in the bone marrow (BM) and
replenish diverse blood cell types'”. During differentiation, hemat-
opoietic stem and progenitor cells (HSPCs) restrict their potential to
fewer lineages to yield mature blood cells®. These cell fate decisions
have recently been dissected through single-cell mRNA sequencing
(scRNA-seq) technologies*°.

The regulation of gene expression partially relies on post-
translational modifications of histones that modulate chromatin activ-
ity”®. Chromatin dynamics during hematopoiesis have been analyzed
for accessible regions in single cells*'° and active chromatin marksin
sorted blood cell types". Although the role of repressive chromatin
has been characterized in embryonic stem cells>™ and early devel-
opment'*%, repressive chromatin states during hematopoiesis have
been unexplored.

The following two repressive chromatin states have a major role
ingeneregulation:a polycomb-repressed state, marked by H3K27me3
atgene-rich regions'>”°, and a heterochromatin state mainly found in
gene-poor regions, marked by H3K9me3'®. Conventional techniques to
detect histone modificationsinvolve chromatinimmunoprecipitation
(ChIP), whichrelies on affinity-purification of histone-DNA complexes.
Asimmunoprecipitations are not feasible for single cells individually,
protocols were developed that fragment and barcode single cells
before pooling them for immunoprecipitation” 2. Alternatives to
ChIP* circumvent this affinity-purification by using antibody tethering
of either protein A-micrococcal nuclease (pA-MN)** 2 or protein A-Tn5
transposase’’* that produce recoverable fragments only at the site of
interest. Although these strategies allow profiling of histone modifi-
cations in single cells*~***, they do not enrich for specific cell types,
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Fig.1|sortChIC maps histone modificationsinsingle cell. a, Schematic of the
sortChIC method. Fixed and permeabilized cells are stained with an antibody
targeting a histone modification. Inactive pA-MNis added, tethering MN to the
histone modification antibody. Single cells are FACS sorted. MN is activated to
induce specific cuts in the genome. UMIs and cell-specific barcodes are ligated

= Pseudobulk sortChIC
(z score)

= ENCODE bulk ChIP
(log, fold change)

b

24
A

=u

H3K4mel
single cells
oolL'L

0

=u

H3K4me3
single cells
Gov

-3

=Uu

H3K9me3
single cells
or9

=Uu

H3K27me3
single cells
998

- «

= X IR Rl
— At ISR
135 136 137 138

Human chr3 (MB)

to the cut fragments. Barcoded fragments are pooled, amplified and sequenced.
b-e, Location of cuts in H3K4mel (b), H3K4me3 (c), H3K9me3 (d) and H3K27me3
(e) inindividual K562 cells along a4 MB region of chromosome three. Black
traces represent the sortChIC signal averaged over allindividual cells, blue traces
represent ENCODE ChlIP-seq profiles.

makingitchallengingto profilerare cell types, such as HSCs, that con-
tribute about 0.01% of the cells®. Therefore, we develop sort-assisted
single-cell chromatin immunocleavage (sortChIC), which combines
single-cell histone modification profiling with cell enrichment.

Results

SortChIC maps histone modifications in single cells

Todetect histone modifications in single cells, we stain surface antigens
for cell type recognition, fix cells in ethanol and incubate them with
an antibody against a histone modification. We then add pA-MN that
binds to the histone-bound antibody at specific regions of the genome
where the modificationis present (Fig. 1a). Subsequently, single cellsin
Gl phase ofthe cell cycle are sorted based on their Hoechst staining into
384 well plates (Extended Data Fig.1a). Next, MN is activated by adding
calcium, allowing MN to digest antibody-proximal internucleosomal
DNA regions. Removing the need for purification steps, nucleosomes

aredigested and genomic DNA fragments are ligated to adapters con-
taining a unique molecular identifier (UMI) and cell-specific barcode.
The genomic fragments are amplified by in vitro transcription and
PCR and sequenced.

TotestsortChIC performance, we applyitto the well-characterized
cellline K562, where we map four histone modifications that represent
major chromatin states regulating gene expression (Fig. 1b—e). For
modifications associated with gene activation, we profile H3K4mel
(Fig.1b) and H3K4me3 (Fig. 1c), found at active enhancers and promot-
ers and promoters of active genes, respectively**. For modifications
associated with repression, we profile H3K9me3 found in gene-poor
regions (Fig. 1d) and H3K27me3 found in gene-rich regions (Fig. 1e)*.

For each histone modification, we process 1,128 G1 phase K562
cells. Using the MN cut site position and UMIs, we map unique MN
cut sites. Following filtering, we retain 3,113 cells (Extended Data
Fig. 1b) with the large majority of reads falling in peaks identified
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Fig.2|Active and repressive chromatin states in single cells from the mouse
BM. a, UMAPs of H3K4me3 (n = 6,262), H3K4mel (n = 6,242) and H3K27me3
(n=3,452) single-cell epigenomes from whole BM (unenriched), Lin"and LSK
sorted populations. b, UMAPs colored by cell type. Eryths, erythroblasts; baso/
eosino, basophils/eosinophils; pDCs; monocytes; HSPCs, hematopoietic stem
cells and early progenitor cells. c, UMAP summary colored by sortChIC signal
inaregion =5 kb centered at the transcription start site of £bf1, a B-cell-specific
gene. d, Same as cbut for aregion around $100a8, a neutrophil-specific gene.
e, Heatmap of sortChIC signals for regions around cell-type-specific genes
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showing high levels of active marks (H3K4mel, H3K4me3) in their respective
celltype, and correspondingly low levels in the repressive mark (H3K27me3).f,
Example of active and repressive chromatin states near the transcription start
site of a B-cell-specific TF Ebf1. H3K4me3 and H3K4mel show large number of
cuts specifically in B cells; H3K27me3 shows B-cell-specific depletion of cuts.
Colored line plots (same color code as in b) represent the average sortChIC
signal for cells of the same cell type. Individual cells are ordered by cell type and
color-coded onthe left.
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from pseudobulks (Extended Data Fig. 1c). We compare pseudobulk
sortChlC profiles with bulk ChIP-seq results®”’, which are highly corre-
lated (Pearson correlation > 0.8; Extended Data Fig. 1d-e). Single-cell
tracks underneath each average track (Fig. 1b-e) illustrate the high
reproducibility of the signal between cells. Of note, the H3K9me3
histone modification profiles obtained from sortChIC represent the
heterochromatin state without the need for input normalization
(Extended Data Fig. 1f), which is required for ChIP experiments®.
Lastly, we compare the sensitivity and specificity of sortChIC with exist-
ing methods. To compare sortChIC with pA-MN?>?*® and Tn5-based
methods®**** (Extended Data Fig. 2a-c), we quantify sensitivity and
signal specificity (Gini coefficient and signal enrichment). In terms of
sensitivity, we find sortChlIC to perform better than scChIP-seq and
Tn5-based methods. While single-cell chromatin immunocleavage
sequencing (scChlC-seq) and indexing single-cell immunocleavage
sequencing (iscChIC-seq) have comparable or slightly higher sensitivity
(Extended Data Fig. 2b,c, top left panel), both achieve this high signal at
the expense of specificity (Extended DataFig. 2b,c, bottom panels). A
caveat for these comparisonsis the use of different cell lines, antibodies
and primary tissue samples.

Active marks prime HSPCs, H3K27me3 marks mature
alternatives

Next, we map active and repressive chromatin changes during blood
formation. To equally include rare and common cell types from the
mouse BM, we use cell surface markers Scal, cKit and a set of lineage
markers (Lin) to sort whole BM, lineage marker negative (Lin") and LSK
(Lin"Scal’ckit") cells that contain HSCs and multipotent progenitors
(MPPs) and profile the same set of histone modifications (Extended
Data Fig. 3a). Applying Latent Dirichlet Allocation (LDA)* and visual-
izing the output with Uniform Manifold Approximation and Projec-
tion (UMAP) reveals distinct clusters that contain LSKs, unenriched
cell types or mixtures of lineage negative and unenriched cell types
(Fig.2aand Extended Data Fig.3b). We use the H3K4me3 signal in pro-
moter regions (transcription startsite (TSS) 5 kb) to determine marker
genes for eight blood cell types (Fig. 2b). These regions contain known
cell-type-specific genes such as the B-cell-specific transcription fac-
tor (TF), EbfI (Fig. 2¢), and the neutrophil-specific gene, S100a8 (Fig.
2d). Specific regions are marked in a cell-type-dependent manner for
H3K4mel and H3K4me3. Conversely, these regions are depleted for
H3K27me3 (Fig. 2e). This is exemplified by the TSS of the B-cell-specific
TF, Ebf1 (Fig. 2f). Next, we analyze published scRNA-seq data to deter-
mine mRNA abundances* associated with our cell-type-specific pro-
moter regions and confirmthat these sets of genes are cell-type-specific
(Extended DataFig.3c). Interestingly, we find that HSPCs already have
H3K4me3 and H3K4mel signal at the EbfI promoter and gene body
suggesting HSPCs may already have active marks at genes before their
expression in different lineages.

We extend the EbfI observation to all TSSs in our eight
cell-type-specific gene sets defined using H3K4me3, by compar-
ing fold changes between differentiated cell type relative to HSPCs
(Extended Data Fig. 3d-f). We find both up- and down-regulation of
active chromatin. for example, at B-cell-specific genes, active chroma-
tin levels increase from HSPCs to B cells and plasmacytoid dendritic
cells (pDCs) but decrease in basophils/eosinophils, neutrophils and
erythroblasts (Extended Data Fig. 3d,e). This divergence occursin all
eight cell-type-specific gene sets, suggesting that cell-type-specific

regionsin HSPCs already have anintermediate level of active chromatin
marks, which are modulated depending on the final cell type.

Repressive H3K27me3 at B-cell-specific genes, by contrast, is
upregulated innonB cells compared to HSPCs, while only few of them
lose H3K27me3 signal upon B-cell differentiation (Extended Data
Fig. 3f). Across other cell types, we observe a similar trend where
mature cells upregulate H3K27me3 at genes specific for alternative
cell fates, likely silencing cell type inappropriate genes.

In sum, our analysis of hematopoietic cell-type specific genes
shows that in HSPCs active chromatin premarks genes of different
blood cell fates, while H3K27me3 repressive chromatin during hemat-
opoiesis silences genes of alternative fates.

Dynamic H3K9me3 regions reveal HSPCs and three lineages

To understand chromatin regulation in heterochromatic regions,
we explore H3K9me3. H3K9me3 analysis reveals the following four
clusters: one cluster containing mostly LSKs, one containing mostly
unenriched cells and two clusters containing a mixture of unenriched
and lineage-negative cells (Fig. 3a,b). Large megabase-scale domains
marked by H3K9me3 are constant across cell types; however, smaller
regions display cluster-specific signals (Fig. 3c). Analysis of 50 kb
regions acrossthe genomeidentified 6,085 cluster-specific H3K9me3
regions (g <107, deviance goodness of fit). These regions have a 62.8 kb
median distance to the nearest TSS, while noncluster-specific H3K9me3
regions have a138 kb median distance toa TSS (Extended Data Fig. 4a).
This suggests that cluster-specific H3K9me3 regions may be associated
with gene regulation.

We hypothesize that H3K4mel may also show differential enrich-
mentin these cluster-specific H3K9me3 regions. Therefore, we select
150 regions with the largest depletion of the H3K9me3 compared to
HSPC, resulting in four sets of cluster-specific regions (Extended Data
Fig.4b). The H3K4melsignalin each of these four sets of regions shows
cell-type-specific enrichment (Extended Data Fig. 4c), which anticor-
relates with H3K9me3 (Fig. 3d). We use this anti-correlation to annotate
H3K9me3-defined cell clusters as erythroid, lymphoid and myeloid line-
ages (Fig.3e). Wefind that regions depleted of H3K9me3 in HSPCs show
upregulation of H3K4mel in HSPCs (Fig. 3f). For H3K9me3-depleted
regionsinmyeloid cells, we find that H3K4melis upregulated not only
in neutrophils but also in other cell types that share the myeloid line-
age, such as monocytes (Fig. 3g). This anti-correlation is exemplified
at the Gbel locus. In this region, HSPCs, lymphoid and myeloid cell
types show enrichment of H3K4melaccompanied by amarked deple-
tionin H3K9me3 (Fig. 3h). At these H3K9me3 regions, we also detect
cell-type-specific signal in H3K4me3 and in H3K27me3, although the
pattern is weaker than in H3K4mel (Extended Data Fig. 4d). Overall,
we find fewer cell clusters with distinguishable H3K9me3 distribution
compared to active chromatin marks. We show that this reduction is
the consequence of cell types of the same lineage sharing the same
H3K9me3 signal.

Repressive chromatin changes are mostly cell fate-independent
We next ask whether global patterns in chromatin dynamics during
hematopoiesis differ between repressive and active marks. We apply
differential analysis on 50 kb regions for all four marks, resulting
in 10,518 dynamic bins for H3K4mel, 2,225 for H3K4me3, 5,494 for
H3K27me3 and 6,085 for H3K9me3 (Supplementary Table1). Foreach
histone modification, we count the cell type pseudobulk signal across

Fig.3|Heterochromatin state dynamics during hematopoiesis. a, UMAP of
H3K9me3 (n = 3,631) representing single cells from whole BM (unenriched), Lin”
and LSK sorted cells. b, Fraction of unenriched, Lin"and LSK cells in each of the
four H3K9me3 clusters. ¢, Region showing the H3K9me3 pseudobulk sortChIC
signal of the four clusters. d, Heatmap of 50 kb bins displaying the relative
H3K9me3 (left) and H3K4mel (right) sortChiC signal in erythroblasts, lymphoid,
myeloid and HSPCs. e, UMAP of H3K9me3 and H3K4mel sortChIC data, colored

by cell type. f, Single-cell signal of clusterl-depleted bins (averaged across the 150
bins) showing low H3K9me3 and high H3K4melsignal in lymphoid cells. Same
bin set was used for both histone modifications. g, Single-cell signal of cluster3-
specific bins showing low H3K9me3 and high H3K4mel signal in myeloid cells. h,
Zoom-in of the same genomic region in ¢ for H3K9me3 and H3K4mel pseudobulk
sortChICsignal.
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the bins and perform hierarchical clustering. In active marks, we find  active chromatin (Extended Data Fig. 3d-e). In accordance with the
that the largest differences come from erythroblast versus noneryth-  same TSS-centric analysis, we find intermediate levels of H3K4mel
roblasts (Extended Data Fig. 5a). This observation is consistent with  and H3K4me3 in HSPCs (Extended Data Fig. 5a), suggesting a more
the TSS analysis, where the erythroblasts show the largest changesin  accessible chromatin state in HSPCs.
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Fig. 4 | Repressive chromatin dynamics are largely cell fate-independent. a,
Dimensionality reduction from GLMPCA (Methods) showing the two main latent
factors explaining the sortChIC data for each mark. b, Barplot of the fraction

of changing bins (Methods) that are gained or lost in all non-HSPCs relative

to HSPCs. Each cell type shows two bars, one for each direction (either gained
orlost). Fraction is calculated by dividing the number of bins that change cell

fate independently by the number of bins that change in that cell type for that
direction. ¢, Genome browser view of the Hoxa region showing an H3K27me3
domain thatis gained during hematopoiesis. Top shows H3K27me3 and the
bottom H3K4me3. d, Genome view of the Igh region displaying the loss of an
H3K9me3 domainin lymphoid and myeloid cells. Top shows H3K9me3 and the
bottom H3K4me3.

We used generalized principal component analysis (GLMPCA)
to project the active mark data onto the two most significant axes
of chromatin variation*’, which reveals a central position for HSPCs
relative to other cell types, suggesting that active chromatin during
hematopoiesis diverges depending on the cell type (Fig. 4a, left two
panels). By contrast, clustering repressive chromatin dynamics mainly
distinguishes HSPCs and differentiated cell types, (Extended Data Fig.
5a). Projecting the repressive mark data reveals a peripheral position
of HSPCs compared to other cell types (Fig. 4a, right two panels). By
comparingbins that gain orlose chromatin marksin mature cell types
relative to HSPCs, we find more than half of the bins that gain or lose
repressive marks co-occur in all other cell fates (Fig. 4b), suggesting

that changes in repressive chromatin during hematopoiesis are inde-
pendent of cell fate. By contrast, only 8% of bins in active chromatin
show cell-type-independent changes. Differences between HSPCs and
non-HSPCs at affected bins show distinct separation between HSPCs
and non-HSPCs in repressive marks. We do not observe this for active
marks (Extended Data Fig. 5b), corroborating that a large fraction of
changes in repressive chromatin is independent of cell fate. These
cell fate-independent changes are exemplified for H3K27me3 at the
Hoxaregion, which shows low levels of H3K27me3 in HSPCs, which are
upregulated in differentiated cell types (Fig. 4c). In addition, HSPCs
at the immunoglobulin heavy chain (/gh) region carry high levels of
H3K9me3, which is lost in myeloid and lymphoid cells, suggesting
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drive cell-type-specific H3K4mel distributions. The ERG motifis predicted to
be active in HSPCs, the CEBP motif in neutrophils, the EBF motif in B cells and
the TAL1 motifin erythroblasts. Cell type for each cell clusterislabeledinb.b,
Heatmap of H3K4mel TF motif activities in single cells. Rows represent motifs.
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that this region, encoding the heavy chains of immunoglobulins, is
derepressed during differentiation (Fig. 4d).

Next, we ask whether H3K27me3 and H3K9me3 regulate distinct
processes. We confirm that H3K27me3 dynamics occur at TSS-proximal
GC-rich regions while H3K9me3 is dynamic at TSS-distal AT-rich
regions (Extended Data Fig. 5¢c-d)*°. Gene ontology (GO) analysis of
H3K9me3 regions unique to HSPCs shows enrichment of phagocytosis,

complementactivation and B-cell-receptor signaling (Extended Data
Fig. 5e), suggesting that HSPCs use H3K9me3 to repress genes that
are required in differentiated blood cells. In contrast, GO analysis
of HSPC-specific H3K27me3 regions does not show enrichment for
biological processes related to blood development.

Taken together, we find that during differentiation, intermediate
levels of active chromatin marks in HSPCs are up- or down-regulated
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generates the observed double-incubated data. d, Output of cluster-pair
predictions from H3K4mel + H3K9me3 double-incubated cells. Cells are
colored by their predicted H3K9me3 clusters. e,f, UMAP representation of the
H3K4mel + H3K9me3 landscape, colored by their predicted H3K9me3 cluster (e)
or H3K4mel cluster (f).

depending on the specific cell fate. In contrast, most dynamic
repressive chromatin regions are gained or lost independent of the
specific cell fate.

TF motifs underlie chromatin dynamics

Next, we ask whether regulatory DNA sequences underlying the
sortChIC data can explain the chromatin changes. We hypothesize that
regions with correlated sortChIC signal across cells can be explained
by TF binding motifs shared across these regions*"*? (Extended Data
Fig. 6a). We adapted MARA, aridge regression framework, to infer TF
motif activities in single cells. SortChIC signals are the observed vari-
ables, TF binding motifs are covariates and TF motif activities are latent
variables to beinferred. We find statistically significant TF motifs that
explaincorrelationsin single-cell chromatin dynamics across different
genomic regions. We use TF motifactivity*> *°as a term to connect our
method to earlier contributions to this problem. Overlaying the pre-
dicted single-cell TF motifactivities onto the UMAP shows the expected

cell-type-specific TF motif activities. We find high ERG motif activity in
HSPCs* (Fig. 5a, left), high CEBP motif activity in neutrophils***° (Fig.
5a, mid-left), high EBF motifactivity in B cells* (Fig. 5a, mid-right) and
high TAL1 motif activity inerythroblasts®™ (Fig. 5a, right), in agreement
with thereported role of each TF.

We summarize the inferred single-cell TF activities underlying
the cell-type-specific distribution of active H3K4mel in Fig. 5b. We
predict motifs active in pDCs belonging to the IRF and RUNX family
(Fig.5b and Extended Data Fig. 6b-d), consistent with theirroleintype
linterferonsecretion’>*, dendritic cell progenitor development®* and
pDC migration®, respectively. We find natural killer (NK) cells to have
high E26 transformation-specific (ETS) family motif activity (Fig. 5Sb and
Extended DataFig. 6b,e), consistent with the role of Etslin the develop-
mentofnaturalkiller and innate lymphocyte cells**. Finally, we predict
TFsthat have thelowest activityin HSPCs and pDCs, such as the NR4A
family (Fig. 5b and Extended Data Fig. 6b,f). Considering that NR4A
family members are highest expressed in HPSCs (data not shown), we
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conclude that NR4A mainly prevents enhancer activation, consistent
with a repressive function of Nr4al in HSPCs***. The low activity of
several TFs suggests that pDCs could be in a more progenitor-like
state, consistent with our pseudobulk clustering results in H3K4mel,
H3K4me3 and H3K27me3 (Extended Data Fig. 5a).

We apply our TF motif analysis to the two repressive chromatin
landscapes to predict motifs that explain HSPC-specific distributions.
InH3K27me3, we predict a CCAT motifbelongingto the Yin Yang fam-
ily®, specifically active in HSPCs (Fig. 5¢). The YyI gene encodes a
polycomb group protein, shown to regulate HSC self-renewal®. In
H3K9me3, we predict an AT-rich motifbelonging to the transcriptional
repressor PLZF, specifically active in HSPCs (Fig. 5d), that has been
implicated in regulating the cell cycle of HSCs®*.

Taken together, our framework predicts TFs underlying
cell-type-specific chromatin dynamics. We suggest that differentiating
cells decide which active regions to up- or down-regulate depending
onthe cell-type-specific TFs that associate with these regions.

Distinct cell types can share similar heterochromatin states

To understand the relationship between the eight cell types identi-
fied by histone marks of gene-rich regions (H3K4mel, H3K4me3 and
H3K27me3) to the four clusters identified by H3K9me3, we stain cells
with both H3K4meland H3K9me3 antibodies®. This double-incubation
strategy generates cuts that come from both H3K4mel and H3K9me3,
and uses our single mark sortChIC data to infer the relationships
between the two marks in single cells (Fig. 6a). We sort Lin” and
unenriched cells to profile abundant and rare cell types. Joint UMAP
landscapes reveal clusters that are depleted or enriched for mature
lineage markers (Fig. 6b). We use clusters from H3K4meland H3K9me3
single-incubated data to develop amodel of how the double-incubated
data could be generated (Fig. 6¢).

For this, we select 811 regions associated with cell-type-specific
genesfoundinourH3K4melanalysis (Fig. 2e) and 6,085 cluster-specific
regions (50 kb bins) found in our H3K9me3 analysis (Extended Data
Fig. 5a, right panel) as features in our model, making a total of 6,896
regions. We verify that these features show cluster-specific differences,
by clustering the single-incubated H3K4mel and H3K9me3 signal
across cell types (Extended Data Fig. 7a,b).

Because we do not know which cluster from H3K4mel pairs with
which cluster from H3K9me3, we generate an in-silico model of all pos-
sible pairings (Fig. 6c, left). For each double-incubated cell, we perform
model selection to select the cell pair with the highest probability
(Fig. 6¢, right, and Extended Data Fig. 7c-e). This selection reveals that
celltypes shareacommon heterochromatinlandscape, reflecting their
myeloid® or lymphoid lineage® (Fig. 6d). Erythroblasts do not sharea
heterochromatin landscape with any other cell type. Surprisingly, we
find pDCs associated with the HSPC-enriched H3K9me3 landscape,
suggesting that these cells may have already committed toward apDC
fate through active chromatin, while their heterochromatin remains
undifferentiated.

This confirms that distinct cell typesinrelated lineages can share
their heterochromatin state (Fig. 6e,f), suggesting a hierarchical model
where changes in heterochromatin mightrestrictlineages and changes
inactive chromatin define cell types within lineages.

Distinct repressive chromatin trajectories in hematopoiesis
To systematically analyze a continuous trajectory from
fluorescence-activated cell sorting (FACS)-validated HSCs to differ-
entiated cell types across histone modifications, we expand our data-
set to include different HSPC subpopulations and cKit* progenitor
cells. Specifically, we sort HSCs, including both long-term (LT) and
short-term (ST) HSCs, MPPs, common myeloid progenitors (CMPs),
and megakaryocyte/erythrocyte progenitors (MEPs). Furthermore,
we validate our differentiated cell types by sorting B cells, NK cells,
erythroblasts, neutrophils, monocytes, pDCs and cDCs (Extended
Data Fig. 8a). In total, we increase our BM dataset by 17,270 new cells
across H3K4mel, H3K4me3, H3K27me3 and H3K9me3 (Extended Data
Fig. 8b), giving a total of 39,857 cells in our dataset.

A subset of the new sortChIC cells has combinations of Scal,
cKit and Lin marker levels from FACS that allow the definition of a
FACS-based differentiation stage (Fig. 7a). We plot these Scal, cKit,
Lin-stained cellsontoaternary plotto project cellsalonga FACS-defined
differentiation trajectory. Cells arrange along a continuum of differen-
tiation potential as follows: from uncommitted progenitors (Scal®, cKit"
and Lin") and committed progenitors (Scal’, cKit"and Lin") to mature
cells (Scal’, cKit”and Lin®). Plotting relative levels of Scal, cKit and Lin
onto the UMAP reveals HSCs, progenitors and mature cells (Fig. 7b).

Next, we use the labeled cells from FACS (Extended Data Fig. 8a)
toassigneach celltoacelltypeinasupervised and probabilistic man-
ner (Extended Data Fig. 9a-e), creating a high-confidence dataset
of 14 subtypes (Fig. 7c). Of note, we find that monocytes are epige-
netically distinct from neutrophils and DCs in H3K4mel, H3K4me3
and H3K27me3, but in H3K9me3 all mature myeloid cell types appear
to cluster together (Fig. 7c and Extended Data Fig. 9a-c). We validate
the presence of pDCs in our dataset, which forms distinct islands in
H3K4mel, H3K4me3 and H3K27me3 but are spread across the HSPC
cluster in H3K9me3 (Extended Data Fig. 9b).

We analyze neutrophil, B cell, erythroblast and HSPC-specific
marker gene sets (+5 kb around TSS) for H3K4mel, H3K4me3 and
H3K27me3 alterations from HSCs to different mature cell types. For
mature cell-type-specific genes, we find that active marks start with
intermediate levels in HSCs, which diverge during differentiation
into mature cell types (Fig. 7d and Extended Data Fig. 10a-c). In con-
trast, marker genes of mature cell types show low H3K27me3 in HSCs
that increase during differentiation in cell types that do not express
them (Fig. 7d and Extended Data Fig. 10b-c, right). Genes specifically
expressed in HSPCs lose active marks and accumulate H3K27me3in all
differentiation trajectories (Extended Data Fig.10d).

To summarize these trajectory dynamics, we take dynamic bins
(Supplementary Table 1) and apply principal component analysis
(PCA) (Fig. 7e). To estimate chromatin velocities for each mark, we
fit a trajectory-specific cubic spline across pseudotime for each bin,
then calculate the derivatives with respect to pseudotime. Bin-level
velocities are then projected onto the PCA for each histone mark
(Fig.7e).Inactive marks, we find trajectories that diverge according to
erythroid, myeloid and lymphoid lineages. Repressive chromatin, by
contrast, shows cell-type-independent changes before lineage speci-
fication. At the binlevel, we use regions that are upregulated for each
histone mark independently for neutrophils, B cells or erythroblasts

Fig.7 | Trajectory analysis across stem, progenitor and mature cell types
reveal histone mark-specific chromatin velocities. a, sortChIC design to
capture stem, progenitor and mature cell types during hematopoiesis. Ternary
plot of cells for Scal, cKit and Lin marker levels measured by FACS. b, Scal, cKit
and Lin-stained cells plotted in UMAP space. Cells with staining are colored
according to their relative levels of Scal, cKit and Lin, as coded in a. Cells
unstained for these surface molecules are colored gray. c, UMAP integrating all
BM sortChiIC data for each of the four histone modifications. Cell type identity is
based onthe sorted cell types explained in Extended Fig. 8a (number of cells for
H3K4me3, n=10,952; H3K4mel, n =12,085; H3K27me3, n = 7,934 and H3K9me3,

n=28,886).d, Mean sortChIC signal of neutrophil marker genes (defined from
heatmap Fig. 2e). The same 150 regions are used for each histone modification. e,
First two principal components for the sortChIC data. Chromatin velocities are
calculated for each bin and then projected onto the PCA for each modification
separately (Methods). f, Mean sortChlIC signal for bins that are upregulated
inneutrophils relative to HSPCs across cell types for the four histone marks
independently. Regions are defined for each histone modification separately
(H3K4me3,1,009 bins; H3K4mel, 4,473 bins; H3K27me3, 2,549 bins and
H3K9me3, 2,838 bins). Density plots below show the distribution of cell types
along the neutrophil trajectory (HSCs, LTs, STs, MPPs, CMPs and neutrophils).
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relative to HSPCs and plot the mean histone mark levels per cellalong  active marks diverge across cell types, while repressive marks show
pseudotime (Fig. 7f, Supplementary Fig. 1a-b, regions defined previ- = dynamicsthatare shared across cell types consistent with our earlier
ously, and Supplementary Table 1). For all three bin sets, we find that ~ findings (Fig. 4b).
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Fig. 8 |Hierarchical chromatin regulation during blood formation. Graphical
summary of chromatin dynamics as dendrograms showing relationships
between HSPCs and differentiated cells. During hematopoiesis, the direction

of changein active chromatin depends on the specific cell fate, resulting
inglobal differences that are larger between differentiated cell types from
different lineages. By contrast, many regions gain or lose repressive marks

during hematopoiesis independent of the specific cell fate, resulting in global
differences that are the largest between HSPCs and differentiated cell types.
Dynamics in active marks and H3K27me3-marked repressive chromatin reveal
cell type information, while dynamics in heterochromatin regions marked by
H3K9me3 reveal lineage information. CP, common progenitors.

Chromatin commitment coincides with lineage restriction

To compare the global dynamics of the four different histone marks
along acommon trajectory, we use the marker levels of Scal, cKit and
Lin and asked when global chromatin states are specified along the
Scal-cKit-Lin trajectory. Overlaying the relative levels of Scal, cKit
and Linonto the PCA shows that Scallevels are already low when chro-
matin has specified the myeloid (CMPs) or erythroid lineage (MEPs;
Supplementary Fig. 2a). Plotting principal component 1 along the
Scal-cKit-Lin trajectory shows that first differences on chromatin level
can be observed at the exit of multipotency, when MEPs and CMPs
emerge after the loss of Scal (Supplementary Fig. 2b,c), suggesting
that chromatin changes co-occur with lineage commitment. These
results arein line with previous studies identifying a switch from mul-
tilineage priming to lineage restriction on marker genes during pro-
genitor cell commitment®. Overall, we apply sortChIC to interrogate
FACS-validated rare subpopulations and differentiated cell typesin the
BM, enabling systematic analysis of active and repressive chromatin
dynamics during hematopoiesis.

Discussion

Here we provide acomprehensive map of chromatinregulationatboth
euchromatic and heterochromatic regions during blood formation.
We find that repressive chromatin shows distinct dynamics compared
with active chromatin, demonstrating that profiling repressive chro-
matinregulationinsingle cells reveals new dynamics. Active chromatin
premarks in HSPCs genes of all lineages and is up- or down-regulated
depending on the specific cell fate, mediated by cell-type-specific
TFs. Consequently, active chromatin shows divergent changes for
different blood cell fates (Fig. 8, left panel). In contrast, changes in
repressive chromatin often occur in the same direction regardless of
the specific cell fate, resulting in large differences between HSPCs and
mature cell types (Fig. 8, middle and right panel). In accordance with
the premarked active chromatin state in HSCs, the majority of mature
cell-type-specific genes show low levels of H3K27me3 in HSCs and
consolidate their differentiation choice by silencing genes specific to
HSCs and of the unchosen trajectory. This progressive transition to
arestricted chromatin state agrees with previous studies showing a
genome-wide transition during ES cell differentiation®. Although our
results are correlative, previous work characterizing the consequences
of HSC-specific deletion of EED®, a core component of both PRC1and

PRC2, showed aloss of differentiation capacity, while preserving HSCs
self-renewal. This suggests anintegral role of H3K27me3 after the onset
of lineage commitment in hematopoiesis.

Our findings further expand the role of H3K9me3'¢. We find that
H3K9me3 changes underlie the lineage restriction in hematopoiesis
and are rewired as HSPCs differentiate. Although in vivo dynamics in
H3K9me3 have beenreported during early development'*™¢, our results
extend the knowledge of H3K9me3 dynamics to homeostatic renewal
inadult physiology. Joint analysis of active and repressive marks cor-
roborates the hierarchical chromatin changes and shows a similarity
between pDCs and HSPCs®*”° in their heterochromatin state.

Our FACS sorting strategy profiled the epigenomes of rare and
abundantcell typesin the BM. Although our analysis did not find clear
subpopulations within rare progenitor cells previously observed in
scRNA-seq studies*”", the cell type resolution obtained with sortChiIC
iscomparable to scRNA-seq studies. Rather than awayto further sub-
categorize existing cell types, sortChIC profiles layers of regulation
that guide differentiation. If the sensitivity can be further improved,
additional chromatin states might become visible that are indistin-
guishable from scRNA-seq. Future multi-omics studies integrating the
detection of chromatin modifications with transcription’>”* should
further facilitate the integrated analysis of diverse histone modifica-
tions and allow us tomore clearly understand how these multiple layers
of gene regulation are related.
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Methods

Ourresearch complies with all relevant ethical guidelines. Experimen-
tal procedures were approved by the Dier Experimenten Commissie of
the Royal Netherlands Academy of Arts and Sciences and performed
according to the guidelines.

Animal experiments

Primary BM cells were collected from 3-month-old male C57BL/6 mice.
Femur and tibia were extracted, and the bones ends were cut away to
access the BM, which was flushed out using a 22 G syringe with HBSS
(-Ca,-Mg, -phenolred; Gibco, 14175053) supplemented with Pen-Strep
and 1% FCS. The BM was dissociated and debris was removed by passing
it through a 70 pm cell strainer (Corning, 431,751). Cells were washed
with 25 mlsupplemented HBSS before lineage marker staining was per-
formed following the instructions of the EasySep Mice Hematopoietic
Progenitor Cell IsolationKit (Stemcell), using half of the recommended
concentration of the biotinylated antibodies. This was followed by
30 minincubation at 4 °C with a staining layout-dependent antibody
cocktail detailed below. Where indicated lineage depletion was per-
formed by incubating cells with magnetic streptavidin beads follow-
ing instructions of the EasySep Mice Hematopoietic Progenitor Cell
Isolation Kit. After two additional washes with HBBS (+PS, +FCS), cells
were prepared following the sortChIC protocol for the four different
histone modifications.

Cell culture

K562 cells (ATCC CCL-243) were grown in RPMI 1640 Medium Glu-
taMAX, supplemented with 10% FCS, Pen-Strep and nonessential amino
acids. After collecting, cells were washed three times with room tem-
perature PBS before continuing with the sortChIC protocol.

sortChIC-seq: Cell preparation: fixation. Three buffers are used for
the majority of cell preparation. A basic ChIC buffer (47.5 mlH20 RNAse
free, 1ml 1M HEPES pH 7.5 (Invitrogen), 1.5 ml 5 M NacCl, 3.6 pl pure
spermidine solution (Sigma Aldrich), 0.05% Tween20), a Wash buffer
(Basic ChIC buffer with1Ethylenediaminetetraacetic acid (EDTA)-free
protease inhibitor cocktail tablet per 50 ml (Sigma Aldrich)) as well as
aAntibody incubation buffer (Wash buffer with4 ml ml-10.5 MEDTA).
All steps performed on ice were as follows: in step 1, cells were resus-
pended in 300 pl PBS per 1 million cells in a 15 ml protein low binding
falcon tube and 700 pl ethanol (=20 °C precooled) per 1 million cells
are added while vertexing cells at middle speed. In step 2, cells were
fixed for 1 hat-20 °C. Instep 3, after fixation, cells were washed twice
in1 mlantibody incubationbuffer.In case cells had to be stored before
sorting, DMSO was added to a final concentration of 10% and cells were
frozenat-80 °C. After thawing, cells are washed once in 0.5 mlantibody
incubation buffer before continuing with pA-MN targeting.

sortChlC-seq: Cell preparation: nuclei. Cells were washed oncein1 ml
antibody incubation buffer (0.05% Tween replaced by 0.05% Saponin
for this and following steps with nuclei). Nuclei were isolated by further
Saponinincubation overnightin parallel to the antibody staining. For
BM, we sorted nine plates each for H3K4mel, H3K4me3 and H3K9me3.

sortChIC-seq: pA-MN targeting. Instep 4, cellswere pelleted at 500 g
for 4 minand resuspended in 200 pl antibody incubation buffer per1
million cells and were aliquoted into 0.5 ml protein low binding tubes
containing the primary histone mark antibody (details canbe foundin
the Supplementary Note section Materials section) diluted in 200 pl
antibody incubation buffer;instep 5, cells wereincubated overnight at
4°Conaroller, (step 6) before they were washed once with 500 pl Wash
Buffer.Inthe case of double-labeling experiments, cells wereincubated
with antibodies against H3K4meland H3K9me3 together at the same
concentrations as for the single-mark experiments. Afterwards (step
7), cells were resuspended in 500 pl wash buffer containing pA-MN

(3 ng ml™) and Hoechst 34580 (5 pug mi™) and (step 8) incubated for1 h
at4 °Conaroller.Instep 9, finally, cells were washed an additional two
times with 500 pl Wash Buffer before passing them through a 70 pm
cell strainer (Corning, 431751).

sortChIC-seq: FACS sorting. Instep 10, for all experiments, cells were
gated additionally to cell surface markers for Gl cell cycle stage based
onthe Hoechst staining on an Influx FACS machine into 384 well plates,
containing 5 pl sterile filtered mineral oil (Sigma Aldrich) per well,
using forward scatter and trigger pulse width to further remove cell
doublets. Cells were sorted using index sorting, which records FACS
information for every sorted well. To further exclude missorting of
morethantheintended cell, we used custom sort settings—objective:
single, number of drops=1, extra coincidence=complete empty (no
signal in the previous and next drop) and phase mask=center 10/16
(cellisinthe middle of the sorted drop).

Sort layouts for separate experiments can be found in Extended
Data Figs. 1a,3a and 8a, with total number of plates sorted per condi-
tionfound inSupplementary Table 4. Antibody details canbe foundin
the Supplementary Note section Materials section. Datawas collected
using BD FACS software (version1.2.0.124).

sortChIC-seq: pA-MN activation. The following small volumes were
distributed using aNanodrop Il system (Innovadyme) and plates were
spun for2 minat4 °C and 2,000g after each reagent addition.

In step 11, 100 nl of basic ChIC buffer, containing 2 mM CaCl,,
was added per well to induce pA-MN mediated chromatin digestion.
In step 12, for digestion, plates were incubated for 30 minin a PCR
machine set at 4 °C. Afterwards (step 13), the reaction was stopped
by adding 100 nl of a stop solution containing 40 mM EGTA (chelates
Ca?" and stops MN, Thermo, 15425795),1.5% NP40 and 10 nl2 mg ml™*
proteinase K (Invitrogen, AM2548).Instep 14, plates were incubated in
aPCRmachine for further20 min at4 °C, before chromatinisreleased
and pA-MN was permanently destroyed by proteinase K digestion at
65 °Cfor 6 hfollowed by 80 °C for 20 min to heat inactivate proteinase
K. Afterwards, plates can be stored at —80 °C until further processing.

sortChlC-seq: Library preparation. In step 15, DNA fragments are
blunt-ended by adding 150 nl end repair mix (Supplementary Table 5)
perwelland incubating for 30 min at 37 °C followed by 20 minat 75 °C
for enzymeinactivation. Instep 16, blunt fragments are subsequently
A-tailed by adding 150 nl per well of A-tailing mix (Supplementary
Table 6) and incubating for 15 minat 72 °C. Through AmpliTaq360’s
strong preference to incorporate dATP as a single base overhang
even in the presence of other nucleotides, a general ANTP removal
isnot necessary.

Next fragments are ligated to T-tail containing forked adapters
(see Supplementary Note section Materials for sequences).

Instep 17, for ligation, 50 nl of 5 pM adapter in 50 mM Tris pH 7 is
addedto eachwell withamosquito HTS (ttp labtech). After centrifuga-
tion (step 18), 150 nl of adapter ligation mix (Supplementary Table 7)
are added before (step 19) plates are incubated for 20 min at 4 °C, fol-
lowedby16 hat16 °Cforligationand 10 minat 65 °Ctoinactivate ligase.

Instep 20, before pooling 1 pl of Nuclease-free water was added to
each well to minimize materialloss. Instep 21, ligation products were
pooled by centrifugationinto oil-coated VBLOK200 Reservoir (Click-
Bio) at 500gfor2 minand (step 22) the liquid face was transferred into
1.5 ml Eppendorf tubes and (step 23) was purified by centrifugation
at13,000g for 1 min and transfer into a fresh tube twice. In step 24,
DNA fragments were purified using Ampure XP beads (Beckman Coul-
ter—prediluted1in 8 inbead binding buffer—1 M NaCl,20% PEG8000,
20 mM Tris, pH =8,1mM EDTA) at a bead-to-sample ratio of 0.8. In
step 25, after 15 min incubation at room temperature, beads were
washed twice with 1 ml 80% ethanol resuspending the beads during
the first wash and (step 26) resuspended in 8 pl nuclease-free water.
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After 2 min elution, the supernatant was (step 27) transferred into a
fresh 0.5 mltube. Instep 28, the cleaned DNA isthen linearly amplified
byinvitrotranscription adding 12 pl of MEGAscript T7 Transcription
Kit (Thermo Fisher Scientific, AMB13345) for 12 hat 37 °C. In step 29,
template DNA is removed by the addition of 2 pl TurboDNAse (IVT
kit) and incubation for 15 min at 37 °C. In step 30, the produced RNA
is further purified using RNA Clean XP beads (Beckman Coulter) at
0.8 beads to sample ratio and samples are resuspended in 22 pl of
Nuclease-free water. Instep 31, RNA is fragmented by mixing in 4,4 pl
fragmentation buffer (200 mM Tris-acetate pH 8.1, 500 mM KOAc,
150 mM MgOAc) and incubation for 2 min at 94 °C. In step 32, frag-
mentation is stopped by transferring samples to ice, adding 2.64 pl
0.5 MEDTA and another bead cleanup and samples are resuspended
in12 pl nuclease-free water.

In step 33, 5 pl of the RNA is primed for reverse transcription
by adding 0.5 pl dNTPs (10 mM) and 1 pl random hexamer reverse
transcription primer 20 pM (for sequence see Supplementary Note
section Materials) and (step 34) hybridizing it by incubation at 65 °C
for 5 minfollowed by direct cool down onice. Instep 35, reverse tran-
scription is performed by further addition of 2 pl first strand buffer
(part of Invitrogen,18064014),1 pl DTT 0.1 M (Invitrogen, 15846582),
0.5 pl RNAseOUT (Invitrogen, LS10777019) and 0.5 pl Superscriptll
(Invitrogen, 18064014) and (step 36) incubating the mixture at 25 °C
for 10 min followed by 1 h at 42 °C. In step 37, single-stranded DNA is
purified through incubation with 0.5 pl RNAse A (Thermo Fisher Sci-
entific, EN0531) and (step 38) incubation for 30 min at 37 °C. In step
39, a final PCR amplification to add the lllumina small RNA barcodes
and handlesis performed by adding 25 pl of NEBNext Ultra Il Q5 Master
Mix (NEB, M0492L), 11 pl nuclease-free water and 2 pl of RP1and RPIx
primers (10 uM).

Instep40, PCRis performed with following protocol, activation for
30sat98 C,8-12cycles (depending on starting material) 10 sat 98 C,
30sat 60 C,30sat72°C, final amplification 10 min at 72 °C (step 41)
PCR productsare cleaned by two consecutive DNA bead clean-ups with
a 0.8X bead-to-sample ratio. In step 42, the final product was eluted
in7 pl nuclease-free water, and the abundance and quality of the final
library are assessed by QUBIT and bioanalyzer.

pA-MN production
The pA-MN fusion protein was produced following the methods section
inref.?* (details can be found in Supplementary Note section Materials).

Statistics and reproducibility

No statistical method was used to predetermine the sample size.
Low-quality cells (for example, number of cuts below threshold, cuts
not containing expected MN cut motif, and cells with unspecific cuts)
were removed from further analysis. The experiments were not rand-
omized. Theinvestigators were not blinded to allocate during experi-
ments and outcome assessment.

Data preprocessing
We developed a preprocessing pipeline called SingleCellMultiOm-
ics (version v.0.1.25) to process sortChlC data (https://github.com/
BuysDB/SingleCellMultiOmics/wiki). The pipeline for sortChIC pro-
cesses raw fastq files through the following software:

Demultiplexingis performed with demux.py (from SCMO v0.1.25)
and adaptors are trimmed using cutadapt (version 3.5). Reads are
mapped with bwa (version: 0.7.17-r1188) and are assigned to molecules
with bamtagmultiome.py (SCMO v0.1.25). Finally, count tables are
generated usingbamToCountTable.py (SCMO v0.1.25). The code was
runusing pythonversion 3.7.6 and R version 4.1.2. Details can be found
inthe Supplementary Note section Methods.

Anexample of this full pipelineis availablein the sortchicAnalysis
gitrepository: https://github.com/jakeyeung/sortchicAnalysis/tree/
main/example_processing_pipeline.

Calculating reads falling in peaks in sortChIC for K562 cells

For each histone modification, we merged K562 single-cell sortChIC
data, and used the resulting pseudobulk as input for hiddenDomains”,
with minimum peak length of 1,000 bp. We determined 40,574, 58,257,
28,499 and 28,380 peaks for H3K4mel, H3K4me3, H3K27me3 and
H3K9me3, respectively. For each histone modification, we counted
the fraction of total reads that fall within each set of peaks.

Comparison of sortChIC data with other single-cell chromatin
profiling assays

To performafair comparison of sortChIC datawith other similar assays,
we downloaded the raw data from Bartosovic et al. (GSE163532)?, Gros-
selinetal. (GSE117309)*, Ku et al. (GSE105012)”, Wu et al. (GSE139857),
Kaya-Okur et al. (GSE124557)* and Ku et al. (GSE139857)%, from GEO,
and mapped and quantified them using the pipelines described by the
authorsinthe original study. For details of study-specific processing,
see Supplementary Note section Materials.

Dimensionality reduction based on multinomial models

We counted the number of cuts mapped to peaks across cells and
applied the LDA model*’ (from topicmodels version 0.2-12), which
is a matrix factorization method that models discrete counts across
predefined regions as a hierarchical multinomial model. LDA can be
thought of as a discrete version of probabilistic PCA, replacing the
Gaussian likelihood with a multinomial one’””. Details can be found
in Supplementary Note section Materials.

Defining eight sets of blood cell-type-specific genes for
celltyping

We used the LDA outputs to define topics associated with each cell
type. Details can be found in Supplementary Note section Materials.

Defining genomic regions for dimensionality reduction

We initially defined regions based on 50 kb nonoverlapping win-
dows genome-wide, applying LDA and using the Louvain method
to define clusters to merge single-cell bam files. These merged
bam files were then used to call substantially marked regions using
hiddenDomains™ with minimum bin size of 1 kb. We merged the
regions across clusters and generated a new count matrix using the
hiddenDomains peaks as features. This new count matrix was used
as input for dimensionality reduction.

Batch correctionin dimensionality reduction

Initial LDA of the count matrix revealed batch effects in H3K4meland
H3K9me3 between cell types of plates that contained only one sorted
type. Wefitalinear modelin the latent space learned from LDA with a
cell-type-specific batch effect to correct batch effects. Details can be
found in Supplementary Note section Methods.

Differential histone mark levels analysis

To calculate the fold change in histone mark levels at agenomic region
between a cell type versus HSPCs, we modeled the discrete counts Y
across cellsas aPoisson regression. We fitted anull model, whichisinde-
pendent of celltype, and afull model, which depends on the cell type and
comparedtheir deviances to predict whether aregion was ‘un-changing’
or ‘dynamic’ across cell types. We implemented the model in R using
glm(), details can be found in Supplementary Note section Materials.

Defining bins above background levels for each mark
Foreachmark, we counted fragmentsfallingin 50 kb bins summedacross
all cells. We then plotted this vector of summed counts as a histogram
inlog scale, which shows a bimodal distribution. We manually defined
a cut-off for each mark as a background level and took bins that were
above this cut-off. This cut-offresultedin 22,067,12,661,18,512and 19,881
bins for H3K4mel, H3K4me3, H3K27me3 and H3K9me3, respectively.
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Calculating bins that change independent of cell type

We used a cut-off of ¢ <107 for H3K4mel, H3K4me3 and H3K27me3,
and g <107 for H3K9me3 from the deviance test statistic (details of
‘differential histone mark analysis’ can be found in Supplementary
Note section Materials) to define bins that are changing between cell
types. Details can be found in Supplementary Note section Materials.

Predicting activities of TFsin single cells

We adapted motifactivity response analysis (MARA) described in ref. *?
toaccommodate the sortChIC data. Briefly, we model the log-imputed
sortChIC-seq signal learned from LDA as a linear combination of TF
binding sites and activities of TF motifs using a ridge regression
framework:

M=

Yoc= NegmAmc +€

1

3
I

whereY, isthebatch-corrected sortChIC-seq signal in genomicregion
gincellc; N, , is the number of TF binding sitesinregion g for TF motif
m; A, is the activity of TF motif min cell ¢; eis Gaussian noise. The L2
penalty for ridge regression was determined automatically using an
80/20 cross-validation scheme. Z scores of motifs greater than 0.7 were
kept as statistically significant motifs. Details can be found in Supple-
mentary Note section Materials.

Joint H3K4mel and H3K9me3 analysis by double incubation
We assume that counts from double-incubated cells
(H3K4mel + H3K9me3) were generated by drawing N reads from a
mixture of two multinomials, one from a cell type ¢ from H3K4mel
(parametrized by relative frequencies p.) and one froma lineage [ from
H3K9me3 (parametrized by relative frequencies g,):

Jle.Lw ~ Multinomial (N, wp, + (1 - w)G,).

where wis the fraction of H3K4mel that was mixed with H3K9me3. We
used this modelto calculate the likelihood that a double-incubated cell
was generated by a specific pair of cell type and lineage combination.
Details can be found in Supplementary Note section Materials.

Imputing Scal-cKit-Lin marker levels

Some cells had only two of the three marker levels (Scal, cKitor Lin), and
weimputed the missing third marker by averaging the top ten nearest
neighbors in the cell that contains the missing marker levels. Details
can be found in Supplementary Note section Materials.

Reference-based cell typing using multinomials

We generated a ground truth reference dataset using FACS-defined
labels, then used this reference to calculate the probability of each
cell to be assigned to a cell type by assuming the counts from a cell
were generated from a multinomial distribution parametrized by a
cell type-specific vector of genomic locus probabilities. Details can
be foundin Supplementary Note section Materials.

Inferring pseudotime across different differentiation
trajectories

We manually selected two PCs for each cell type trajectory, selecting
components that show large variation from progenitors (HSCs, LT, ST
and MPPs), committed progenitors (for example, CMPs and MEPs), to
mature cell types (for example, neutrophils, DCs, basophils, mono-
cytes, pDCs, NK cells and B cells) of interest. Details can be found in
Supplementary Note section Materials.

Chromatin velocity in each histone modification
After defining a pseudotime for each differentiation trajectory, we
fit a trajectory-specific cubic spline of the sortChlIC signal along

pseudotime for each genomic region. We then calculate the deriva-
tive using the spline fits to predict the sortChlIC signal of each cell at
pseudotime ¢ to a future pseudotime ¢ + 0.01. Details can be found in
Supplementary Note section Materials’®.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Raw and processed data of this study are submitted to Gene
Expression Omnibus (GEO) and available under accession num-
ber GSE164779. Public data used in this study can be found under
K562 bulk ChIP data (H3K4mel, ENCSROOOEWC; H3K4me3, ENCS-
ROOOEWA; H3K9me3, ENCSROOOAPE; H3K27me3, ENCSROOOEWB),
similar assays (GSE163532, GSE117309, GSE105012, GSE139857,
GSE124557, GSE139857), scRNA-seq of mouse bone marrow
(GSE113495) and TF motif database (http://swissregulon.unibas.
ch/sr/downloads).

Code availability

All processed and downstream scripts are available at https://
github.com/jakeyeung/sortchicAllScripts (https://doi.org/10.5281/
zenodo.7244251). Example vignettestoload and visualize the dataare
available at https://github.com/jakeyeung/sortChlCAnalysis (https://
doi.org/10.5281/zenodo.7108780). Downstream functions and stan-
dalone scripts to run latent Dirichlet allocation and infer TF activi-
ties are available at https://github.com/jakeyeung/scchic-functions
(https://doi.org/10.5281/zenodo.7244208). The multinomial-based cell
typing method AnnotateCelltypesisavailable as an R package at https://
github.com/jakeyeung/AnnotateCelltypes (https://doi.org/10.5281/
zenodo.7108451).
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Extended Data Fig. 3| H3K4mel and H3K4me3 in HSPCs prime for different
blood cell fates, while H3K27me3 in differentiated cell types silences genes
of alternative cell fates. (a) FACS plot for sorting G1 cells of whole bone marrow
(unenriched), lineage negative (Lin"), and Lin",Scal’, cKit* (LSK) populations.
(b) Fraction of cells in each cell type labeled by the sorted population: whole
bone marrow (unenriched), lineage negative (Lin"), and Lin'Scal'cKit" (LSK).

(c) Celltype-specific mRNA abundances for genes associated with regions in
Fig. 2E using pseudobulk analysis of the Giladi et al. 2018 dataset (Methods). (d)
H3K4me3 fold changes of different cell types relative to HSPCs at cell type-

specific regions. Each panel corresponds to a set of cell type-specific regions
defined by the rows of one color in the heatmap of Fig. 2e. Regions are defined by
+/-5kilobase windows centered at transcription start sites of cell type-specific
genes. (e) Same as (d) but for H3K4mel. (f) Same as (d) but for H3K27me3.
Boxplots show 25th percentile, median and 75th percentile, with the whiskers
spanning 97% of the data. For DCs and Baso/Eosino sets, each boxplot contains
n=91and n=25regions, respectively. For all other sets, each boxplot contains
n=150regions.
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Extended Data Fig. 7| Single-incubated data from H3K4mel and H3K9me3
builds a model for inferring cluster-pairs in double-incubated data. (a)
Heatmap of H3K4mel signal across clusters for 811 cell type-specific regions
(Methods). These regions come from cell type-specific genes used in Fig. 2e. (b)
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed
The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
X] A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

X

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

X

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
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Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  single cell FACS data was collected using BD FACS software (version 1.2.0.124)

Data analysis Github repo of processing and analysis scripts: https://github.com/jakeyeung/sortChIC

bwa Heng et al., 2010 Bioinformatics Version: 0.7.17-r1188

topicmodels Hornik & Grun 2011 Journal of Statatistical Software Version: 0.2-12
Glmpca Townes et al. 2019 Genome Biology Version: 0.2.0

motevo Arnold et al. 2012 Bioinformatics Version: 1.11

hiddenDomains Starmer and Magnuson 2016 BMC Bioinformatics Version: 3.1
SingleCellMultiOmics https://github.com/BuysDB/SingleCellMultiOmics/wiki

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

All data produced in this study are deposited onto GEO under accession GSE164779. Token “srmnyauiphmflmx”

Data for K562 specificity comparison:

H3K4mel, Peggy Farnham, ENCSROOOEWC, pAb-037-050 (Diagenode), H3K4me3, Peggy Farnheim, ENCSROOOEWA, 97515 (Cell Signaling)

H3K9me3, Bradley Bernstein, ENCSROOOAPE, ab8898 (Abcam), H3K27me3, Peggy Farnheim, ENCSROOOEWB, 9733S (Cell Signaling)

Data for comparison with similar assays was downloaded from GEO: Bartosovic et. al. (GSE163532), Grosselin et. al. (GSE117309), Ku et. al. 2019 (GSE105012), Wu.
et. al. (GSE139857), Kaya-Okur et. al. (SE124557), and Ku et. al. 2021 (GSE139857)

Transcription factor binding motives were used from the mm10 Swiss Regulon database of 680 motifs (http://swissregulon.unibas.ch/sr/downloads)

bone marrow scRNAseq data was used from Giladi et al 2018 (GSE113495)
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Sample sizes (number of single cells) were chosen based on number of cells per cluster and occurrence of new clusters. They were
determined to be sufficient when each cell type specific cluster contained at least 20 cells, and no new cell clusters were detected after
doubling sample size.

Data exclusions  Single cells were selected based on minimal unique fragments per cell (500 for H3K4me1 and H3K4me3, 1000 for H3K9me3 and H3K27me3),
at least 50% of the reads per cell had to start with the MN specific AT bias and intra-chromsomal variance of maximally 2 fold above average.
More details can be found in Supplementary figl and the methods section.

Replication Results were reproducible over 2 independent biological replica (2 mice) and hundreds of linked biological replicas (thousands of cells)

Randomization  No randomization was performed as there were no treatments/experiments were performed on the animals before cell isolation

Blinding No blinding was performed as only one animal strain was used and results from all experiments were analysed with the identical
computational pipeline, ensuring no influence of the experimentalist on observed differences.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |:| ChiIP-seq
Eukaryotic cell lines |:| Flow cytometry
|:| Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
|:| Human research participants

|:| Clinical data
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Antibodies used H3K4mel, ab8895 (Abeam), Lot: GR3206285-1;
H3K4me3, 07-473 (Merck), Lot: 3093304;
H3K4me3, MA5-11199 (Thermo Fisher), clone: G.532.8, monoclonal;
H3K9me3, ab8898 (Abeam), Lot: GR3217826-1;
H3K9me3, MA5-33395 (Thermo Fisher), clone: RM389, monoclonal;
H3K27me3, 9733S (NEB), clone: C36B11, monoclonal
For Flow cytometry:
C-kit-APC, 105811 (Biolegend), clone: 2B8, monoclonal;
Scal-PeCy7, 108113 (Biolegend), clone: D7, monoclonal;
NK1-Alexa488, 108717 (Biolegend), clone: PK136, monoclonal;
Ter119-PE, 116207 (Biolegend), clone: Ter-119, monoclonal;
CD19-Alexa647, 557684 (BD), clone: 1D3, monoclonal;
CD3-APC-Cy7, 100221 (Biolegend), clone: 17A2, monoclonal;
CD11b-APC-Cy7, 561039 (BD), clone: M1/70, monoclonal;
CD14-Alexa647, 565743 (BD), clone: rmC5-3, monoclonal;
CD24-PE, 101807 (Biolegend), clone: M1/69, monoclonal;
Grl-Alexa488, 53-5931-80 (Thermo Fisher), clone: 53-5931-8, monoclonal;
C-kit-BB700, 566414 (BD), clone: 2B8, monoclonal;
FIt3-PE-Cy5, 15-1351-82 (Thermo Fisher), clone: A2F10, monoclonal;
CD150-PE, 562651 (BD), clone: Q38-480, monoclonal;
CD34-Alexa488, 53-0341-82 (Thermo Fisher), clone: RAM34, monoclonal;
FCgammaR-APC, 17-0161-81 (Thermo Fisher), clone: 93, monoclonal;
Siglec-APC, 17-0333-80 (Thermo Fisher), clone: eBio440c, monoclonal;
IL7R-Alexa488, 53-1271-82 (Thermo Fisher), clone: A7R34, monoclonal;
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Validation For the ChIP experiments
ab8895, 07-473, ab8898 and C36B11 where validated by provider by ChIP-seq in mouse
MAS5-11199 and MA5-33395 where validated by provider for specificity by peptide array and Eliza respectively
all antibodies where further validated in this study by correlation to public ChIP data
data for ab8895, MA5-11199, MA5-33395 and 9733S are shown in extended Fig 1
All antibodies used for FACS analysis where validated by provider for FACS application in mouse

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) K562, CCL-243 (ATCC)
Authentication authentication by the supplier by Karyotyping and antigen expression
Mycoplasma contamination Cell lines were tested every 2 months and never tested positive

Commonly misidentified lines  no commonly misidentified cell lines were used in this study
(See ICLAC register)

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals C57BL/6 mice, male, 3-months-old
All mouse studies were conducted in accordance with protocols approved by the ethics committee of the Hubrecht Institute in
Utrecht. Mice were housed in a normal condition with 12:12h light: dark cycle in a temperature-controlled room with food and water
ad libitum.

Wild animals No wild animals were used in this study

Field-collected samples  no Field collected samples were used in this study

Ethics oversight Dier Experimenten Commissie of the Royal Netherlands Academy of Arts and Sciences

Note that full information on the approval of the study protocol must also be provided in the manuscript.

ChlP-seq

Data deposition

g Confirm that both raw and final processed data have been deposited in a public database such as GEO.

|:| Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE164779
May remain private before publication.




Files in database submission tagged bam files split by cell-type, batch corrected metadata and 50kb count tables are provided for each experiment,
including K562 data for H3K4me1, H3K4me3, H3K9me3 and H3K27me3, as well as BM data merged from 2 independent
biological replicas including H3K4me1, H3K4me3, H3K9me3, H3K27me3 and H3K4mel+H3K9me3 double incubation

Genome browser session NA
(e.g. UCSC)
Methodology
Replicates Cell line experiments were performed in 3 independent biological replica (N=3) with hundreds of single cell observation (n=276) per

replica. Mouse experiments were performed as 2 independent biological replica (N=2) with thousands of single cell observations
(n=~3000) per replica.

Sequencing depth Samples were sequenced to a depth of at least 1.5 oversequencing rate. Unique number of fragments per cell are provided in the
manuscript. Sequencing was performed paired end 75 bp

Antibodies H3K4me1l, ab8895 (Abcam), Lot: GR3206285-1; H3K4me3, 07-473 (Merck), Lot: 3093304; H3K4me3, MA5-11199 (Thermo Fisher),
monoclonal; H3K9me3, ab8898 (Abcam), Lot: GR3217826-1; H3K9me3, MA5-33395 (Thermo Fisher), monoclonal; H3K27me3, 9733S
(NEB), monoclonal
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Peak calling parameters  details on read mapping can be found in the methods section of the manuscript and https://github.com/BuysDB/
SingleCellMultiOmics/wiki. For peak calling hiddenDomains was used with minimum peak length of 1000 bp

Data quality NA

Software bwa Heng et al., 2010 Bioinformatics Version: 0.7.17-r1188
topicmodels Hornik & Grun 2011 Journal of Statatistical Software Version: 0.2-12
Glmpca Townes et al. 2019 Genome Biology Version: 0.2.0
motevo Arnold et al. 2012 Bioinformatics Version: 1.11
hiddenDomains Starmer and Magnuson 2016 BMC Bioinformatics Version: 3.1
SingleCellMultiOmics https://github.com/BuysDB/SingleCellMultiOmics/wiki

Flow Cytometry

Plots

Confirm that:
The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
X, All plots are contour plots with outliers or pseudocolor plots.

|X| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Where indicated mouse bone marrow cells were stained live with antibody combinations (see methods section) for surface
marker staining. Cell culture cells and mouse bone marrow cells were further washed in PBS and fixed in 70% ethanol 1h at
-20C. Cells were incubated over night with histone mark specific antibodies at 4C. Before the sorting unbound antibody was
washed away and the Pa-MN fusion protein targeting and Hoechst staining was performed for 1h at 4C. After 2 extra washes
cell were sorted in 384 well plates. More details see methods section.

Instrument BD Influx™ Cell Sorter

Software For FACS, BD FACS software (version 1.2.0.124) was used.

Cell population abundance purity in post-sorted samples is determined by single cell sequencing and shown in the manuscript

Gating strategy Gating strategy is illustrated in the manuscript Extended Figure 1a, 2a and 8a. For Cell lines are gated for SSC, FSC and a G1

hoechst stain. For Bone marrow cells the gating strategy includes FSC, SSC and a G1 hoechst staining for all sorted cells,
+linage marker negative for lin- cells, +cKit positive and sca positive for LSK cells.

|X| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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