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SUMMARY
Organoid evolution models complemented with integrated single-cell sequencing technology provide a
powerful platform to characterize intra-tumor heterogeneity (ITH) and tumor evolution. Here, we conduct a
parallel evolution experiment to mimic the tumor evolution process by evolving a colon cancer organoid
model over 100 generations, spanning 6 months in time. We use single-cell whole-genome sequencing
(WGS) in combination with viral lineage tracing at 12 time points to simultaneously monitor clone size,
CNV states, SNV states, and viral lineage barcodes for 1,641 single cells. We integrate these measurements
to construct clonal evolution trees with high resolution. We characterize the order of events in which chromo-
somal aberrations occur and identify aberrations that recur multiple times within the same tumor sub-popu-
lation. We observe recurrent sequential loss of chromosome 4 after loss of chromosome 18 in four unique
tumor clones. SNVs and CNVs identified in our organoid experiments are also frequently reported in colo-
rectal carcinoma samples, and out of 334 patients with chromosome 18 loss in a Memorial Sloan Kettering
colorectal cancer cohort, 99 (29.6%) also harbor chromosome 4 loss. Our study reconstructs tumor evolution
in a colon cancer organoid model at high resolution, demonstrating an approach to identify potentially clin-
ically relevant genomic aberrations in tumor evolution.
INTRODUCTION

Cancer initiation is the result of cells gradually acquiring genetic

alterations due to carcinogenic exposure and DNA replication in-

fidelity.1 Some alterations confer a growth advantage resulting in

tumor formation in which DNA repair and genome integrity are

increasingly ablated, leading to further genetic alterations. As a

result, tumor clones arise that exhibit distinct genetic composi-

tions of single-nucleotide variants (SNVs), insertions/deletions

(indels), and copy number variants (CNVs). This intra-tumor het-

erogeneity (ITH)2–5 plays a key role in cancer development.

Tumor clones may, for instance, have varying proliferative and

metastatic potentials. Furthermore, ITH plays a key role in ther-

apy resistance and the frequent lethal outcome of cancer, since

some tumor clones may have intrinsic resistance to therapy.6,7

For this reason, substantial efforts have been made to charac-

terize ITH by mapping the clonal evolution in tumors using

whole-genome sequencing (WGS) of the tumor bulk. However,

without temporal resolution this approach provides only a limited

view oF ITH. It is, for example, difficult to infer the order in which

genetic lesions have occurred, and the number of subclones that
This is an open access article und
can be identified is limited.8–11 Although regional sequencing

may alleviate some of these issues, it gives only a snapshot of

this heterogeneity and does not allow for tracking the evolution

of the tumor.12

To characterize ITH at high clonal and temporal resolution, ge-

netic alterations in single cells and multiple time points need to

be obtained. This is enabled by single-cell DNA sequencing,

which was first introduced in 201113 and has since been used

to investigate tumor heterogeneity and tumor evolution in

many studies.13–20 However, most of these studies construct

clonal evolution trees exclusively based on either SNVs18,20 or

CNVs13 and have not utilized the combined information con-

tained in both types of genetic alterations. This combined anal-

ysis of CNVs and the SNVs from the same single cell is needed

to distinguish recurrent chromosome amplifications or deletions

within the same sample. Furthermore, the order of events in

which CNVs are established can only be determined with high

certainty by combining CNV data with SNV data. Moreover, con-

structing trees based on multiple independent lineage tracing

strategies provides for internal validation by evaluating consis-

tency across multiple independent lineage markers. Most clonal
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evolution studies based on single-cell analyses have been

limited in the number of cells and/or the number of SNVs that

are interrogated and do not include multiple time points. A few

existing studies do combine SNV and CNV measurements

from the same single cells in tumors.17,19 However, these studies

rely on a limited number of SNVs and low-resolution CNV data,

resulting in shallow clonal evolution trees that lack the resolution

to acquire a complete picture of the clonal evolution of these

tumors.

In this study, we combine high-resolution CNV data with high-

quality SNVs from thousands of single cells to improve the ability

to delineate accurate clonal evolution trees. To increase the ac-

curacy of the clonal evolution trees even further, we added a viral

barcode-based lineage tracing strategy and combined this with

our analyses based on single-cell DNA sequencing-based

detection of SNVs and CNVs. This provides three (CNVs,

SNVs, and the lineage barcodes) complementary levels of line-

age tracing that can be integrated to acquire a complete view

of tumor evolution and that allow internal validation of the result-

ing clonal evolution trees. We moreover introduce a temporal

axis to the data by taking multiple time points during clonal

evolution.

We utilize a colon carcinoma organoid model, selected as a

relevant system for characterizing SNVs and CNVs in ITH and tu-

mor evolution. Colon carcinoma is frequently initiated by muta-

tions in Wnt, epidermal growth factor receptor (EGFR), P53,

and transforming growth factor (TGF)-b signaling pathways.

Furthermore, colon carcinoma is often associated with chromo-

somal instability (CIN) resulting in widespread CNVs.21 Recent

studies have shown that the formation of colon carcinoma can

be accurately mimicked in vitro using an organoid model.22

This organoid model uses CRISPR-Cas9 to induce sequential

mutations in APC, TP53, KRAS, and SMAD4. APC�/� TP53�/�

KRASG12D SMAD4�/� (APKS) organoids morphologically and

phenotypically resemble carcinoma-stage colorectal tumors

and have pronounced CIN. The CIN results in genetically hetero-

geneous culturesmimicking the ITH observed in clinical samples

of colorectal carcinoma (CRC).23 Copy number changes that are

found in both the APKS organoids and CRC patients include

chromosomes 4, 18, and 8.24–27 Furthermore, chromosome 4

and 18 deletions (D4, D18) are common in tetraploid colon can-

cer tumors.28

After introduction of the viral barcodes into the organoidmodel

at the beginning of the experiment, the organoids undergo a

26-week period of in vitro evolution, during which single-cell

DNA sequencing is performed at 12 time points to detect

CNVs, SNVs, and viral lineage barcodes. In parallel, the relative

amount of each tumor clone was analyzed weekly through bulk

sequencing of the lineage barcode. This combination of lineage

measurements allows the construction of unprecedentedly

detailed clonal evolution trees. Furthermore, the combination

of three markers (CNVs, SNVs, and the viral lineage barcodes)

provides for internal validation of the constructed trees, as trees

constructed based on twomarkers can be validated by the third.

We use this combined approach to construct clonal evolution

trees and, from these, characterize the order of events in which

chromosomal deletions and amplifications occur and identify

chromosomal aberrations that occur multiple times indepen-
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dently within the same cell population. Notably, our clonal evolu-

tion trees showed the sequential D4 followed by D18 in multiple

unique tumor clones. This combination ofD4 andD18 provides a

strong proliferative advantage in our experiments and is corre-

lated with reduced recurrence-free patient survival in colorectal

cancer patients in a Memorial Sloan Kettering Cancer Center

(MSKCC) colorectal cancer cohort compared to patients with

only a singleD18. Although this approach highlights the potential

relevance of these genome alterations, further clinical studies

in additional cohorts are needed to evaluate the clinical

implications.

RESULTS

Lineage tracing in colon carcinoma organoids reveals
clonal dynamics
To track the clonal evolution of colon carcinoma, we used early-

passage human-derived APKS colon organoid cultures in

triplicates (hereafter referred to as replicate 1, replicate 2, and

replicate 3). After establishment of the organoid line, a viral line-

age library with around 60,000 unique barcodes was introduced.

The organoids subsequently underwent a 26-week (25 pas-

sages) in vitro evolution period (Figure 1). The relative abundance

of each of the viral barcodes was analyzed weekly through bulk

sequencing of the lineage barcode (weeks 4 through 26). By

assessing the relative barcode abundance in all three replicates,

we observed rapid expansion of a relatively small number of

clones (Figure S1). An important question is whether the

observed dynamics could be explained by neutral drift in the cul-

ture. To exclude this possibility, we performed stochastic simu-

lation of the organoid culture (STAR Methods), taking into ac-

count the proliferation rate of the organoids, the number of

individual cells at the start of the experiment (start population

size), and the number of cells that is left after passaging of the

organoids (bottleneck size). We observed that the decrease in

entropy in the actual experiment is significantly faster than in

the simulations, indicating that these clonal dynamics could

not be explained by neutral drift in the culture (Figure S2), indi-

cating there is a selection process underlying the clonal dy-

namics. Furthermore, we observe expansion of the same clones

(as determined through CNVs) in multiple replicates, providing

additional support for a strong selective pressure on the

organoids.

High-resolution CNV detection allows identification of
52 unique CNV states
In parallel to the bulk analysis of the viral lineage barcodes, single

cells were harvested at regular intervals and processed for sin-

gle-cell DNA sequencing using an NLA-III restriction enzyme-

based technique29,30 (Figure 2A). Adapters containing unique

molecule identifiers (UMIs), allowing quantification of the abso-

lute number of unique molecules in each single cell, are ligated

to the NLA-III cut sites, and the molecules are amplified using

in vitro transcription (IVT) prior to sequencing. After binning the

mapped reads using 500 kb bins and filtering of cells with too

few reads or fragmented genomes, a total of 1,641 cells with a

mean number of 326,000 unique molecules per cell remained

(Figure 2B). Copy number profiles were normalized by dividing



Figure 1. Experimental setup

Wild-type human colorectal organoids were transformed using a CRISPR-

Cas9-based strategy.22 Transformed organoids were transduced with a len-

tiviral library introducing a lineage barcode. Organoids underwent a 26-week

in vitro evolution period during which single-cell WGS was performed at

regular intervals and culture complexity was assessed weekly. From the

single-cell WGS, copy number state, sSNV state, and lineage barcodes were

acquired, allowing the construction and validation of highly detailed clonal

evolution trees.
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by themedian andmultiplying by 2. Dimensionality reduction us-

ing principal-component analysis on themedian-normalizedma-

trix shows that the cells cluster by replicate and time point,

whereas for early time points the cells of the various replicates

are more similar (Figure S3). Recurrent break points between re-

gions with different copy numbers were detected by hierarchical

clustering followed by circular binary segmentation (STAR

Methods). The high resolution and low noise (Figure S4) of the
NLA-III restriction enzyme-based technique allows accurate

quantification of the CNV profile for each single cell. For

instance, we observed multiple unique CNVs affecting chromo-

some 18, which could not have been detected through bulk

WGS (Figure 2D; for example, copy number states 2, 6, and 11).

In parallel to single-cell NLA-III sequencing, we performed

standard bulk WGS at the first and last day of the in vitro evolu-

tion. In these bulk data we observed a full D4 in replicate 1 at the

end of the experiment. However, the B-allele frequency (BAF) re-

vealed that both alleles were still present, albeit in unequal

amounts (Figure S5). This indicated that a fraction of cells had

lost one allele of chromosome 4, and the rest of the cells had

lost the other allele. To confirm this in the single cells, we first ac-

quired the diplotype of chromosome 4, based on another orga-

noid line derived from the same donor that had completely lost

one of the alleles of chromosome 4. This diplotype was then

used to assess which allele (if any) of chromosome 4 was lost

in each of the single cells. Indeed, in replicate 1 we observed

314 single cells with a D4 allele A and 96 cells with a D4 allele

B. The diplotype for chromosome 18 could also be acquired.

Here we observed that all the unique deletions on chromosome

18 concern the same allele. The observed single-cell BAFs of

chromosome 4 and 18 are tri-modal, with peaks around 0, 0.5,

and 1, indicating the cells were diploid and not tetraploid (Fig-

ure S5B). These observations demonstrate that the combination

of single-cell NLA-III sequencing and WGS allows allele-specific

CNV detection in single cells. Most of the deletions and amplifi-

cations observed in the organoid culture are also frequently

observed in patients in CRC, emphasizing the relevance of the

organoid model for studying colorectal cancer (Figure 2C).

In total we identify 25 unique CNVs across 1,641 single cells,

with 52 unique CNV states (we define a CNV state as a

genome-wide CNV profile that is shared by at least two single

cells; STAR Methods), ranging in size from 434 cells to 3 cells

(Figure 2D). In replicate 1 we observe a massive expansion of

cells with a D4 and a D18, whereas in the second (replicate 2)

and third (replicate 3) experiment we observe expansion of cells

with a D8p.

Construction of high-resolution clonal evolution trees
To construct initial clonal evolution trees based on CNVs, we

used the CNV states to create a directed edit distance graph.

Since the same CNV state can be present at multiple time points,

each time point was added as a separate node in the graph.

This enables enforcing temporal consistency (i.e., earlier time

points could not be derived from later time points) in the tree con-

struction (STAR Methods). A spanning arborescence was ex-

tracted from the directed CNV edit distance graph using Ed-

monds’ algorithm.31 The clonal evolution trees were visualized

using ToverBoom (Figures 3C–3E, STAR Methods, Figure S6).

The resulting clonal evolution trees indicate themost likely evolu-

tionary trajectories along which the tumor has evolved. The tree

for replicate 1, for instance, indicates that CNV state 3 is a

descendant of CNV state 2, which is logical considering that

CNV state 2 hasD18 andCNV state 3 hasD18 andD4 (Figure 2D).

In conclusion, the high-resolution CNV calling allows con-

struction of detailed clonal evolution trees with a temporal

component.
Cell Genomics 2, 100096, February 9, 2022 3
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Integration of CNV states with an independent lineage
marker is required for validation of clonal evolution
trees
Although the above-described clonal evolution trees derived

based on CNV states indicate the most likely evolutionary trajec-

tory, we cannot exclude the possibility that two seemingly

related CNV states arose independently, in particular given that

copy number changes occur frequently in this genetic back-

ground. To disambiguate the relation between two CNV states,

we can leverage the information provided by the viral lineage

barcode. This is schematically represented in Figures 3A and

3B. For a newCNV state to be introduced during the experiment,

both the cells in the new CNV state and their parental cells must

be marked by the same viral lineage barcode. For example, the

new CNV state k arose from the parental CNV state l because

both states share viral lineage barcode 1 (Figure 3A). On the

other hand, CNV states observed in cells that do not share a viral

lineage barcode with their putative parent most likely arose prior

to the introduction of the lineage markers (illustrated by CNV

state m in Figure 3A). Similarly, a CNV state that contains cells

with multiple lineage markers most likely also arose prior to bar-

code introduction (CNV state l in Figure 3A).

A clone in a certain CNV state harboring multiple lineage

markers, which are also present in their inferred parental CNV

state (for example, CNV state y and CNV state z in Figure 3B),

are particularly interesting. In this example, CNV state z and

CNV state y both harbor viral lineage barcodes 1 and 2, indi-

cating that these CNV states are closely related and arose after

lineage marker introduction. Since the viral lineage barcodes

mark unique lineages, this implies that the loss of chromosome

A occurred twice independently, once in a cell with lineage bar-

code 1 and once in a cell with lineage barcode 2. An alternative

explanation for the observation of CNV states sharing lineage

barcodes is that these CNV states were already present at the

start of the experiment and that the same lineage barcode was

introduced multiple times into cells with these CNV states. How-

ever, this is very unlikely due to the large number of barcodes

present in the viral lineage library (based on simulations, the

probability of two cells in the starting culture receiving the

same viral barcode is smaller than 0.0001).

To detect the viral lineage marker in single cells, allowing us to

disambiguate and validate clonal evolution trees, we employed

an experimental strategy that enriches for reads containing the

viral lineage barcode (STAR Methods, Figure S7). This allowed

us to detect the lineage barcode for 293 of the sequenced single

cells. The lineage barcode information can be superimposed on

the clonal evolution trees, which allows us to distinguish be-

tween the cases described previously (Figures 3A and 3B).

Indeed, we observe shared viral lineage barcodes between

several CNV states that are descending from each other accord-
Figure 2. CNV state landscape during clonal evolution

(A) Schematic overview of single-cell WGS strategy.

(B) CNV profile of the 1,641 single cells from which single-cell WGS data were a

(C) Frequently occurring chromosomal aberrations in the Memorial Sloan Ketteri

(D) Overview of the 52 unique CNV states identified in the organoids. Each line rep

states in the three replicates at the different time points. The right part of the figur

states. Chromosome 4 has been split into allele A and allele B.
ing to the CNV-based clonal evolution trees. For instance, CNV

state 2 (D18) and CNV state 3 (D18 and D4) share a viral lineage

barcode, BC1 (Figure 3C). This confirms that during the course of

the in vitro evolution, a single cell with BC1 belonging to CNV

state 2 lost the A allele of chromosome 4, thereby founding

CNV state 3. Another shared viral lineage barcode, BC2, was

also observed between CNV states 3, 5, 16, 20, and 21, all of

which share D18. This indicates that, even though this particular

viral lineage barcode is not observed in CNV state 2, it must have

been present and was most likely not observed due to sampling.

Other examples of newCNV states arising during the in vitro evo-

lution period include CNV state 7, 17, 22, and 27 from CNV state

1 in replicate 2 (Figure 3D) and CNV state 9 from CNV state 2 in

replicate 3 (Figure 3E). Interestingly, in replicate 2, the CNV-

based clonal evolution tree suggests that CNV states 17 and

22 arose independently fromCNV state 1. Based on the viral line-

age barcodes, we can conclude that this is false and that CNV

states 17 and 22 descend from CNV state 1. This illustrates the

importance of integrating multiple lineage measurements to

achieve a more accurate picture of tumor evolution.

Besides observing multiple CNV states sharing the same viral

lineage barcode, we also observe multiple viral lineage barcodes

within the same CNV state (e.g., CNV states 1, 2, 4, and 6). The

most likely explanation for this is that these CNV states were

already present at the moment of viral lineage barcode introduc-

tion (Figure 3A). The observation that CNV states 1, 2, 4, and 6

were already present at the start of the experiment is confirmed

by the fact that these states are all present in multiple replicates.

Furthermore, we already observe a subclonal D18 (CNV state 2)

in the bulk WGS from samples taken at the start of the experi-

ment (Figure S5D).

Somatic SNVs provide an additional layer of information
to increase tree resolution
Somatic SNVs (sSNVs) can be used as lineage markers as they

are inherited from one cell to its progeny. Shared sSNVs thus

indicate a shared common ancestor, and sSNVs can be used

to disambiguate phylogenetic relationships between previously

identified CNV states. Whereas copy number alterations are

likely to have a fitness effect, most sSNVs are passenger muta-

tions without any effect on the fitness of the cells, thus providing

a lineage marker that is less affected by selection. Moreover, un-

like viral lineage markers, sSNVs accumulate throughout time

and therefore provide lineage marking of clones that initiate dur-

ing the evolution experiment. For these reasons, in addition to

the viral barcodes and copy number profiles, we assess sSNVs

within the cells of all three replicates. This additional layer of in-

formation allows us to identify additional heterogeneity within the

population of cells with the same copy number state, verify

edges of the inferred lineage trees based on the copy numbers,
cquired.

ng Colorectal Cancer dataset.

resents a CNV state; the left part of the figure shows the abundance of the CNV

e shows the deletions and amplification that were detected in each of the CNV
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Figure 3. Viral lineage barcodes projected on CNV-based clonal evolution trees

(A and B) Examples of CNV events that can be explained by the combination of CNV state and viral lineage barcode information.

(C–E) Viral lineage barcodes projected on CNV-based clonal evolution trees for replicates 1 through 3. Numbers on the right side of each tree indicate the CNV

state. 十 indicates CNV state has gone extinct.
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and identify copy number aberration events that occurred multi-

ple times.

sSNVs called from single-cell sequencing data suffer from

high numbers of false positive calls. To identify reliable sSNVs,

we therefore trained a random forest (RF) classifier on the so-

matic mutations that could be verified in the bulk library and

used the trained classifier to identify reliable sSNVs (STAR

Methods). Every variant that passed the RF filter is phased to

at least one heterozygous germline variant or otherwise dis-

carded. Positive variant calls are identified by presence of the

alternative allele among all sequence reads for the positionwithin

a cell. Negative variant calls are identified by presence of the

reference allele in phase with the germline variant found to be
6 Cell Genomics 2, 100096, February 9, 2022
linked with the alternative allele.32,33 This procedure allowed

us to extract 106 high-quality sSNVs from all cells used for tree

inference.

sSNVs can be overlaid on the lineage trees inferred from the

copy number calls. Figures 4A and 4B show this for two

example sSNVs across all three replicates. The sSNV can be

present (red markers), absent (the reference allele is detected,

blue markers), or undetermined (insufficient coverage to be de-

tected, gray markers). This example shows that subclones of

the D18 clone always carry the variant, whereas the D8p clone

including subclones do not. This confirms that there is strong

association of these two SNVs to clones with a similar copy

number profile.
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By clustering based on all detected sSNVs, the cells separate

in two main groups. The first group of cells is characterized by

D18, whereas the second predominantly carries a D8p (Fig-

ure 4C). Most variants are detected in multiple replicates, which

indicates that the variant was likely present before the replicates

were separated.

Integrating sSNVs with CNVs in single cells suggests
parallel evolution of copy number states
In addition to the strong co-segregation of copy number state

and somatic variants (Figure 4C), we also observemore complex

relations between the two lineagemarkers.We define three clas-

ses of sSNVs at the branching point of two copy number states

(Figure 5).

In the first class, a copy number aberration occurs after the

sSNV. This would be consistent with a situation in which, at an

early time point, a clone is marked by an sSNV, and after the

CNV-induced bifurcation, the newly derived clone only contains

cells carrying the alternative allele (Figure 5A, top). We find ex-

amples of this first class on chromosome 8 and chromosome

18 for replicates 2 and 1, respectively (Figure 5A, bottom).

In the second class, an sSNV is introduced after a CNV is

created. Here, at early time points the clone does not contain

any cells with the sSNV. After branching into a new copy number

state, the sSNV is exclusively observed for the cells in the new

CNV state, indicating it must have been introduced after the

acquisition of the CNV (Figure 5B, top). This class of sSNVs can

be used to verify edges in the copy number tree similar to the viral

lineage markers. Examples of the second class are shown for

replicate 1 occurring within D18 subclones (Figure 5B, bottom).

In the third and most interesting class, the same CNV occurs

twice independently. This situation would be consistent with a

clone in a single CNV state that contains cells both with and

without an sSNV at an early time point. If after the introduction

of a CNV the new clone also contains cells with and without

the sSNV, this must mean that the copy number aberration

must have occurred at least twice: once in the clone with the

sSNV and once in the clone without the sSNV (Figure 5C, top).

An example for such a parallel evolution event can be found in

multiple variants that show both the reference and mutated al-

leles in the D18 state and the D18D4A state (Figure 5C, bottom).

The same holds for theD18 toD18D4B state (Figure 5C, bottom).

Accurately identifying the first two classes is challenging,

because it is always possible that the presence or absence of

a particular sSNV is not detected because of drop-outs in the

single-cell data. However, distinguishing the third class from

the first two classes is less vulnerable to sampling errors. If

both the presence and absence of an sSNV are detected before

and after a CNV is initiated, it rules out the first and second sce-

nario, in particular when this is supported by several sSNVs.

Taken together, an integrated analysis of how sSNVs segregated

between copy number states suggests that these copy number

states can arise multiple times independently.
Figure 4. sSNVs projected on CNV-based clonal evolution trees

(A and B) The presence of one sSNV projected onto CNV trees of three replicates. E

alternative allele is detected (red, circle) or the reference allele (blue, square) is d

(C) Single-cell sSNV matrix. Cells are grouped based on their copy number state
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D18 followed by D4
The most highly abundant and fastest growing clone across the

three replicates was characterized by a combination of D18 and

D4. Although we did observe 495 cells with D18 and without D4

(30.2%), divided over 20CNV states, we did not observe any cells

with D4 and without D18, suggesting that D4 results in a prolifer-

ative advantage only in the presence of D18. This combined D18

andD4was detected in a total of 449 single cells (27.3%), divided

over 11 CNV states. The probability of this co-occurrence of D18

and D4 to occur by chance is very small (hypergeometric test

p value < 1e�100) To see if there is any evidence that supports

this hypothesis in clinical samples, we turned to a colorectal can-

cer cohort from MSKCC.34 The MSKCC data show that in colo-

rectal cancer patients chromosomes 18 and 4 are frequently

lost (32.5% and 13.8% show log copy ratio < �0.4 for chromo-

some 18 and chromosome 4, respectively) (Figure 2C).

However, tumors with a lower copy number ratio for chromo-

some 4 than for chromosome 18 occur less frequently in the

same patient than can be expected based on the chromosome

18 and chromosome 4 copy ratios; in only 27.7% of the tumors

the copy ratio for chromosome 18 is lower than chromosome 4

(p value < 0.00001, based on a permutation strategy, STAR

Methods, Figure 6A). Therefore, there is an enrichment for tu-

mors in which the copy number ratio for chromosome 18 is lower

than for chromosome 4 (72.3% of tumors have lower copy ratio

for chromosome 18 than chromosome 4), indicating that most

often D18 occurs prior to D4 (based on a permutation strategy,

p value < 0.00001). Strikingly, this is in line with the order of

events we observe in the APKS organoid cultures.

We also find that in the MSKCC cohort a combination of D18

and D4 is correlated with reduced recurrence-free survival

compared to patients withD18 andwithoutD4 (log rank p value <

0.035) (Figure 6B). This suggests that D4 in the context of a prior

D18 is correlated with reduced survival compared to either dele-

tion on its own. To investigate this in a more systematic manner,

we investigated all possible combinations of two chromosomal

deletions and/or amplifications. We define a ‘‘priming event,’’

which is the first aberration, and a ‘‘conditional event,’’ which

is the second aberration in the context of a particular priming

event. We then compared the absolute correlation between the

copy ratios for any given pair of priming and conditional events

to the hazard ratio of the conditional event over the priming event

alone (Figure 6C). This analysis finds that in the MSKCC colo-

rectal cancer cohort, D18 as priming event followed by D4 as

conditional event has the highest hazard ratio of all possible con-

ditional events (Cox proportional hazard ratio 0.78, Benjamini-

Hochberg corrected p value = 0.012).

These analyses highlight the relevance of our organoid system

as a model for colorectal cancer that enables insight into clonal

heterogeneity and ordering of mutational events with clinical

relevance. Additionally, based on the observations in the orga-

noids, we find that D4 conditional on D18 is correlated with

reduced recurrence-free patient survival. To our knowledge,
achmarker indicates a single cell, and its color and shape indicate whether the

etected or the sSNV is not covered (gray, triangle).

.
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Figure 5. Three classes of sSNVs at the branching point of two copy number states

Schematic representations of classes 1–3 on the top row. The two rows below show identified instances of each class. Each marker indicates a single cell. Its

color and shape indicate whether the alternative allele (red, circle) or the reference allele (blue, square) is detected or the sSNV is not covered (gray, triangle).

(A) In class 1, the copy number aberration occurs after the sSNV appearance.

(B) In class 2, the copy number aberration occurs before the sSNV appearance.

(C) Class 3 is an example of a parallel evolution event, in which a sSNV is followed by two independent copy number aberrations.
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this is the first example of a conditional chromosomal aberration

correlated with reduced survival compared to the corresponding

single aberrations.

DISCUSSION

Delineating the clonal evolution trajectory through which a tumor

is formed is pivotal to the understanding of tumor biology. Since
every cell inside a tumor is unique, this requires an approachwith

single-cell resolution. Here, we use single-cell WGS in combina-

tion with viral lineage tracing to acquire CNV states, SNV states,

and viral lineage barcodes for 1,641 single cells. Almost all of the

CNVs identified in the organoids also frequently occur in CRC

samples, indicating that the organoids are a valid and valuable

model for CRC. We identified 52 unique CNV states in the orga-

noids based on analyses of CNVs in the single cells. From the 52
Cell Genomics 2, 100096, February 9, 2022 9
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Figure 6. Loss of chromosome 18 followed by loss of chromosome 4 is correlated with reduced survival in the MSKCC patient cohort

(A) Relation between D18 and D4 within the MSKCC patient cohort. Red and blue shading indicate enrichment and depletion compared to a random background

distribution.

(B) Kaplan-Meier curve comparing survival between patient with D18 and D4 compared to patient withD18 and without D4.

(C) Absolute correlation between chromosomal alterations compared to the p value for the difference in hazard for the priming event alone compared to the

priming event and the conditional event. Shading and size of the points indicate direction and magnitude of the difference in hazard.

Article
ll

OPEN ACCESS
CNV states, we derived highly detailed clonal evolution trees,

which could in turn be internally validated based on the viral line-

age markers and the SNVs. This internal validation is only

possible due to the multiple independent lineage markers

simultaneously.

Our analyses of the clonal evolution trees identified specific

CNVs that occurred in multiple independent events in the orga-

noid cultures. The most frequent event observed was D4, in at

least four independent events. The frequent D4 suggests that

this event provides the organoids with a proliferative advantage.

Indeed, the viral lineage barcodes showed that the clones that

lost chromosome 4 expanded during the in vitro evolution

period.

Clustering of the SNVs identified two main groups, which

completely overlap with the two main CNV clones in the data,

the D18 group and the D8p group. However, more detailed inter-

rogation of the SNVs identified several SNVs that can only be ex-
10 Cell Genomics 2, 100096, February 9, 2022
plained by multiple occurrences of a specific CNV. This confirms

the observation that D4 occurred multiple times during the

in vitro evolution period.

In our data, D4 was observed only in the context of D18. This

suggests that the order of the chromosomal aberrations is in this

case important for progression. Analysis of patient data from the

MSKCC colorectal cancer dataset found that, in patients, D4

also very frequently occurs in the context of D18. Furthermore,

the combination of D18 and D4 results in a higher mortality

than a D18 alone. Strikingly, a further systematic exploration of

context-dependent deletions or amplifications in a MSKCC co-

lon carcinoma dataset found that only the conditional D4 in the

context of D18 is correlated with reduced patient recurrence-

free survival in comparison to the initial amplification or deletion

alone. This indicates that, similar to mutations, the combination

of chromosomal aberrations influences aggressiveness of a

tumor.
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Limitations of the study
Due to the labor-intensive nature of the organoid culturing exper-

iment, only three replicates have been generated for experi-

ments in this study. For one of our main findings, we observe

the sequential D18 and D4 in only one of the three replicates.

However, we also found similar observations in clinical samples.

Further studies are needed to estimate the probability of these

chromosome loss events in parallel evolution experiments.

For this, studies with a larger number of of parallel evolution ex-

periments would be useful, for example, by automating the

culturing procedures. This would also allow studies of the mech-

anistic consequences of specific mutations and copy number

changes.

Although we provide an initial examination of the frequency of

D18 and D4 in a single clinical cohort from the MSKCC study,

there are limitations. The MSKCC colorectal cancer cohort was

generated using the MSK-IMPACT targeted sequencing panel,

and therefore the resolution of the copy number variations is

limited. Higher-resolution datasets might provide additional

insight on segmental chromosomal aberrations. Further studies

in additional cohorts are needed to determine potential clinical

relevance and confirm the observed correlation with patient

survival.

There also are limitations in the sensitivity of current methods

for detecting clones based on somatic mutations and copy num-

ber profiles. In our study, the copy number profiles have a reso-

lution of about 500 kb, and we were not able to accurately

resolve features that are smaller for all cells. Furthermore,

phasing of somatic SNVs is not always possible due to the

lack of heterozygous germline SNVs in the vicinity of the somatic

SNVs. Future studies that improve the sensitivity of detection for

somatic mutations and copy number profiles would increase the

resolution and therefore could allow construction of even more

detailed evolutionary trees. More detailed evolutionary trees

allow for more precise understanding of the evolution of a tumor.

One currently feasible approach for this would be to use long-

read WGS, in combination with a restriction enzyme that cuts

less frequently, to increase the number of sSNVs that can be

phased to a heterozygous germline variant.

Furthermore, it is likely that the initial population of cells for

each replicate is not a pure clonal population. Our observation

of shared somatic mutations between replicates suggests that

some heterogeneity is present in the initial cultures. At the start

of an experiment, it is therefore possible that a replicate is primed

with clones that already contain beneficial variants. Previous ex-

periments have shown that even organoids grown from a single

cell still contain subclonal aberrations.34 Detecting multiple

lineage markers in the same cell allows distinguishing between

pre-existing mutations and mutations that occurred during the

evolution experiment. For example, when a particular sSNV

is present in two distinct copy number states, the associated

aberration is likely to have occurred during the evolution

experiment.

In conclusion, we constructed highly structured clonal evolu-

tion trees based on three independent lineage measurements

acquired through single-cell WGS of CRC organoids. The line-

age measurements identified four independent events in which

chromosome 4 was lost in the context of D18. This combined
D18 and D4, identified in the organoids, was found to be corre-

latedwith reduced survival in a single study of patients with CRC.
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S., Bouchard-Côté, A., and Shah, S.P. (2014). PyClone: statistical infer-

ence of clonal population structure in cancer. Nat. Methods 11,

396–398. https://doi.org/10.1038/nmeth.2883.

11. Turajlic, S., Xu, H., Litchfield, K., Rowan, A., Chambers, T., Lopez, J.I.,

Nicol, D., O’Brien, T., Larkin, J., Horswell, S., et al.; PEACE; TRACERx

Renal Consortium (2018). Tracking Cancer Evolution Reveals Constrained

Routes to Metastases: TRACERx Renal. Cell 173, 581–594.e12. https://

doi.org/10.1016/j.cell.2018.03.057.

12. Sottoriva, A., Kang, H., Ma, Z., Graham, T.A., Salomon, M.P., Zhao, J.,

Marjoram, P., Siegmund, K., Press, M.F., Shibata, D., and Curtis, C.

(2015). A Big Bang model of human colorectal tumor growth. Nat. Genet.

47, 209–216. https://doi.org/10.1038/ng.3214.

13. Navin, N., Kendall, J., Troge, J., Andrews, P., Rodgers, L., McIndoo, J.,

Cook, K., Stepansky, A., Levy, D., Esposito, D., et al. (2011). Tumour evo-

lution inferred by single-cell sequencing. Nature 472, 90–94. https://doi.

org/10.1038/nature09807.
12 Cell Genomics 2, 100096, February 9, 2022
14. Bian, S., Hou, Y., Zhou, X., Li, X., Yong, J., Wang, Y., Wang, W., Yan, J.,

Hu, B., Guo, H., et al. (2018). Single-cell multiomics sequencing and ana-

lyses of human colorectal cancer. Science 362, 1060–1063. https://doi.

org/10.1126/science.aao3791.

15. Casasent, A.K., Schalck, A., Gao, R., Sei, E., Long, A., Pangburn, W., Ca-

sasent, T., Meric-Bernstam, F., Edgerton, M.E., and Navin, N.E. (2018).

Multiclonal Invasion in Breast Tumors Identified by Topographic Single

Cell Sequencing. Cell 172, 205–217.e12. https://doi.org/10.1016/j.cell.

2017.12.007.

16. Demeulemeester, J., Kumar, P., Møller, E.K., Nord, S., Wedge, D.C., Pe-

terson, A., Mathiesen, R.R., Fjelldal, R., Zamani Esteki, M., Theunis, K.,

et al. (2016). Tracing the origin of disseminated tumor cells in breast cancer

using single-cell sequencing. Genome Biol. 17, 250. https://doi.org/10.

1186/s13059-016-1109-7.

17. Gawad, C., Koh, W., and Quake, S.R. (2014). Dissecting the clonal origins

of childhood acute lymphoblastic leukemia by single-cell genomics. Proc.

Natl. Acad. Sci. USA 111, 17947–17952. https://doi.org/10.1073/pnas.

1420822111.

18. Ross, E.M., and Markowetz, F. (2016). OncoNEM: inferring tumor evolu-

tion from single-cell sequencing data. Genome Biol. 17, 69. https://doi.

org/10.1186/s13059-016-0929-9.

19. Wang, Y., Waters, J., Leung, M.L., Unruh, A., Roh, W., Shi, X., Chen, K.,

Scheet, P., Vattathil, S., Liang, H., et al. (2014). Clonal evolution in breast

cancer revealed by single nucleus genome sequencing. Nature 512,

155–160. https://doi.org/10.1038/nature13600.

20. Xu, X., Hou, Y., Yin, X., Bao, L., Tang, A., Song, L., Li, F., Tsang, S., Wu, K.,

Wu, H., et al. (2012). Single-cell exome sequencing reveals single-nucleo-

tide mutation characteristics of a kidney tumor. Cell 148, 886–895. https://

doi.org/10.1016/j.cell.2012.02.025.

21. Fearon, E.R. (2011). Molecular genetics of colorectal cancer. Annu. Rev.

Pathol. 6, 479–507. https://doi.org/10.1146/annurev-pathol-011110-

130235.

22. Drost, J., van Jaarsveld, R.H., Ponsioen, B., Zimberlin, C., van Boxtel, R.,

Buijs, A., Sachs, N., Overmeer, R.M., Offerhaus, G.J., Begthel, H., et al.

(2015). Sequential cancer mutations in cultured human intestinal stem

cells. Nature 521, 43–47. https://doi.org/10.1038/nature14415.

23. Bolhaqueiro, A.C.F., Ponsioen, B., Bakker, B., Klaasen, S.J., Kucukkose,
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29. Kopper, O., de Witte, C.J., Lõhmussaar, K., Valle-Inclan, J.E., Hami, N.,

Kester, L., Balgobind, A.V., Korving, J., Proost, N., Begthel, H., et al.

(2019). An organoid platform for ovarian cancer captures intra- and inter-

patient heterogeneity. Nat. Med. 25, 838–849. https://doi.org/10.1038/

s41591-019-0422-6.

30. Mooijman, D., Dey, S.S., Boisset, J.C., Crosetto, N., and van Oudenaar-

den, A. (2016). Single-cell 5hmC sequencing reveals chromosome-wide

cell-to-cell variability and enables lineage reconstruction. Nat. Biotechnol.

34, 852–856. https://doi.org/10.1038/nbt.3598.

31. Edmonds, J. (1967). Optimum branchings. Journal of Research of the Na-

tional Bureau of Standards Section B Mathematics and Mathematical

Physics. https://doi.org/10.6028/jres.071b.032.

32. Bohrson, C.L., Barton, A.R., Lodato, M.A., Rodin, R.E., Luquette, L.J., Vis-

wanadham, V.V., Gulhan, D.C., Cortés-Ciriano, I., Sherman, M.A., Kwon,

M., et al. (2019). Linked-read analysis identifies mutations in single-cell

DNA-sequencing data. Nat. Genet. 51, 749–754. https://doi.org/10.

1038/s41588-019-0366-2.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

pCDH lentivector System Bioscience CD811A-1

Stable Competent E. Coli cells NEB Cat# C3040

pPACKH1 Lentivector Packaging Kit System Bioscience Cat# LV500A-1

Chemicals, peptides, and recombinant proteins

NsiI-HF NEB Cat# R3127S

Asc1-HF NEB Cat# R0558S

T4 DNA Ligase NEB Cat# M0202T

QIAGEN Protease QIAGEN Cat# 19157

ExoSap Thermo fisher scientific Cat# 78205.10.ML

NlaIII NEB Cat# R0125S

B27 Thermo fisher scientific Cat# 17504044

DMEM/F12 medium Thermo fisher scientific Cat# 12634010

nicotinamide Sigma Aldrich Cat# 72340

N-acetylcysteine Sigma Aldrich Cat# A0737

A83-01 Tocris Cat# 2939

SB202190 Sigma Aldrich Cat# 7067

Gefitinib Selleck Chemicals Cat# ZD1839

Matrigel Corning Cat# 354234

Polybrene Sigma Aldrich Cat# TR-1003

PEI transfection reagen Polysciences Cat# 26406

Puromycin Sigma Aldrich Cat# P9620

Critical commercial assays

NEBNext High fidelity PCR mix NEB Cat# M0544

AMPure DNA beads Beckman Product # A63881

Deposited data

MSKCC dataset European variation archive PRJEB23844

Single cell whole genome data, generated

in this study

This study Sequence read archive PRJNA645018

Experimental models: Cell lines

Organoid lines Drost et al. (2015)22; Clevers

group, Hubrecht institue

N/A

Oligonucleotides

Viral library barcode PCR primers This study Table S1

Truseq small RNA library PCR primers Illumina RS-200-0012

Software and algorithms

Burrows Wheeler Aligner Li and Durbin, 200935 http://bio-bwa.sourceforge.net/

GATKBaseRecalibrator Van der Auwera et al., 201336 https://gatk.broadinstitute.org/

Mutect Cibulskis et al., 201337 https://gatk.broadinstitute.org/

Single cell whole genome data processing This paper https://doi.org/10.5281/zenodo.5844399

Cutadapt Martin, 201138 https://github.com/marcelm/cutadapt

ToverBoom This paper https://doi.org/10.5281/zenodo.5844342

SciCloneFitIO This paper https://github.com/zztin/siCloneFitIO
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Alexander

van Oudenaarden (a.vanoudenaarden@hubrecht.eu).

Materials availability
This study did not generate new unique reagents.

Data and code availability

d The accession numbers for the datasets reported in this study are available on SRA: Bio project id: PRJNA645018.

d All original code has been deposited. The copy number tree inference and plotting code is available at https://github.com/

BuysDB/ToverBoom the imputation generation code at https://github.com/zztin/siCloneFitIO and scripts at https://github.

com/BuysDB/TumorEvolutionReconstruction.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

APKS Organoid culturing
APKS organoids were acquired from the Clevers lab after establishment as described in Drost et al.22 Organoid culturing was done as

described before in Drost et al.22 Culture medium contains advanced DMEM/F12 medium (Thermo fisher scientific) including 1x B27

(Thermo fisher scientific), 10 mM nicotinamide (Sigma-Aldrich), 1.25 mM N-acetylcysteine (Sigma-Aldrich), 500 nM A83-01 (Tocris),

3 uM SB202190 (Sigma-Aldrich) 1 mM gefitinib (Selleck Chemicals). After viral transduction all organoid lines were continuously

cultured with 1ug/mL puromycin to make sure that the viral barcode was maintained. Organoids cultures were split weekly by me-

chanical disruption. Before mechanical disruption, all organoid wells were mixed to ensure all clones were equally distributed. Orga-

noids were mechanically disrupted and �300,000 cells were seeded in matrigel (Corning) to maintain the culture. The number of

seeded cells exceeds the number of unique barcodes ensuring the seeded population is an appropriate reflection of the pre-split

culture. Excess cells were used for DNA extraction and subsequent viral library complexity assessment.

Viral library construction
The viral construct was created using the pCDH lentivector CD811A-1 (SystemBioscience) inwhich aGFPwas inserted under control

of the PGK promotor and a puromycin resistance cassette was inserted under control of the Eef1a promotor. NsiI and AscI restriction

sites were inserted in the 50 UTR of the GFP gene using inverse PCR. The barcode insert was created using a 80bp primer containing

the barcode (consisting of 4 stretches of 5 random nucleotides interspersed by A’s) flanked by M13 forward and reverse sequences

and restriction sites for Nsi1 and Asc1 (ATGCATGCATTTGTAAAACGACGGCCAGTNNNNNTNNNNNTNNNNNTNNNNNTCACAC

AGGAAACAGCTATGAGGCGCGCC) and made double stranded using a complementary primer and Klenow fragment (NEB). The

insert was subsequently digestedwith NsiI-HF and Asc1-HF (NEB), to create the right overhangs for ligation into the plasmid. Plasmid

was linearized using NsiI-HF and AscI-HF and barcode insert was ligated using T4 DNA Ligase (NEB). Ligated plasmid was trans-

formed into Stable Competent E. coli cells (C3040 NEB) and 30.000 colonies were harvested from which plasmids were extracted.

Virus generation
HEK293T cells were transfected with 1.2 mg of each of the pPACKH1 Lentivector Packaging Kit (System Bioscience) plasmids and

15.6 mg of the barcoded plasmid library (described above) using PEI transfection (polysciences). Viral particles were harvested 24 h

later and concentrated using ultracentrifugation.

METHOD DETAILS

Viral library complexity assessment
8 replicates of 1 mg of viral library were amplified using NEBNext High fidelity PCRmix (NEB) for 10 cycles with barcoded PCR forward

primer 1 and PCR reverse primer 1 (Table S1). Illumina sequencing libraries were generated through 5 additional cycles of PCR with

Illumina Truseq small RNA library PCR primers. The viral library was sequenced on a NextSeq500 using 2x75bp paired end

sequencing. Barcode sequences were merged if they were within hamming distance 2 from each other, merging them into the

most abundant of the two, while taking into account sequencing quality.

APKS organoid transduction
APKS organoids were trypsinized for 10 min at 37�C. Trypsinized organoids were resuspended in 50 ml medium containing 2x poly-

brene (Sigma Aldrich) upon which 50 ml of virus mix was added and incubated for 6 h at 37C. After incubation cells were washed and

resuspended in 120 ml of Matrigel. Cells were seeded into two wells of a 24 well culturing plate.
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DNA extraction, barcode amplification and barcode sequencing
For each organoid line DNAwas harvestedweekly. Cell lysis was performed overnight at 50�Cusing 0.05 units of QIAGENProtease in

10 mM Tris pH 7 in a total volume of 1 mL. All samples were split into two and DNAwas extracted using phenol/chloroform extraction

followed by AMPure DNA bead clean-up (Beckman). Viral barcodes were amplified using a two-step PCR strategy.39. All PCRs were

done in 96 well plates, using the 96 barcoded forward primers (1 primer per well, Table S1) in combination with a mix of 5 reverse

primers. The 5 reverse primers are identical except for a small (0, 1, 2, 3, or 4 base insertion), which ensures high complexity of

the libraries, required for sequencing. First, for both replicates of a sample 5 cycles of PCR were performed on 500ng of genomic

DNA using NEBnext High Fidelity PCR master mix (NEB) and barcoded primers containing a Unique Molecule Identifier (UMI)

(Table S1). After PCR, excess primers were digested using ExoSap (Thermo Fisher Scientific) to prevent UMI replacement during

later stages of amplification. After ExoSap treatment PCR reactions were cleaned up using AMPure beads and another 25 cycle

PCR was performed using Illumina Truseq small RNA library PCR primers. Libraries were sequenced on Illumina NextSeq 500 using

2x75 bp paired end sequencing. DNA reads were mapped to an artificial reference genome containing 30,190 viral genomes, each

with their own unique barcode. Only reads that mapped uniquely to a single viral barcodewere considered for further analysis. Library

PCR duplicates (based on UMI sharing) were removed. To estimate barcode frequency for each individual time point we used the

approach described in,39 which uses a Bayesian model to infer the frequency of the barcode in the original culture through the num-

ber of reads sequenced in the two replicates from that time point.

Whole genome sequencing and bulk variant calling
At passage 4 and passage 21WGSwas performed on the APKS organoids. At passage 4 amix of DNA from the three replicates was

used, while at passage 21 each replicate was sequenced individually. For this DNA was isolated from cells that were left over after

passaging the culture. Library preparation and whole genome sequencing was performed at Macrogen using Illumina TruSeq DNA

PCR free library preparation and sequenced on a HiSeq 10X with 23 150 bp paired end sequencing. Reads were aligned to GRCh38

using BurrowsWheeler Aligner v0.7.14 mapping tool with settings ‘bwa mem –M’35. Duplicate reads were marked using Sambamba

(version 0.6.6) dedup. Base Quality Score Recalibration was done using GATKBaseRecalibrator v3.7.36 Somatic variants were de-

tected using Mutect 2.2.37

Single Cell Whole Genome Sequencing
Cells were sorted into 384-well plates with 5 mL of mineral oil (Sigma-Aldrich). After sorting, cells can be stored at �20�C. 500 nL of

lysis mix (0.0005 u QIAGEN Protease in NEB Buffer 4) was added to each well and lysis was performed at 55�C overnight followed by

heat inactivation for 20 min at 75�C and for 5 min at 80�C. 500nl of Restriction Enzyme mix (0.5 u NlaIII in NEB Cutsmart buffer) was

added to each well and restriction was performed for 3 h at 37�C followed by heat inactivation for 20 min at 65�C. 100 nL of 1 uM

barcoded double stranded NlaIII adaptor was added to each well. 1100 mL of Ligation mix (200 u T4 DNA Ligase in 1x T4 DNA Ligase

buffer supplemented with 3mMATP) was added to eachwell and ligation was performed overnight at 16�C. After ligation, single cells
were pooled and library preparation was performed as described in Muraro et al.40 Libraries were sequenced on an Illumina

Nextseq500 with 2 3 75 bp paired end sequencing or on a HiSeq 10X with 2 3 150 bp paired end sequencing.

Single cell whole genome data processing
Sequencing data were analyzed through custom snakemake workflows (Python v3.6), which are available at https://github.com/

BuysDB/SingleCellMultiOmics/tree/master/singlecellmultiomics/snakemake_workflows/nlaIII

The UMI and cell barcodewere extracted and trimmed from read 1 of the read pair and the 6bp random hexamer was trimmed from

read 2. From the resulting trimmed reads, only those starting with the NlaIII recognition sequence CATG were kept. Additionally,

adapters were trimmed using cutadapt.38 The trimmed reads were mapped to hg38 using BWA 0.7.16a-r1181. Next, the mapping

location and strand of the NlaIII recognition sequence in combination with the UMI sequence and cell barcode was used as a unique

molecular identifier. This step associates reads to unique molecules in order to deduplicate reads to reduce amplification biases and

is used to extract a consensus sequence for each molecule. The consensus base calls are used to genotype germline and somatic

SNVs

In order to remove non-uniquely mapping reads, the reference genome was digested in-silico using the NlaIII cut site. For each

NlaIII cut site the two flanking fragments were determined for sequences up to 69 bases in length. These fragments were mapped

back to the hg38 reference. For each site multi-mapping fragments were recorded. Only molecules mapping to uniquely mappable

sites according to the in-silico digestionwere kept for copy number analysis. For each cell, molecules were binned in 500kb bins. Bins

with fewer than 3000 unique cut sites are considered to have poor mappability and were excluded from the analysis. Due to unavail-

ability of wild-type WGS single cell libraries the copy number profiles could not be normalized against a reference profile. Instead

count data was median normalized for each cell and multiplied by 2, resulting in a median copy number of 2 for every cell. Next,

we carried out GC bias correction by performing a LOESS regression for the copy number profile of each cell. The corrected values

were clipped to a maximum copy number of 4, to mitigate inflated noise at high copy numbers. We find that, even after the rigorous

data processing described above, we do not obtain a reliable copy number profile for all cells, these profiles might be caused by cell

division or a cell lysis-induced artifact. To filter cells with an unreliable copy number profile we trained a random forest classifier.

Training labels were obtained by k-means clustering (k = 12) the cells in UMAP 2D space and manually identifying the cluster which
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predominantly contains cells with unreliable copy number profiles. The final classifier was applied on the total matrix and all cells with

a posterior > 0.99 for the noisy cluster were discarded. The out-of-bag classification score of the random forest was 0.985.

Copy number segmentation and state definition
Before copy number segmentation, cells were clustered usingWard’s hierarchical clustering on the Euclidean distance. The number of

clusters were set based on the maximum silhouette score, but to ensure conservative (tight) clusters, overclustering was manually en-

forced for certain large clusters. For each resulting cluster of cells, themean copy numberwas calculatedper bin and copy number seg-

ments were detected using circular binary segmentation41 with p = 0.05 and 10,000 shuffles. Segment calls with a mean absolute dif-

ferenceof smaller than0.6were rejected. For each cell, themedian for each segmentwas calculatedand rounded to the nearest integer.

Segments with variance higher than 0.025 across all cells, which in practice turned out to be small genomic segments with hard to

resolve copy numbers, were rejected to prevent those small segments frommajorly influencing lineage tree inference. To obtain dip-

lotypes for both chromosome 4 and 18, data from a bulk sample (AP1-P23) derived from the P11N line was leveraged, which contains

a complete and clonal loss of both chromosome 4 and 18. For each heterozygous gSNV, the allele with a BAF of 1 is assigned to allele

B and the allele with a BAF of 0 to allele A. The A and B allele-frequencies were determined per cell for each segment on chromosome

4 and chromosome 18. Per segment the allele specific copy number was estimated by multiplying the estimated total copy number

by the A and B allele frequency.

To define the copy number states, a second round of clustering of the cells was performed based on the integer copy number seg-

mentation. Cells with hamming distance of zero were grouped to form the copy number states. Copy number states were sorted by

the number of cells associated with the state, which ranges from 395 cells in copy number state 1 and 2 cells in copy number state 52.

Copy number states with fewer than 2 cells were discarded. The segmented copy number calls along with the diplotype specific

segmented copy number calls for chromosome 4 and 18 for each cell individually gives rise to the copy number state matrix.

Copy number tree inference
To extract a copy number tree we first infer a directed graph from the single cell copy number state matrix. Every node in the graph

represents a single copy number state at one point in time. To incorporate a time axis in the graph, every copy number state is rep-

resented by one node for every time point a copy number state has beenmeasured.When a copy number state of a particular clone is

missing, we interpolate its abundance using linear interpolation. In this directed graph, every edge represents a copy number change

and the weight of the edge represents the amount of edits between two nodes. Edges are pruned if they are biologically not plausible,

e.g., in case they connect nodes with zero copies to a higher copy number or if they connect nodes in opposite temporal direction. A

zero-weight edge is added between temporally adjacent nodes representing the same copy number state. An artificial root node is

added to the graph wherein all segments are set to a diploid copy number state. From the resulting graph, an arborescence is ex-

tracted by using Edmonds algorithm, resulting in a copy number tree.

Copy number tree plotting
Copy number trees are plotted using a novel visualization, developed for this purpose, called ToverBoom. In Toverboom, each node

represents a copy number state and the width of each node represents the relative amount of cells in the copy number state. Each

branch represents a transition to another copy number state. The width of the nodes is smoothed using cubic interpolation. Lineage

barcodes for each single cell were extracted from the single cell whole genome sequencing libraries. The lineage abundance was

extracted from the bulk barcode sequencing libraries. Within one copy number state the relative abundance of every associated line-

age barcode is calculated and projected on the lineage tree using a stacked area chart, where the area reflects the relative abun-

dance of the lineage barcodewithin the associated copy number clone. The copy number tree inference and plotting code is available

at https://github.com/BuysDB/ToverBoom.

Somatic single nucleotide variants detection
Variants were jointly called on 7841 cells derived from the three quadruple mutant replicates, and two other replicates (one single

mutant and one double mutant which both serve as a normal control). All cells are descendants from the same donor.

Basecalling phred scores of the single cell bam files were recalibrated using GATK base quality score recalibration. All variants

detected using the GATK HaplotypeCaller in the (Wildtype/P11N) bulk library and variants detected by Mutect2 in any of the bulk

samples were supplied as known variation to be masked during covariate analysis. Candidate sSNVs were jointly called using

BCFtools 1.9-17442 on a bam file containing all cells, and a threshold was set on the QUAL column for a phred score of at least 30.

To remove technical artifacts and germline variation only sSNVs uniquely detected in the quadruple mutant cells were kept, while

sSNVs detected in single cells from the normal control samples were dropped. Furthermore, sSNVs detectable in the (Wildtype/

P11N) bulk library with more than one read were dropped.

Haplotype phasing was performed using a strategy adapted from Bohrson et al.32 Briefly, for each sSNV phased heterozygous

single nucleotide germline variants (gSNV) were determined in the (Wildtype/P11N) library. For the sSNVs with at least one phased

gSNV, it was determined if phasing between the heterozygous gSNV and the sSNV is concordant in at least 95%of all cells, otherwise

the sSNV was discarded. Molecules containing the sSNV are used as evidence indicative of presence of the sSNV. Absence of the

sSNV is inferred when a cell has a molecule containing both the phased gSNV allele and the reference allele at the sSNV locus.
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The sSNVs were further filtered by a random forest classifier trained on the 198150 sSNVs detected in bulk using Mutect2 as the

ground truth. The features consisted of all the columns generated by the GATK variant caller, of which ReadPosRankSum and

BaseQRankSumweremost informative for classification. These features were appendedwith the following: the number of reads car-

rying the alternative base, themean base quality of the alternative base in the single cell data, themean number of gSNVs overlapping

with reads containing the alternative allele and themean number of gSNVs overlapping with reads containing the reference allele and

the complexity of the reference sequence in a 75bp, 150bp, 300bp, 500bp and 1kb window, encoded by counting the number of

unique 5bp and 7bp k-mers. Final classification of the candidate variants was performed using leave one out cross-validation.

The classifier used is a sklearn random forest classifier with 100 trees and class balancing weights enabled. Finally, all selected var-

iants were inspected in a genome browser (IGV). A few variants were removed upon manual inspection.

Somatic single nucleotide variant imputation
Genotypes of all quadruple mutant single cells to which a copy number state could be assigned are inferred and imputed using a

Bayesian inference algorithm, SiCloneFit.43 The imputation allows for clustering of the single cell SNV genotypes. Only variants which

were present in at least 2 cells and only cells with at least 4 sSNVs were used for the imputation. Expected false negative and false

positive rates of the sSNV measurements are set at 0.001 and 0.0001, respectively. SiCLoneFit utilizes Gibbs sampling of the pos-

terior distribution of measured SNVs to infer tumor clones, phylogeny, and genotype in each tumor clone. The missing sSNV mea-

surements are imputed according to their genotype in the assigned clone. The imputed sSNVs were then combined with the

measured sSNVs and clustered and plotted (Figure 4B). The imputation and visualization tools are available at https://github.

com/zztin/siCloneFitIO. To test the accuracy of the imputation we performed 10-fold cross-validation by leaving out a fold of 10%

of known sSNV calls. The estimated accuracy is approximately 0.86.

Neutral drift simulations
To investigate neutral drift, we performed in silico stochastic simulations. To this end, three parameters were defined: the replication

rate (rr) (number of cell divisions per h) of the organoids, the number of cells starting the population (sp) and the number of cells that

were retained when passaging the culture (bottle neck size (bns)). The simulation was then executed as follows. Every cell in the start-

ing population is considered a unique clone, every h every cell belonging to a certain clone has a certain probability to proliferate (rr).

When a cell proliferates the number of cells belonging to that clone increases by 1. After 168 h (1 week) bns cell are randomly selected

and allowed to restart the culture. This process then continues for 25weeks. Finally, the Shannon’s entropy of the clones in the culture

was analyzed to estimate the clonal dynamics.

QUANTIFICATION AND STATISTICAL ANALYSIS

MSKCC colorectal cancer dataset analyses
Data from colorectal cancer samples generated using the MSKCC impact sequencing panel was obtained through the European

variation archive, accession PRJEB23844. From this only micro satellite stable samples were selected for which clinical follow-up

data was available, resulting in a total of 1027 samples. To test for independence of the chromosome 18 and chromosome 4

copy ratios, we performed 100.000 resampling’s of the chromosome 4 copy ratio relative to the chromosome 18 copy ratio across

all patients.We then compared the number of tumors in which the chromosome 4 ratio was lower than the chromosome 18 ratio in the

resampling’s to the number of tumors in which the chromosome 4 ratio was lower than the chromosome 18 ratio in the actual tumors.

The p value for the permutation test is the fraction of resampling’s in which there was a higher fraction of tumors with chromosome 4

ratio lower than the chromosome 18 ratio than in the actual samples.

Conditional chromosomal aberration analysis
Contigs (entire chromosomes, except chromosome 8 which was split into 8p and 8q) were filtered on having an average absolute log

copy ratio of > 0.4. For these contigs the absolute correlations of the log copy ratio for all combinations were calculated. For each

combination of contigs present in at least 30 samples a Cox regression model was created in which the hazard ratio for tumors

harboring both the priming and the conditional event was compared to tumors harboring only the priming event. P values were cor-

rected using Benjamini Hochberg p value correction.
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