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Temporal variability and cell mechanics control
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INTRODUCTION: Living organisms, despite their
intrinsic variabilities and dynamics, establish
robust forms and functions through complex
interactions between molecules, cells, and
tissues. Molecular and cellular variability has
been considered detrimental and is actively
minimized by regulatory mechanisms. How-
ever, recent studies suggest that variability
plays a crucial role in cellular decision making
and robustness, including in bacteria, cancer
adaptation, tissue differentiation, and embryo-
genesis. Because early mammalian embryos
exhibit variability in gene expression, cleavage
timing, and various mechanical parameters,
they offer an excellent model to study how
variability affects developmental processes.

RATIONALE: Understanding the role of varia-
bility in development requires quantification
in both space and time [three-dimensional (3D)
plus time imaging], and experimental pertur-
bation of variability. This study develops ex-
perimental and theoreticalmethods to quantify

morphogenetic reproducibility in early mam-
malian embryogenesis.We characterized cleavage
timing variability in mouse preimplantation
embryos and compared it across different
mammalian species. We also established a
pipeline to segment cell membranes. Using
exponential splines, we aimed to provide a
rigorous and unbiased method for extracting
geometrical informationaswell as theunderlying
topological structure of the embryos. This offers
an exhaustive yet simple method to quantify
and classify the complex dynamics of embryo-
genesis. Further, we developed an experimental
system to examine how temporal variability in-
fluences the geometry and topology of embryos
during early development. By examining the
3D geometrical and topological structures of
cell packings, we sought to identifymechanisms
driving the reduction of spatial variability.

RESULTS: The study found that variability in
cleavage timing increases at a constant, species-
specific rate during the first cleavages inmouse,

rabbit, and monkey embryos. This temporal
variability was not regulated and possibly
contributes to the large morphological varia-
bility observed at the beginning of the 8-cell
stage. Despite this, the embryos exhibited a
notable spatial convergence at the end of that
stage. We developed a computational pipeline
based ondimensionality reductionandmorpho-
maps to quantify in an unbiased manner the
spatial dynamics of embryos, showing that their
shape increases in similarity as development
progresses.We show that these complexdatasets
can be interpreted intuitively by considering the
topology of the cell packings, showing a conver-
gence in shape mirroring a convergence toward
a few rigid topologies. Our physical model indi-
cated that surface energy minimization during
compaction was sufficient to drive this conver-
gence, promoting specific topological struc-
tures of lower energy and leading to reduced
spatial variability. Additionally, we showed
that although the zona pellucida encapsulating
the embryo is not required for convergence, it
reduces the initial set of possible topologies,
thus allowing for faster convergence toward
the most optimal configuration. Although the
packing wasmaintained from one stage to the
next with the natural desynchronization of cleav-
age timings, experimental synchronization at
the 8- to 16-cell stage led to patterning defects
in the blastocyst, highlighting the importance
of temporal variability for proper development.

CONCLUSION: The findings reveal distinct
mechanisms that lead to low spatial varia-
bility between different embryos. First, sto-
chastic variability in cleavage timing plays a
key role in achieving consistent developmental
outcomes across species. Second, surface energy
minimization and compaction select a few
configurations with minimal energy and drive
topological transitions toward these packings,
leading to geometrical convergence and a re-
duction of spatial variability. A thirdmechanism
may involve the zona pellucida constraining
the range of potential structures of the early
embryo packing. Altogether, these mechanisms
ensure robustness in mammalian embryogene-
sis and present the potential adaptive benefits
of stochastic processes in biological systems.▪

RESEARCH

The list of author affiliations is available in the full article online.
*Corresponding author. Email: d.fabreges@hubrecht.eu (D.F.);
bernat.corominas-murtra@uni-graz.at (B.C.M.); edouard.
hannezo@ist.ac.at (E.H.); t.hiiragi@hubrecht.eu (T.H.)
†Present address: Cluster of Excellence Physics of Life, TU
Dresden, Dresden, Germany.
‡Present address: Max Planck Institute of Molecular Cell
Biology and Genetics, Dresden, Germany.
§Present address: BioVisionCenter Universität Zürich, Zürich,
Switzerland.
Cite this article as D. Fabrèges et al., Science 386, eadh1145
(2024). DOI: 10.1126/science.adh1145

READ THE FULL ARTICLE AT
https://doi.org/10.1126/science.adh1145

Contractility

High spatial
variability

Topological
transitions

8-cell stage Post 8-cell stage4- to 8-cell stage

Low spatial
variability

Convergence
Desynchronisation

Robust
morphogenesis
and patterning

Tra
ns

iti
on

s

Tr
an

sit
io

ns

Model of robustness in embryogenesis from cell mechanics and desynchronization. 4-cell stage
embryos give rise to many shapes at the beginning of the 8-cell stage, during which cell contractility triggers
topological transitions. Ultimately, embryos are driven toward the most optimal packing (cyan). In parallel,
the cell-autonomous desynchronization progressively increases temporal variability and helps to maintain
topological optimality through generations, lowering spatial variability and promoting robustness.
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robustness in mammalian embryogenesis
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Anniek Stokkermans1, Adrian Wolny8, Anna Kreshuk8, Véronique Duranthon7,9, Virginie Uhlmann10§,
Edouard Hannezo11*, Takashi Hiiragi1,2,4,5*

How living systems achieve precision in form and function despite their intrinsic stochasticity is a
fundamental yet ongoing question in biology. We generated morphomaps of preimplantation
embryogenesis in mouse, rabbit, and monkey embryos, and these morphomaps revealed that although
blastomere divisions desynchronized passively, 8-cell embryos converged toward robust three-
dimensional shapes. Using topological analysis and genetic perturbations, we found that embryos
progressively changed their cellular connectivity to a preferred topology, which could be predicted
by a physical model in which actomyosin contractility and noise facilitate topological transitions,
lowering surface energy. This mechanism favored regular embryo packing and promoted a higher
number of inner cells in the 16-cell embryo. Synchronized division reduced embryo packing and
generated substantially more misallocated cells and fewer inner-cell–mass cells. These findings suggest
that stochasticity in division timing contributes to robust patterning.

L
iving systems rely on molecular and
cellular mechanisms with intrinsically
stochastic dynamics. Nonetheless, they
establish robust forms and functions on
multiple scales with complex interplay

between molecules, cells, tissues, and species
across evolutionary time. Cell organization and
decision making have been largely considered
instructive, i.e., a signal instructs the recipient
cell to differentiate or trigger some signaling
pathway (1), which may lead to the conclusion
that variability is destructive and must be
reduced or filtered out. However, it remains
unknown whether robust mechanisms and de-
cisionmakinghave been evolutionarily selected
to accommodate stochasticity or if the pro-
cesses at the source of variability have been
selected to grant robustness. The past decades

have shown a growing interest in decision-
making paradigms based on stochastic dynam-
ics (2–5), particularly in bacteria in which gene
expression variability was successfully manipu-
lated to demonstrate its role in cell differen-
tiation (6, 7). Stochastic processes have since
been shown to be involved in a wide variety
of context and species, including cell fate spe-
cification (6–12), cancer adaptation (13–17),
embryomorphogenesis (18, 19), leaf formation
(20, 21), tissue folding (22), cell sorting (23),
and evolvability (24–27).
Earlymammalian embryos have been shown

to exhibit intra- and inter-embryo variability in
gene expression (10, 28–30), making them an
excellent model to study the role of variability
in a minimal and robust system. Gene expres-
sion, as well as othermechanical and temporal
parameters, exhibit measurable variability
within and between embryos that may affect
patterning and morphogenesis. For instance,
the second cleavage orientation has been shown
to be random (31); the variability in cleavage
timing has been suggested to affect cell fate
segregation (32, 33); the nuclear-cytoplasmic
ratio has been linked to cell differentiation
(34); and heterogeneity in cell contractility
has been shown to drive cell sorting in the
16-cell stage mouse embryo (35, 36), whereas
cell-to-cell variability in cellular fluidity may
contribute to the segregation of primitive en-
doderm and epiblast in blastocysts (23). Al-
though recent studies inmice have shown that
at least some of these variabilities are regu-
lated by the feedbacks between cell polarity,
tissuemechanics, and gene expression (35, 37),
the role that intercellular variabilities may

play in development and its robustness re-
mains unclear.
To formally address the role of variability, it

needs to be quantified with an adequate num-
ber of samples suitable for statistical analyses
and testedwith itsmanipulation in space and/
or time. We thus developed such an exper-
imental system using mouse preimplantation
embryos. While spatial organization of devel-
opment is relatively well-studied in the con-
text of morphogenesis and patterning, less is
known about the temporal regulation of devel-
opmental progression. We thus started char-
acterizing andmeasuring the variability among
cells in developmental timing.

Embryo variability in cleavage timing increases
at a constant and species-specific rate

To characterize the variability of the develop-
mental timing of preimplantation mouse em-
bryos, we firstmeasured the natural variability
in cleavage timing between cells within an
embryo (Fig. 1A and movie S1). The cell cycles
and cleavages of mammalian embryos run
asynchronously among blastomeres (38) but
their variability and potential correlation have
not been characterized quantitatively. The du-
ration of the third cleavage (4- to 8-cell stage),
for example, ranged from 30 min to 3 hours
depending on the embryo, accompanied by
variable duration of the inter-mitotic period
[Pearson correlation R = −0.401 (P < 0.05)] (fig.
S1A). To assess whether the timing of divisions
is actively regulated or coordinated among
cells, we built a semiautomatic cell tracking
pipeline and quantified cleavage timing in 28
embryos, from the 4- to the 32- or 64-cell stage
(Fig. 1, B and C). For this, we challenged the
null hypothesis that cells do not show any co-
ordination: Assuming the cell cycle length fol-
lows a normally distributed random variable
of variance s20, the successive accumulation of
mitosis timing differences should be normally
distributed as well, with variance linearly in-
creasing with the cleavage number (Fig. 1D).
Deviation from a normal distribution or devia-
tion from the linear relationship between var-
iance and cleavage number would be indicative
of an active synchronization or desynchroniza-
tion influenced by the cell’s nearby environ-
ment (fig. S1B). In line with the null hypothesis,
the distribution of the division timing mea-
sured for the third, fourth, fifth, and sixth
cleavage followed a normal distribution (Fig.
1E and fig. S1, C and D) and linearly correlated
with the cleavage number [Pearson correla-
tion R = 0.987 (P < 0.05)] (Fig. 1F). Although
the average cell cycle length increased after
the fifth cleavage (+1 hour, fig. S1E), owing to a
longer cell cycle for the cells of the prospective
inner cell mass (ICM) compared to the cells of
the prospective trophectoderm (TE) (1.5 hours
of difference, fig. S1F), as well as a change in
the desynchronization dynamics in ICM-fated
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Fig. 1. Embryo variability in cleavage timing increases at a constant and
species-specific rate. (A) Maximum intensity projection of a representative
live imaging dataset (out of 28 embryos and eight independent experiments), of
a mouse embryo expressing mT (magenta); H2B-EGFP (cyan). Time after
imaging (hh:mm); scale bar, 25 mm; see also movie S1. (B) Schematic
representation of the processing pipeline. 3D+time microscopy data were
analyzed to automatically detect nuclei coordinates, then tracked and manually
curated; see also Materials and Methods. (C) Representative tracking displaying
the third (pink), fourth (blue), fifth (yellow), and sixth (green) cleavages over a
period of 43 hours, from left to right. Each branch is a cell and each branching is
a mitosis. (D) Schematic representation of the null hypothesis (H0) under which
the distribution of the timing of mitosis at the nth cleavage is normally distributed
with a variance of s2n and equals the cumulative sum of independent normally
distributed random variables with a variance of s20 such that s2n ¼ n� 1ð Þs20. See

also fig. S1B. (E) Density distribution of the timing of mitosis around the mean
for the third, fourth, fifth, and sixth cleavages. Black line, Gaussian fit. n, number of
mitoses; N, number of embryos. Color code same as in (C). (F) Variance
in mitosis timing as a function of cleavage number. Dashed line indicates linear
regression. Pearson correlation R = 0.987, P = 0.013, CI95% = [0.493; 1.000]. Color
code same as in (C). (G) Comparison of the variance of mitosis timing normalized by
the cell cycle length, as a function of the cleavage number in mouse (black, 28
embryos from eight independent experiments), rabbit (blue, 11 embryos from four
independent experiments) and monkey (yellow, 12 embryos from four independent
experiments). Thick lines indicate linear regression. Pearson correlation Rmouse =
0.993, Rrabbit = 0.987, Rmonkey = 0.906. Pairwise F-test: P-value < 10−7 for mouse
versus rabbit and mouse versus monkey at all cleavages; P-value > 0.05
(nonsignificant) for rabbit versus monkey at all cleavages. Error bars, 95%
confidence interval (CI).
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cells (fig. S1G), we did not find significant cor-
relation between cell relative position and rela-
tive timing of division (fig. S1H). This suggests
that the lengthening of the cell cycle and the
slower desynchronization pace in ICM-fated
cells compared with TE-fated cells was a con-
sequence of cell differentiation and not direct
cell-cell spatial interaction. To confirm this, we
introduced a substantial asynchrony in the
cleavage timing by inserting a time-shifted, one-
eighth blastomere under the zona pellucida
(ZP) of host embryos at the 8-cell stage, effec-
tively generating a 9-cell heterochronic chimera
(fig. S1I). In this experiment, we split the em-
bryos into two groups based on the average
mitosis timing of the cells during the third
cleavage. The time difference between the two
groups was between 2.5 and 7 hours. Under
the hypothesis that cells actively communicate
to adjust their timing of division, we expected
the cell from the donor and/or the cells from
the host to adjust their timing of division and
control the degree of asynchrony.However, we
did not observe a change in the time shift be-
tween the donor cell and the cells of the host
during the following cleavages (fig. S1J). Instead,
the time difference wasmaintained, indicating
that substantial perturbation in cleavage tim-
ing is not compensated. These observations
indicate a lack of discernible cell-cell coordi-
nation in cleavage timing, which results in a
cell-autonomous, but cell-fate–dependent, de-
synchronization at a constant rate.
Because variousmammalian embryosundergo

asynchronous cleavage cycles, we performed a
similar characterization of variability in divi-
sion timing of embryos expressing fluores-
cent tags. We injected rabbit embryos with
mRNA encoding for a cell membrane–localized
coral-derived fluorescent protein TagRFP-
T (myrTagRFP-T) and mRNA encoding for
the chromatin-localized Histone H2B protein
fused with the enhanced green fluorescent pro-
tein (H2B-EGFP) (fig. S1K and movie S2). We
injected monkey embryos with an mRNA en-
coding for a cell membrane-localized tdTomato
(mT) fused with H2B-EGFP by the self-cleaving
peptide T2A (fig. S1L and movie S3). Live-
imaging microscopy and its analysis showed
that rabbit and monkey embryos shared a
similar desynchronization pattern, with their
desynchronization rate higher than that of
mouse embryos (Fig. 1J, normalized by cell
cycle length, see Materials and Methods and
fig. S1M without normalization). Notably, the
desynchronization rate was species-specific,
which suggests that variability in cleavage timing
may be an evolutionary trait that plays a role
in the following developmental processes.

Embryo spatial variability decreases during
the 8-cell stage

To investigate the impact of the variability in
cleavage timing on the robustness of develop-

ment, we developed a pipeline to parameterize
cell shape and build a statistical vector map
of morphogenesis, or morphomap (Fig. 2A).
First, cells were automatically labeled, followed
by manual curation, from three-dimensional
(3D) images of transgenic embryos expressing
a cell membrane–localized tdTomato (mT).
Then, the surface of the labeled objects was
fittedwith exponential splines (39) (see fig. S2, A
and B, and Materials and Methods for details),
generating a set of 63 parameters describing
both the shape of each cell and its relative
position in the embryo. Each embryo was thus
geometrically described by a set of 63 parame-
ters × 8 blastomeres: 504 parameters, projected
in 2D (for visualization only) using a standard
t-distributed stochastic neighbor embedding
dimensional reduction (t-SNE). The t-SNE 2D-
projection of the 504D-morphomap of 29 em-
bryos (Fig. 2B) and the measurement of the
corresponding high-dimensional Euclidean dis-
tances considering the 446,985 potential pairs
between 946 3D-images of embryos during
the 8-cell stage revealed that embryos seem to
become more and more geometrically similar
and converge toward a specific area of the
morphomap [Pearson correlation R = −0.965
(P < 10−4), Fig. 2C and fig. S2C; see also isolines
for illustration in Fig. 2B].
Likewise, we built the morphomap for rab-

bit (n = 10, Fig. 2D and fig. S2D) and monkey
(n = 12, Fig. 2E and fig. S2E) embryos to ex-
amine whether their embryos show similar
geometrical convergence. Rabbit and monkey
embryos were larger in volume than mouse
embryos (fig. S2F), hence their total volume
was normalized to allow for direct compari-
son. Notably, the three species exhibited simi-
lar geometrical structures and shared the same
region of the morphomap as demonstrated by
the overlapping clusters in high dimension
(silhouette index = 0.029, Fig. 2F). This sug-
gests that similar design principles could gov-
ern embryo shape changes during the 8-cell
stage in the three species.
In search of such a principle driving geo-

metrical convergence, we looked into compac-
tion. In mouse embryos, compaction starts at
the 8-cell stage, which results in significant
cell shape changes and an overall smoothing
of embryo surface. Using the compaction pa-
rameter a [which can be measured directly
from the cell-cell contact angles at the fluid
interface, fig. S2, G and H, and equal to the
ratio between cell-cell and cell-bulk surface
tensions (40)], we quantified the compaction
over time and observed a significant decrease
of the a-parameter, indicative of an increase
of the degree of compaction and cell shape
change (Fig. 2, G and H, and fig. S2G). How-
ever, we did not find a correlation between
the geometrical distance and the a-parameter
[Pearson correlation R = 0.781) (P = 0.1185,
non-significant), Fig. 2I], with an exception for

a below 0.4, where the geometrical distance
between embryos is significantly smaller, al-
thoughmany embryos did not reach a below
0.4 (Fig. 2H). This suggests that cell shape
changes due to compaction are not sufficient
to explain the observed convergence.

Embryo topological variability decreases
during the 8-cell stage

We reasoned that the morphomap encom-
passes both shape and arrangement of the cells.
While the former is linked to the geometrical
changes induced by compaction, the latter de-
pends on the raw cell-cell contact structure,
i.e., the topological properties of the embryo
packing (41–45). Thus, to identify the mecha-
nism driving morphological convergence,
we examined cellular topology in the 4- and
8-cell-stage embryo. It has been shown that
although there is an infinitely large number of
3D geometrical arrangements, four adhesive
spheres have only one possible rigid packing
and 8 adhesives spheres have only 13 possible
rigid packings. A packing is called rigid when
no independentmovements of cells are possible
or, more technically, when any relative cell-
cell displacement costs finite energy (46–48)
(Fig. 3A and fig. S3A). We thus used these
packings as landmarks to interpret our mor-
phomaps, and classified embryos either as
nonrigid (NR) or as belonging to one of the
rigid packings, based on the topological prox-
imity of the cell-cell contact structure of the
embryo to one of the rigid packings (seeMeth-
ods for details). Distinct packings were labeled
following the Schoenflies notation for 3D crys-
tallographic structures (49).
This analysis revealed that although many

embryos were NR at the start of the 4- and
8-cell stage, all 4-cell stage embryos quickly
converged geometrically and topologically to
their specific rigid packing (fig. S3, B and C),
whereas nearly all of the 8-cell stage embryos
converged toward one of the 13 rigid packings
(fig. S3D). Notably, we observed an additional
and unexpected topological convergence within
rigid packings at the 8-cell stage, as two spe-
cific rigid packings, Cs(2) and D2d, became
highly overrepresented over time (30.3 and
29.7%, respectively, of 29 embryos, fig. S3D).
All the other rigid packings were grouped and
referred to as “others” in subsequent analyses.
Notably, D2d overlaps with the attractor region
detected by our morphospace analysis (Fig.
3B). However, when grouped by embryo pack-
ing, the inter-embryo geometric distance was
stable over the course of the 8-cell stage (Fig.
3C). This suggests that the geometrical con-
vergence characterized in Fig. 2C may result
from successive topological transitions from
geometrically diversified packings (NR and
“others”) to packings exhibiting lower geo-
metrical variability [Cs(2) then D2d]. To test
this prediction, we analyzed the evolution
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Fig. 2. Embryo spatial
variability is reduced
during the 8-cell stage.
(A) Descriptive schematic
of the geometrical
distance measurement
pipeline. (Left to
right) 3D images
of cell membranes;
cell segmentation and
curation of labeled
volumes; fit with
exponential splines;
set of 504 parameters
for each embryo at
each time point. The
pairwise distances of
all 3D images were
computed from the expo-
nential spline parameters
and used to project
the 504D-morphomap on
a 2D plane (see also
Materials and Methods,
color-coded embryos).
(Inset) One embryo tra-
jectory color-coded from
the early 8-cell stage
(magenta) to late
8-cell stage (cyan).
(B), (F), and (G) t-SNE
projection. Each embryo
is represented with
sequence time points
and colored as a function
of the normalized pro-
gression though the
8-cell stage [(B) early in
magenta, late in cyan],
the species [(F) mouse
in black, rabbit in
blue, and monkey in
yellow], and the compac-
tion parameter [(G)
high alpha/low compac-
tion in green, low
alpha/high compaction
in yellow]. Isolines,
density map of the
end of the 8-cell
stage. Number of
embryos: 29 (mouse),
10 (rabbit), and 12
(monkey). (C) and
(H) Normalized time
course through the 8-cell stage of the mean ± s.d. of the pairwise geometrical distances (C) and the mean compaction parameter a (H) in 29 embryos.
Light gray lines, individual embryo tracks. Red dashed line, reference lines showing a representative high distance (top line, the average geometrical
distance between the early shape of an embryo and its final configuration) and a representative low distance (bottom line, the average distance between an
embryo and itself 1 hour later). (D) and (E) Cross section of a representative live imaging dataset of a rabbit embryo [(D) out of 10 embryos from
four independent experiments] and a monkey embryo [(E) out of 12 embryos from four independent experiments] expressing myrTagRFP-T (D) and mT (E).
Scale bar, 50 mm. Time after the beginning (white, top left corner) and before the end (red, top right corner) of the 8-cell stage. See also fig. S2, D and E.
(I) Mean ± s.d. of the pairwise geometrical distances as a function of the a-parameter in 29 mouse embryos.
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Fig. 3. Embryo topological variability is reduced during the 8-cell stage.
(A) The 13 rigid packings and two examples of NR packings for clusters of
8 spheres. See also fig. S3A. (B) t-SNE projection of the morphomap. Each embryo
is represented with a sequence of connected timepoints and colored as a function
of the topological proximity to Cs(2) (magenta), D2d (cyan), or any other rigid
packing (gray). NR packings are in black. Isolines, density map of the end of
the 8-cell stage for visual aid only. n = 29 mouse embryos. (C) Normalized
time course through the 8-cell stage of the mean ± s.d. of pairwise geometrical
distances within embryos grouped and colored as in (B). (D) Cross section (top
row), cell segmentation (middle row), and topological network (bottom row) of a
topological transition from C1(3) (first column) to D2d (second and third columns).
Arrowheads indicate absence (first column), initiation (second column), and
expansion (third column) of contact between cells marked by red and blue stars (top

row) or in red and blue (middle and bottom rows). Contact loss (magenta) and gain
(cyan) are shown on the topology network among lasting contacts (gray). Time in
hours after the start (white) and before the end (red) of the 8-cell stage. Scale bar,
25 mm. See also movie S4. (E) Topological transition map of 8-cell stage mouse
embryos between Cs(2) (magenta), D2d (cyan), NR (black), and other rigid packings
(others, gray). Arrows show observed topological transitions (once: dotted; more:
solid). Circle area is proportional to topology proportion. Arrows are labeled and
sized by transition frequency. Red arrows indicate net transition flux. n =
50 transitions. (F) Proportion of Cs(2) (magenta), D2d (cyan), NR (black), and
other rigid packings (Others, gray) by the normalized progression through the 8-cell
stage. n = 29 mouse embryos. See also fig. S3D. (G) Proportion of D2d in mouse
(black, n = 29 embryos), rabbit (blue, n = 10 embryos), and monkey (yellow, n = 12
embryos) by the normalized progression through the 8-cell stage. See also fig. S3E.
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of the topological transitions over time. Fifty
topological transitions were observed from
29 embryos during which cell contacts were
created, lost, or strengthened (Fig. 3D and
movie S4). Transitions from NR to others,
others to others, others to Cs(2) and Cs(2) to
D2d were overrepresented (Fig. 3E) resulting
in a significant decrease of NR packings de-
scribed earlier from 18.6 to 2.5% and in an
increase of D2d proportion from 13.6 to 39.8%
over the course of the 8-cell stage (Fig. 3F).
A similar topological transition and distribu-
tion was also observed in rabbit and monkey
embryos (Fig. 3G and fig. S3E). Collectively,
these analyses show that the overall geomet-
rical convergence among mammalian embryos
is driven by a chain of topological transitions
through Cs(2) toward D2d.

Surface energy minimization with compaction
is sufficient to recapitulate geometrical and
topological convergence

Although the convergence from NR to rigid
packings can be rationalized readily, given that
rigid packings correspond to local energy mini-
ma of the system, the secondary convergence
toward a single packing was less intuitive as all
13 rigid packings have the same energy for at-
tractive hard spheres (47). However, this does
not necessarily apply to deformable and adhe-
sive cells. Upon compaction, cell-cell adhesion
configuration is well-described by a soap bub-
ble model (35, 40, 50–53) in which the relative
energy can be determined with the cell-cell
contact surface area, the contact-free surface
area (not in contact with other cells), and the
relative surface tension or a-parameter (Fig. 4A,
see also Materials and Methods). To test how
cell-cell adhesion and compaction (character-
ized by the a-parameter) changes the optimal
configurations of embryo packings, we used the
Surface Evolver software (54) to simulate mor-
phogenesis. We tested the theoretical predictions
and, in a data-driven manner, checked whether
the observed evolution of imaged embryos
and their changes in the a-parameter could be
captured by the proposed theoretical framework.
Using the 13 rigid packings (Fig. 3A) as initial
conditions to our model, we simulated the
compaction from low to high compaction (a =
0.8 and 0.3 respectively, Fig. 4, B and C and fig.
S4, A and B). Crucially, compaction leads to
few specific packings having a lower energy
than others (with D2d being the lowest, Fig. 4D),
and as a consequence, the model predicted a
dramatic convergence at high compaction to-
ward D2d for most of the rigid packings (Fig. 4,
E and F and fig. S4C). Several of these transi-
tions could occur evenwith low levels of noise,
owing to compaction near-deterministically
creating new cell contacts (fig. S4, D and E).
Nevertheless, a number of other topological
transitions required cell rearrangements (or
T1 transitions), which have been shown to be

associated to the overcoming of energy bar-
riers across different modeling frameworks
(55–58). In this context, noise acts as a trigger
to go from one minimum to another, thereby
avoiding the system remaining trapped in sub-
optimal energy configurations (see Materials
andMethods).We also found that Cs(2) was the
secondmost stable packing and functioned as a
transition intermediary toward D2d in the simu-
lations. The model thus closely mirrored our
experimental datasets for topological transitions
toward D2d [largely through Cs(2)] observed in
8-cell stage embryo.
To challenge its predictions further and more

quantitatively, we compared embryo morpho-
dynamics with their simulated counterparts,
by using real embryo geometry and topology
at the start of the 8-cell stage as an initial con-
dition to start the simulation (fig. S4F). The
model could successfully recapitulate both the
transitions fromNR to rigid packings as well
as the geometrical convergence (Fig. 4G). In
particular, we found that the geometrical dis-
tance between embryos and their correspond-
ing simulations is significantly smaller than
the geometrical distance in random pairs of
embryos (Fig. 4H) and corresponds to a typ-
ically low distance as shown previously (Fig.
2C, bottom red dashed line). Taken together,
our in silicomodel based on the surface energy
minimization was able to recapitulate the
8-cell embryomorphogenesis and predict geo-
metrical and topological convergence to D2d.
The attraction to D2d can thus be explained by
having the least surface energy for every tested
a-parameter (Fig. 4D and fig. S4E), which sug-
gests that with a sufficient amount of time and
some level of dynamic changes and fluctuation
in cell shape (fig. S4, A and B), all packings
would eventually converge to D2d (Fig. 4I).

Compaction and surface contractility drive
topological transitions

Our simulations predicted that compaction
plays a key role in the convergence toward a
well-defined topological structure, by favoring
a specific cellular packing as well as lowering
barriers for transitions. Consistent with this
prediction, we found that the increase in prob-
ability toward the D2d topology correlated
strongly with the compaction parameter a.
(Fig. 5A and fig. S5, A and B), increasing from
0.0% for a = 0.7 to 27.4% for a = 0.6, and
from 27.6 to 69.0% for a < 0.45. Although
the decrease in a varied considerably from
embryo to embryo, the probability of topology
correlated much more strongly with a than
with time (Fig. 3F), arguing that compaction is
a primary driver of the convergence to D2d

during the course of the 8-cell stage. To test
this functionally, we first generated mT
embryos that lack the maternal allele Myh9
(hereafter referred to asmMyh9+/−). Because
Myh9 is the specific isoform of myosin heavy

chain that is required to generate surface ten-
sions, in its absence embryos fail to compact
properly and build cortical contractility (4)
(Fig. 5, B and C, andmovie S5). In linewith the
predictions, mMyh9+/− embryos showed no
topological transitions to D2d for compaction
parameters even as low as0:55 (Fig. 5D and fig.
S5C), while NR packings were overrepresented
throughout the 8-cell stage (mean± s.d. = 73.9%±
8.0) and embryos did not converge topologi-
cally nor geometrically (Fig. 5E and fig. S5D).
Furthermore, using para-aminoblebbistatin
(PAB, 10 mM), a photostable myosin II inhib-
itor (59), we obtained embryos with a milder
effect on compaction and that showed inter-
mediate topological and geometrical outcomes
(fig. S5, E to I, andmovie S6). Altogether, these
findings confirm the predictions of our model
and demonstrate that compaction and surface
contractility drive topological transitions and
spatial convergence in the earlymouse embryo.

The ZP restricts the initial morphological
space of embryos

Wenoted, however, thatmonkey embryos, with
apparently smaller perivitelline space in com-
parison to mice and rabbits (fig. S6A), achieve
geometrical and topological convergence de-
spite the negligible compaction at the 8-cell
stage (Fig. 6, A and B). This suggests a possible
role for the ZP in convergence, andwe tested it
with two experiments.
First, mechanical removal of the ZP inmouse

embryos demonstrated that in the absence of
ZP, embryos exhibited amuch wider variety of
shapes, including topologies [C2v(1) and D3d]
that are otherwise rarely observed, with an
overrepresentation of NR structures (Fig. 6C).
Importantly, however, we found that as com-
paction proceeded, ZP-less embryos still dis-
playedmorphological convergence, as evidenced
by a decrease in high-dimensional Euclidean
distances (Fig. 6D) and topological transitions
toward rigid packings (Fig. 6C). Our analysis
is consistent with the process of convergence
toward the same state through intermediaries
as embryoswith ZP [e.g., Cs(2)], but delayed by
starting from a broader region of phase space
(Fig. 6, E and F). To further evaluate the con-
vergence quantitatively, we introduced a pack-
ing parameter that measures the deviation of
outer cell surface from a certain distance to the
embryo center, inverted such that a high value
indicates a more packed embryo (fig. S6B and
Materials andMethods). This packing parameter
shows a high correlation with the topological
convergence (Fig. 6G), justifying its use as a
proxy in this and subsequent developmental
stages with more complex shapes. When the
packing parameter is analyzed for ZP-less
and control embryos, the correlation between
the packing parameter and the topology is main-
tained in ZP-less embryos (Fig. 6H), and the
evolution rate of the packing parameter over
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Fig. 4. Surface energy minimization with compaction is sufficient to reca-
pitulate geometrical and topological convergence. (A) Diagram and
equations of the biophysical model, the a-parameter (top) and the total energy
of an embryo [(E) bottom]. Blue, cell-cell (Ai,j), and cell-medium (ai) surface
areas; red, cell-cell (gcc), and cell-medium (gcb) surface tensions; magenta, angle
between the surface of two adjacent cells (q). (B) and (C) In silico compaction of
the D2d (B) and Cs(2) (C) packings from a = 0.8 to a = 0.3 showing a topological
transition to D2d at a = 0.3 in (C). (D) Relative energy after compaction of the
initial 13 rigid packings, colored by their topological proximity to Cs(2)
(magenta), D2d (cyan), and other rigid packings (gray). Color may differ from the

initial packing as a result of topological transitions. (E) and (F) t-SNE projection
of the morphomap of the 13 rigid packings during compaction. Each rigid
packing is represented with a sequence of connected points from a = 0.8 to a =
0.3 and colored as a function of the compaction parameter (E) and the
topological proximity to Cs(2) (magenta), D2d (cyan) and other rigid packings
(gray) (F). Labels, the initial rigid packing at a = 0.8. (G) Visual comparison of an
embryo (top row) and its simulation (bottom row) at the start (a = 0.7) and the
end (a = 0.4) of the simulation. Time in hours after the start (white) and before
the end (red) of the 8-cell stage. Scale bar, 25 mm. (H) Mean geometrical
distance in-between embryos (white, “emb-emb”) and between embryos and
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time is identical between control and ZP-less
embryos (Fig. 6I, same slope). Second and
conversely, experimental reduction of the
perivitelline space by crosslinking alginate
sodium in the perivitelline space [see Materials
andMethods and (60)] led to an overall increase
of the packing parameter (Fig. 6J).
Together, these findings consistently sug-

gest that the ZP restricts the initial space of
potential configurations, constraining the em-
bryo trajectories toward those leading to an
optimal packing, in agreement with the lower
number of different topologies in monkey
8-cell embryos (fig. S3C).

Variability in cleavage timing promotes
robustness in morphogenesis and
ICM-TE patterning

We have thus far characterized the temporal
variability in cleavage timing and investigated
the spatial convergence of the packings in the
8-cell embryo. Based on these findings, we next
examined their impact on the forthcoming
developmental stages, in particular on the first
inside-outside cell fate patterning in themouse

embryo. First, we examined the impact of spa-
tial convergence of the 8-cell embryo on the
inside-outside cell segregation that happens
in the 16-cell embryo. To determine the pack-
ing parameter at the 16-cell stage, we first
defined an outer cell as one belonging to the
group with higher contact-free surface area,
of the two groups forming a bimodal distrib-
ution of the contact-free surface area (Fig. 7A,
see also Materials and Methods). When the
packing parameter of the 16-cell embryos was
computed using outer cells, it showed a clear
correlation with that of the 8-cell embryos
[Pearson correlationR=0.659 (P<0.01), Fig. 7B]
and the number of inner cells [Pearson corre-
lation R = 0.591 (P < 0.01], Fig. 7C and fig. S7A],
indicating that spatial convergence at the 8-cell
stage may enhance the packing regularity, and
hence the generation of inner cells in the 16-cell
embryos. These findings suggest that spatial con-
vergence andhigherpackingmay result inahigher
number of inner cells in the earlymouse embryo.
Next, we investigated the impact of varia-

bility in cleavage timing on the spatial conver-
gence and precision in embryo patterning. To

test the impact of temporal variability, we syn-
chronized mitotic entry at the 8- to 16-cell
cleavage (Fig. 7D) using an inhibitor of the
Anaphase-promoting Complex APC/C (APCin)
or a blocker of microtubule polymerization
(Nocadazole) during the 8- to 16-cell mitotic
period (group “m-phase”), whereas control em-
bryos underwent the same treatment during
the intermitotic period and hence had no im-
pact on division synchrony (group “interphase”).
The APCin-treated embryos in the m-phase
group had a significantly lower packing pa-
rameter at the 16-cell stage (mean ± s.d. =
0.29 ± 0.06) (Fig. 7, E and F) compared to the
non-synchronized embryos in the interphase
group (mean ± s.d. = 0.40 ± 0.11) and the un-
treated group (mean ± s.d. = 0.47 ± 0.18), while
maintaining a high number of inner cells (fig.
S7, B to D). Notably, a similar effect was ob-
tained in ZP-less embryos with disrupted to-
pologies (fig. S7E), suggesting a mechanistic
link between synchronous divisions and to-
pological disruption. Furthermore, mitosis syn-
chronization resulted in a lower proportion of
the ICM-fated Sox2+ cells in them-phase group

Fig. 5. Compaction and surface
contractility drive topological transi-
tions. (A) and (D) Proportion of Cs(2)
(magenta), D2d (cyan), other rigid
packings (others, gray), and NR packings
(black) as a function of the compaction
parameter in control mouse embryos
[(A) n = 29 embryos] and mMyh9+/−

mutants [(D) n = 6 embryos].
(B) Normalized time course through
the 8-cell stage of the mean a-parameter
for control mouse embryos (black, n =
29 embryos) and mMyh9+/− mutants
(blue, n = 6 embryos). Light colors,
individual tracks. See also fig. S5F.
(C) Max projection of a representative live
imaging of mMyh9+/− mutants at
the beginning (top) and the end (bottom)
of the 8-cell stage (n = 6 embryos). Time
after the beginning (white) and before
the end (red) of the 8-cell stage. Scale bar,
25 mm. See also movie S5. (E) t-SNE
projection of the morphomap showing
control mouse embryos (black, n = 29
embryos) and mMyh9+/− mutants (blue,
n = 6 embryos). Isolines, density map at
the end of the 8-cell stage of control
embryos. See also fig. S5I.

+10h00 -1h00

A B C

D E

+1h00 -10h00

mMyh9+/-

simulations (red, “sim-emb”) for a = 0.65, 0.52, and 0.4. N, number of pairs.
(I) Schematic summary of the physical model. Uncompacted rigid packings (a = 0.9)
are energetically equivalent and the noise is not high enough to escape from
local minima (red arrows). Compaction (a = 0.6) biases the local minima relative

energy and favors noise-induced topological transitions (solid green arrow). At
high compaction (a = 0.3), many topologies transitioned to D2d, although some
topological transitions [from D3d, C2v(2), Cs(3) and Cs(1a)] require more noise
(dashed green arrow) or a longer timescale. See also fig. S4, A and B.
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Fig. 6. ZP facilitates convergence by constraining the space of
possibilities. (A) and (B) Normalized time course through the 8-cell stage of the
mean compaction parameter a [(A) solid lines] and the mean distance in high
dimensions [(B) dashed lines] in mouse embryos (black, n = 29), rabbit embryos
(blue, n = 10), and monkey embryos (yellow, n = 12). Light color lines, individual
embryo tracks. (C) Distribution of the proportion of Cs(2) (magenta), D2d (cyan),
NR packings (black) or other minimally rigid packings (gray) identified in mouse
embryos without ZP 1 hour and 30 min after the beginning (left) and the end
(right) of the 8-cell stage (n = 57 embryos). See fig. S3C for comparison with
embryos with ZP. (D), (I), and (J) Normalized time course through the 8-cell

stage of the mean ± s.d. of the pair-wise geometrical distances (D) and the
packing parameter (I) and (J) in control mouse embryos [black in (I) and (J), n =
29], mouse embryos without ZP [red in (I), n = 57], and mouse embryos
incubated in alginate sodium without cross-linking [red in (J), n = 11], and with
cross-linking [yellow in (J), n = 21]. (E) and (F) t-SNE projection of the
morphomap with ZP-less embryos (red, n = 57) 1 hour and 30 min after the
beginning (E) and before the end (F) of the 8-cell stage. Control embryos (black,
n = 29) are also shown for reference. (G) and (H) Packing parameter at the
end of the 8-cell stage as a function of the topology of the embryo with [(G), n = 20
embryos] and without [(H), n = 57, embryos] zona-pellucida.
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Fig. 7. Variability in cleavage timing promote robustness in morphogenesis
and ICM-TE patterning. (A) Bimodal distribution of contact-free area of individual
cells (gray bars, n = 320 cells from 20 embryos) fitted with inner and outer Gaussian
distributions (black line, mean ± s.d. = 12.1% ± 9.6 and 48.4% ± 6.5). Dashed
line, cutoff between inner and outer cells (32.6%). (B) and (C) Packing parameter
two hours after the start of the 16-cell stage as a function of the packing parameter
at the end of the 8-cell stage [(B) Pearson correlation R = 0.658 (P < 0.01)].
and the number of inner cells [(C) Pearson correlation R = 0.591 (P < 0.01)]. Solid
line, linear regression. Shaded ribbon, standard error. (D) Diagram of the
synchronization experiments done in (E) to (K). Embryos were either untreated
(control) or treated with APCin (red) or Nocodazole (blue) at the beginning (group
interphase) or end (group m-phase) of the 8-cell stage (see Materials and Methods).
n, sample size; N, number of experiments. (E) Representative cross-section of live
embryos at the 16-cell stage from groups control (left), interphase (middle) and

m-phase (right). Magenta, mT (membranes); cyan, H2B-EGFP (chromatin). Scale
bar, 25 mm. (F) Packing parameter two hours after the start of the 16-cell stage in
control (gray), and APCin-treated groups interphase (red) and m-phase (orange).
Two-sided Mann-Whitney test; n.s., non-significant; ***, P-value < 0.001. See (D)
for sample size. (G) Representative cross-section of fixed embryos from group
control (top-left), group interphase (top-right, APCin), and group m-phase (bottom
row). Cyan, Cdx2 (TE-fated cells); magenta, Sox2 (ICM-fated cells); orange,
phalloidin (F-actin). Scale bar, 25 mm. (H), (J), and (K) Box plot of the proportion
of Sox2+ cells (H), ectopic Sox2+ cells (J) and ectopic Cdx2+ cells (K) in embryos
treated with APCin (red), Nocodazole (blue) or untreated (gray). Two-sided
Mann-Whitney test; n.s., non-significant; *, P-value < 0.05; ***, P-value < 0.001.
See (D) for sample size. (I) Axial (top) and lateral (bottom) cross-section of fixed
embryos from group m-phase + APCin. Arrowhead indicates ectopic Sox2+ (left)
and Cdx2+ (right) cells. Colors and scale bar as in (G).
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at the 32-cell stage compared with the control
groups, both after APCin or Nocodazole treat-
ment (Fig. 7, G and H, and fig. S7F). This
indicates that synchronization of the fourth
cleavage led to formation of the lower propor-
tion of ICM-fated cells in the embryo.Moreover,
treated embryos showed significantly higher
proportions of cells ectopically expressing Sox2
or Cdx2 (Fig. 7, I to K). Collectively, these re-
sults demonstrate that a certain degree of de-
synchronization of the cleavages in the early
mouse embryo enhances embryo packing, gen-
eration of the ICM fate, and precision in the
inside-outside patterning.

Concluding remarks

Wemeasured andmanipulated spatial and tem-
poral variabilities in early mammalian embryo-
genesis, which demonstrated that spatial and
temporal variabilities are functionally linked
and an asynchrony in cell divisions facilitates
robust morphogenesis and patterning.

Measurement and manipulation of temporal and
spatial variabilities

Although cell lineage has been established for
many species, few studies have focused on the
cell-to-cell variability in spatial arrangement
or cleavage timing (19, 32, 33, 61–67). With a
small number of cells and progressively accu-
mulating variabilities in space and time, early
mammalian embryos present an excellent
opportunity to measure the building of varia-
bilities during development.
To measure spatial variability we developed

a morphological metric based on exponential
splines and compared embryos geometrically.
Unlike othermethods (44, 68–76), exponential
splines encompass all geometrical hidden fea-
tures (including volume, position, contacts,
and compaction) with an arbitrary number of
parameters and few assumptions, offering a
generic tool to build morphomaps. Further,
geometrical data are ultimately reduced to a
few parameters that inherently approximate
the actual cell shape. In spite of this appro-
ximation, we observed a high standard devia-
tion in inter-embryonic distance, due to the
high dimensions of the underlying space, while
it displayed a highly significant decrease over
time.We complemented the geometric analysis
with a topological exploration of the possible
cell packings of the embryo. This approach
offers a theoretical framework that can add
landmarks to morphomaps, enhancing their
intuitive interpretability.
The spatial variability at the beginning of an

intermitotic period may be largely influenced
by previous cell divisions as cytokinesis gen-
erates force separating two daughter cells,
rearranging embryonic packings abruptly, in
a stochastic fashion. In the present study,
experimental synchronization of the divisions
revealed a functional link between temporal

and spatial variabilities in embryogenesis;
however, future studies may directly perturb
the spatial arrangement of the cells.
It will also be interesting to examine whe-

ther temporal variability in cleavage timing
can be predicted, for instance, by cell size, that
reportedly has an impact on cell cycle dynam-
ics (77). Overall, because spatiotemporal vari-
ability is widespread, it will be interesting to
explore its possible source (78–80) and role in
various developmental contexts.

Optimal spatiotemporal variability facilitates
robust morphogenesis and patterning

We showed that cortical contractility drives
topological transitions toward an optimally
packed shape by lowering the surface energy.
However, an infinite number of trajectories
are possible. What makes the embryo follow
one trajectory over another is yet to be elu-
cidated anddepends on the shape of the energy
landscape, passive minimization of surface
energy, and active cellular mechanisms gen-
erating fluctuating noise in the system. Addi-
tional mechanisms may constrain embryos
to a limited subset of the morphomap, e.g.,
the possible spatial coupling between sister
cells (81), or the geometrical constraint by
the ZP, as with the eggshell in Caenorhabditis
elegans (82).
We also showed that multiple sources of

noise affectmammalian embryo development,
including cleavage asynchrony and cell shape
fluctuation. These variabilities at the cellular
level influence the packing at the embryo level,
andminimization of contractility driven surface
energy buffers variability and explain geometric
and topological convergences of the embryo.
Notably, there are a number of local stable
states in the system, meaning that some level
of fluctuations is therefore required for transi-
tions toward the global minimum. The idea
that noise is not detrimental to reach a given
stable state (83–85), but instead might be nec-
essary to avoid being trapped in local minima,
has been explored in computer science as well
as in physics and chemistry (86–89).We thus con-
jecture that intermediate levels of variability—
spatial or temporal, either arising from clea-
vages or contractility fluctuations—might be
optimal for converging toward stereotypical
embryo shapes and patterns.

Shared and distinct features across mammals
highlight essential processes ensuring
developmental robustness

Our analysis also demonstrated that the cel-
lular morphogenesis of mouse, rabbit, and
monkey embryos can be described in a shared
morphomap, revealing akey similarity between
mammalian species. Rabbit embryos show a
higher spatial variability and a lower propor-
tion of D2d packing, in agreement with our
model, given that compaction happens only

from the 16- to the 64-cell stage (90, 91). By
contrast, monkey embryos display robust geo-
metrical and topological patterns despite the
lack of compaction at the 8-cell stage (92),
where the ZP appears to exert higher spatial
constraints (43, 82). Alternatively, higher
cleavage asynchronymay facilitate robust mor-
phogenesis, by promoting an optimal packing
from the early 8-cell stage.
Overall, the dynamics of the variability in

cleavage timing is closely linked to the spatial
organization of the cells within the embryo,
and ultimately to morphogenesis and pattern-
ing. Our finding of species-specific dynamics
of variability in cleavage timing suggests the
possibility that the temporal variability may
be an evolutionary trait generating an optimal
spatial noise, ultimately ensuring robustness
in embryogenesis.

Material and Methods
Mouse work

We performed mouse animal work in the
Laboratory Animal Resources (LAR) at the
European Molecular Biology Laboratory with
permission from the Institutional Animal Care
and Use Committee (IACUC) overseeing the
operation (IACUC number TH11 00 11). LAR is
operated as stated in international animal
welfare rules (Federation for Laboratory Animal
Science Associations guidelines and recommen-
dations). Mouse colonies are maintained in
specific pathogen-free conditions with 12 to
12 hours light-dark cycle. All mice used for
experiments were older than 8 weeks.

Rabbit work

We performed rabbit animal work following
the International Guidelines on Biomedical
Research involving animals, as promulgated
by the Society for the Study of Reproduction,
andwith the European Convention on Animal
Experimentation. The researchers involved in
work with the rabbits were all licensed for
animal experimentation by the French veteri-
nary services. The rabbit experimental designwas
carried out under the approval of national ethic
committee (APAFIS #2180-2015112615371038v2)
and under the approval of the local ethic
committee (Comethea n°45, registered under
n°12/107 and n°15/59).

Monkey work

Weperformedmonkeyanimalworkwith female
cynomolgusmonkeys (Macaca fascicularis), of
ages ranging from 6 to 11 years. The light-dark
cycle was maintained as 12 to 12 hours of
artificial lighting from 8 a.m. to 8 p.m. Each
animal was fed 20 g/kg of body weight of
commercial pelletmonkey chow (CMK-1; CLEA
Japan) in the morning, supplemented with
20 to 50 g of sweet potato in the afternoon.
Water was available ad libitum. Tempera-
ture and humidity in the animal rooms were
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maintained at 25 ± 2°C and 50 ± 5%, respec-
tively. The animal experiments were appropri-
ately performed by following the Animal
Research: Reporting in Vivo Experiments
(ARRIVE) guidelines developed by the National
Centre for the Replacement, Refinement &
Reduction of Animals in Research (NC3Rs),
and also by following “The Act on Welfare
and Management of Animals” from Ministry
of the Environment, “Fundamental Guidelines
for Proper Conduct of Animal Experiment and
Related Activities in Academic Research
Institutions” under the jurisdiction of the
Ministry of Education, Culture, Sports, Science
and Technology, and “Guidelines for Proper
Conduct of Animal Experiments” fromScience
Council of Japan. All animal experimental pro-
cedures were approved by the Animal Care and
Use Committee of Shiga University of Medical
Science (approval number: 2021-10-4).

Mouse lines

The following mouse lines were used in this
study: (C57BL/6xC3H) F1 for WT, mTmG (Gt
(ROSA) 26Sortm4(ACTB-tdTomato,-EGFP)Luo) (93),
CAG H2B-EGFP (Tg(HIST1H2BB/EGFP)1Pa)
(94) and Myh9tm5RSad (95). Double trans-
genic mTmG ; H2B-EGFP line was generated
by breeding mTmG (homozygous or heterozy-
gous) femaleswithH2B-EGFPmales. Transgenic
mMyh9 ; mTmG ; H2B-EGFP embryos were
generated by maternal deletion of Myosin-9
using ZP3-Cre (Tg(Zp3-cre)93Knw) mice (96)
andMyh9tm5RSad mice. Myh9tm5RSad/tm5RSad ;
Zp3Cre/+ mothers were bred with mTmG ;
H2B-EGFP fathers. mG line was generated by
maternal excision of the mT sequence using
ZP3-Cre mice and mTmG mice. Genotyping
was done using the following primers:
1. mTmG andmG lines: 250 b.p. (transgenic)

and 330 b.p. (wild-type) PCR product size with
primersoIMR7318(CTCTGCTGCCTCCTGGCTTCT),
oIMR7319 (CGAGGCGGATCACAAGCAATA)
and oIMR7320 (TCAATGGGCGGGGGTCGTT),
2. CAG H2B-EGFP: 900 b.p. (transgenic)

PCR product size with primers CAG-F (GGC-
TTCTGGCGTGTGACCGGC) andEXFP-R (GTC-
TTGTAGTTGCCGTCGTC); 324 b.p. (wild-type)
PCRproduct sizewithprimers oIMR7338 (CTA-
GGCCACAGAATTGAAAGATCT) and oIMR7339
(GTAGGTGGAAATTCTAGCATCATCC);PCRmust
be done separately,
3. Myh9tm5RSad: 770 b.p. (transgenic) and

600 b.p. (wild-type) PCR product size with
primersMyh 9F (ATGGGCAGGTTCTTATAAGG)
andMyh 9R (GGGACACAGTGGAATCCCTT)
4. ZP3-Cre: 300 b.p. (transgenic) PCR prod-

uct size with primers cre upper (TGCTGTTT-
CACTGGTTGTGCGGCG) and cre lower
(TGCCTTCTCTACACCTGCGGTGCT).

Recovery of mouse embryos

Embryos were recovered from super-ovulated
femalemice. For superovulation, intraperitoneal

injection of 5 international units (IU) of preg-
nant mare’s serum gonadotropin (PMSG, Inter-
vet, Intergonan) and following injection of 5-IU
human chorionic gonadotropin (hCG; Intervet,
Ovogest 1500) 48 hours later were performed.
4-cell stage embryos were recovered at E2.0 by
inserting a needle in the ampulla and flushing
the oviduct and the uterus with KSOMaa
including HEPES (H-KSOMaa; Zenith Biotech,
ZEHP-050). Recovered embryos were washed
three times in drops of KSOMaa (Zenith
Biotech, ZEKS-050) and then transferred into
10 ml drops of KSOMaa covered with mineral
oil (Sigma-Aldrich,M8410). Embryosweremain-
tained in an incubator (ThermoFisher Scientific)
at 37°C with 5% CO2.

Recovery of rabbit embryos

New Zealand White female rabbits (20 to
22 weeks old) were super-ovulated using 5 sub-
cutaneous administrations of porcine follicle
stimulating hormone (pFSH,Merial, Stimufol)
for 3 days before mating: two doses of 5 mg on
day 1 at 12 hours intervals, two doses of 10 mg
on day 2 at 12 hours intervals, and one dose of
5 mg on day 3 followed 12 hours later by an
intravenous administration of 30IU hCG (Inter-
vet, Chorulon) at the time of mating (natural
mating). Embryos were collected from oviducts
and perfusedwithDPBS (Thermo Fisher Scien-
tific, 14190) at 19 hours post-coitum (h.p.c.) to
obtain embryos at 2 pronuclei stage. Embryos
were maintained in 0.5mL of TCM199-HEPES
(Biochrom, F0665) + 10% foetal bovine serum
(FBS, Thermo Fisher Scientific, 10500) + 0.5%
of penicillin/streptomycin (Thermo Fisher Sci-
entific, 15140) in a 4-well dish (Nunc, 176740)
until the microinjection.

Intracytoplasmic sperm injection (ICSI)

Monkey oocyte collection was performed as
described previously (97). Briefly, two weeks
after the subcutaneous injection of 0.9 mg of
a gonadotropin-releasing hormone antagonist
(Takeda Chemical Industries, Leuplin for
Injection Kit), a micro-infusion pump (ALZET
Osmotic Pumps, iPRECIO SMP-200) with
15 IU/kghumanFSH (hFSH,MerckBiopharma,
Gonal-f) was embedded subcutaneously under
anesthesia and injected 7 mL/h for 10 days.
After the hFSH treatment, 400 IU/kg human
chorionic gonadotropin (hCG, Asuka Pharma-
ceutical, Gonatropin) was injected intra-
muscularly. Forty hours after thehCG treatment,
oocytes were collected by follicular aspiration
using a laparoscope (Machida Endoscope, LA-
6500). Cumulus-oocyte complexes (COCs) were
recovered in alpha modification of Eagle’s
medium (MP Biomedicals, 09103112-CF), con-
taining 10%serumsubstitute supplement (Irvine
Scientific, 99193). The COCs were stripped off
cumulus cells with 0.5 mg/ml hyaluronidase
(Sigma-Aldrich, H4272). ICSI was carried out
onmetaphase II (MII)-stage oocytes in mTALP

+HEPES (98) with a micromanipulator. Fresh
sperm were collected by electric stimulation of
the penis with no anesthesia.

In vitro transcription

H2B-EGFP mRNA was transcribed from plas-
mid #1 pCS-H2B-EGFP (99) (Addgene, Plasmid
#53744). To construct pCS2-myrTagRFP-T
(plasmid #2), TagRFP-T fusedwith eight amino
acids, GSSKSKPK, at the N terminus for my-
ristoylation was amplified (primer set: 5′-
GGATCCATGGGCAGCAGCAA GAGCAAGCCC
AAGAGCGAGCTGATTAAG-3′ and5′-CTCGAGT-
CAC TTGTGCCC-3′) and cloned into the
BamHI-XhoI sites of pCS2+. To construct
pcDNA3.1-membrane-tdTomato-T2A-H2B-
GFP-poly(A83) (plasmid #3), an amplified PCR
product from pCAG-TAG (Addgene, Plasmid
#26771) was cloned into the KpnI-NotI sites of
pcDNA3.1-H2B mCherry-poly(A83) (100). The
vector #3was linearizedwith XhoI and treated
with 0.5% SDS, 0.2 mg/mL Proteinase K
(Thermo-Fisher, QS0510) for 30 min at 50°C,
purified with phenol-chloroform, and precipi-
tated with ethanol.
Then, the purified vectors were used as a

template for in vitro transcription. The mRNA
fromplasmid #1 and #2was transcribed using the
mMESSAGE mMACHINE SP6 Transcription
Kit (Thermo Fisher Scientific, AM1340) and
purified with the NucleoSpin RNA Clean-up
XS kit (Macherey-Nagel, 740902). The mRNA
from plasmid #3 was transcribed using the
mMESSAGEmMACHINET7 TranscriptionKit
(Thermo Fisher Scientific, AM1344) and puri-
fied with the MEGAclear Transcription Clean-
Up Kit (Thermo Fisher Scientific, AM1908).

Microinjection of mRNAs

Rabbit zygotes were microinjected into the
cytoplasm with a mRNA’s mix of H2b-GFP
(50 ng/mL final concentration) andmyrTagRFP-T
(150 ng/mL final concentration) in water.Micro-
injectionswere performed using aDIC inverted
microscope (Olympus, IX71) equipped with
micromanipulators (Eppendorf, TransferMan
NK) and electronic microinjector (Eppendorf,
femtojet injector). Aftermicroinjection, unlysed
embryos were cultured during 2 to 3 hours in
40 mLmicro drops of TCM199 (Sigma-Aldrich,
M4530) + 10% foetal bovine serum (FBS,
ThermoFisher Scientific, 10500)+0.5%penicillin/
streptomycin (Thermo Fisher Scientific, 15140)
under mineral oil (Sigma-Aldrich, M8410) at
38.5°C under 5% CO2.
For microinjection in monkey eggs, the

mRNAwas co-injectedwith spermduring ICSI.
The spermwerewashed in a drop of 300 ng/mL
mRNA, and co-injected into the MII-stage
oocytes. Following co-injection, embryos were
cultured in monkey culture medium (CMRL
1066 Medium (Thermo Fisher Scientific,
21540026) supplementedwith 20%FBS) at 38°C
in 5% CO2 and 5% O2.

RESEARCH | RESEARCH ARTICLE

Fabrèges et al., Science 386, eadh1145 (2024) 11 October 2024 12 of 21

D
ow

nloaded from
 https://w

w
w

.science.org on D
ecem

ber 19, 2024



Transport of microinjected rabbit zygotes
Two to three hours aftermicroinjection, 0.5mL
tubes were over-filled with M2 (Sigma-Aldrich,
M7167) at 38.5°C to remove air bubbles. Tubes
were placed into an insulated box (Polystyrene
foam transport box) with the Velvet cooling
elements (Velvet, SVE2) and antifreeze elements
(Velvet, AF1) to maintain 8°C during transpor-
tation. The samples were sent from the collec-
tion site (Jouy-en-Josas, France) to theEuropean
Molecular Biology Laboratory (Heidelberg,
Germany) via a regular courier service over-
night (17 to 19 hours). Before reception of the
embryos, rabbit culturemedium (TCM199 (Sigma,
M4530) + 10% FBS (Thermo Fisher Scientific,
10500) +0.5%penicillin/streptomycin (Thermo
Fisher Scientific, 15140)) was freshly prepared
and stored at 38.5°C and 5%CO2 for at least an
hour. Upon reception of the embryos, the tem-
perature inside the box was checked (8°C), the
embryoswere transferred toa4-well dish (Nunc,
176740) with M2 (Sigma, M7167) at room tem-
perature for 5min, washed four times in 40 mL
drops of equilibrated and prewarmed rabbit
culture medium, then transferred to 10 mL
drops of equilibrated and prewarmed rab-
bit culture medium covered with mineral oil
(Sigma, M8410). Embryos were maintained
in an incubator (Thermo Fisher Scientific) at
38.5°C with 5% CO2 for one hour until the
beginning of the imaging. Microinjected and
noninjected embryos were kept at collection
site for the duration of the experiment. De-
velopmental timing was checked at regular
intervals. Survival rate and blastocyst for-
mation was assessed for transported and
non-transported individuals. Embryos at
imaging site were delayed by 18 hours com-
pared to embryos kept at collection site, cor-
responding to the time spent at 8°C during
transportation. No differences were observed
in survival rate and blastocyst formation be-
tween the microinjected embryos at the imag-
ing site and at the collection site, indicating
no observable effects of transportation other
that “pausing” the development.

Transport of microinjected monkey embryos

Forty-five hours after microinjection, 4-cell
stage monkey embryos were transferred into
300 mL monkey culture medium (CMRL 1066
Medium supplemented with 20% FBS) covered
with 1 mLmineral oil in a 1.5 mL tube. Tubes
were placed into 38.5°C water in a vacuum
bottle in an insulated box to maintain tem-
perature during 1.5 hours of transportation
from collection site (Shiga University ofMedical
Science, Japan) to the imaging site (Kyoto
University, Japan). Upon arrival, embryos were
washed three times with prewarmed monkey
culture medium, then transferred to 10 mL
drops of equilibrated and prewarmedmonkey
culture medium covered with mineral oil.
Embryos were maintained in an incubator

(PHCbi, MCO-170MUV) at 38°C with 5% CO2
and 5%O2 for one hour until the beginning of
the imaging. Microinjected and noninjected
embryos were kept at collection site for the
duration of the experiment, and developmen-
tal timing was checked at regular interval.
Monkey embryos showed no observable dif-
ference between the control embryos kept at
collection site and the embryos imaged and
cultured at imaging site.

Chemical treatments

For Myosin inhibition (Fig. 5), 4-cell stage em-
bryos were washed and cultured in pre-
equilibratedKSOMaa (ZenithBiotech, ZEKS-050)
supplemented with DMSO (vehicle; Sigma-
Aldrich, D2650) and para-aminoblebbistatin
(10 mM; Optopharma, DR-Am-89) for 24 hours
until the 16-cell stage. For the synchronization
of cellmitoses at the fourth cleavage (Fig. 7), 8-cell
stage embryos were randomly sorted into three
groups. Embryos in the control group were
washed and cultured for 4 hours in preequi-
librated KSOMaa supplemented with 1:1000
DMSO. Embryos in the interphase group and
m-phase group were washed and cultured for
4 hours in preequilibrated KSOMaa supple-
mentedwith APCin (100 mM;Tocris Bioscience,
5747) or Nocodazole (0.5 mM; Sigma-Aldrich,
M1404). Treatment of embryos in the interphase
group started at early 8-cell stage. Treatment of
embryos in the m-phase group started at late
8-cell stage. Embryonic stage (early or late 8-cell
stage) was determined by visual inspection of
the overall degree of compaction of the em-
bryos in the group with bright-field binocular
microscope (Zeiss, Discovery.V8). Embryos
from the interphase group were subsequently
excluded from analysis if the 8- to 16-cell stage
cleavage started less than 2 hours after washing
the drug. A significant synchronization was
observed in embryos from the m-phase group.
Specifically, the 8- to 16-cell stage transition
was reduced by 1.58 hours on average (mean ±
sd of group interphase: 2.61 ± 0.98hours,n=20;
mean ± sd of groupm-phase: 1.03 ± 0.59 hours,
n = 20), with the majority of the cells dividing
in less than 15min afterwashing.Only embryos
having completed the 8- to 16-cell stage tran-
sition in 2 hours or less were included in the
analysis.

Generation of heterochronic embryos

mTmGandmGmicewere super-ovulated four
hours apart. Embryos were recovered at the
4- to 8-cell stage and imaged every 30 min in
the InVi-SPIM to identify the beginning of
the 8-cell stage. Pairs of one mT and one mG
expressing embryos with 3 to 6 hours of dif-
ference were selected to generate hetero-
chronic chimeras. First, one of the two embryos
was randomly chosen to be the donor. To
dissociate the donor embryo into single blas-
tomeres, the ZP was removed by incubating

the embryos in pronase (0.5% w/v Proteinase
K in H-KSOMaa supplemented with 0.5%
PVP-40 (Sigma-Aldrich, P0930)) covered with
mineral oil for 2-3 min. Embryos were then
washed 5 times in 10 mL drops of H-KSOMaa.
Afterwards, the embryos were placed into a
50 mL drop of dissociation medium (101)
(KSOMaa without Ca2+ andMg2+). Blastomeres
were then dissociated in the drop by pipetting
up and down in a narrow glass capillary
(Brand, 708744). Dissociated blastomeres
were incubated in KSOMaa drops coveredwith
mineral oil until the host embryo was ready for
the graft. To prepare the host, we used amicro-
manipulation device (Narishige, MON202-D)
mounted on a Zeiss Axio Observer Z1 micro-
scope to create a slit in the ZP. First, the host
embryos were placed in a 50 mL drop of H-
KSOMaa covered with mineral oil in a glass-
bottomdish (MatTek, P50G-1.5-14-F) andmounted
on the microscope with temperature of the
incubation chamber maintained at 37°C. To
make a slit in the ZP of the host, a holding
pipette and a pulled glass needle mounted on
the micromanipulator were used. Both the
holding pipette and pulled needle were custom-
made fromglass capillaries (Warner Instrument,
GC100T-15) using amicropipette puller (Sutter
Instrument, P-1000) and amicroforge (Narishige,
MF-900). The host embryo was maintained in
place with the holding pipette and the glass
needle was inserted tangentially to the embryo
under the ZP and pulled in a perpendicular
direction without damaging the cells, thus
generating a slit in the ZP. Next, one of the
donor’s blastomeres was randomly picked and
inserted in the slit under the host’s ZP using
another custom-made glass pipette mounted
on the micromanipulator. The resulting 9-cell
heterochronic chimeras were then transferred
to KSOMaa and put back in the InVi-SPIM and
imaged every half an hour until the 32-cell
stage. Finally, timing of division wasmanually
inspected from 8- to 16-cell stage and from
16- to 32-cell stage. Host and donor cells were
identified based on the expression ofmT ormG.

ZP dissection

Embryos were dissected out of their ZP at the
4-cell stage using a holding pipette and a glass
needle (102). The holding pipette and needle
were custom-made fromglass capillaries (Warner
Instrument, G100TF-6) pulled using a micro-
pipette puller (Sutter Instrument, P-1000). To
forge the holding pipette, the glass needle was
cut to approximatively 80 mmdiameter using a
microforge (Narishige, MF-900) and the tip
was fire-polished to approximatively 10 mm
inner diameter. To forge the needle, the tip was
melted onto the glass bead and pulled back
to obtain a solid pointed tip. Both needle and
pipette were bent to a 30° to 45° angle to be
parallel to the dish surface when mounted on
amicromanipulator (Narishige,MON202-D). The
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holding pipette was used to apply controlled
pressures usingmineral oil-filled tubing coupled
to a piston of which the position was moved
using amicroscale translating stage (Narishige,
IM-9B).

Gelation of the perivitelline space

Embryos recovered at the 1-cell stage were in-
cubated for 90 min in warm H-KSOMaa me-
dium containing 1% of alginic acid sodium salt
(Sigma-Aldrich, A1112). Theywere rinsed briefly
in H-KSOMaa and incubated for 30 min in
H-KSOMaa (group alginate control) or in H-
KSOMaa + 0.1% NaCl + 0.13% CaCl2 (group
alginate). Following gelation, embryos were
rinsed in preequilibrated KSOMaa and cul-
tured at 37°C and 5% CO2 until the beginning
of imaging at 4-cell stage.

Immunostaining

Embryos were fixed in 100mL of 4% parafor-
maldehyde (PFA, Electron Microscopy Sciences,
19208) inDPBS for 15min at room temperature,
washed three times for 5 min in DPBS with
0.1%Tween-20 (wDPBS, Sigma-Aldrich, P7949)+
1%bovine serum albumin (BSA, Sigma-Aldrich,
9647), permeabilized 15 min at room temper-
ature in DPBS with 0.5% TritonX-100 (Sigma-
Aldrich, T8787), washed three times for 5 min
in wDPBS+1% BSA, and blocked 4 hours at
roomtemperature inwDPBS+3%BSA.Embryos
were then transferred into 70 mL of primary
antibody solution in wDPBS+3% BSA and incu-
bated overnight at 4°C. Primary antibodies
against Cdx2 (Biogenex, MU392A-UC) and Sox2
(Cell Signaling, D9B8N) were diluted at 1:150.
Embryos were then washed three times for
5 min in wDPSB+1% BSA and transferred into
70 mL of secondary antibody solution in
wDPSB+1%BSA supplementedwith Phalloidin-
Rhodamin (Thermo Fisher Scientific, R415) at
1:200 for 2 hours at room temperature.
Secondary antibodies conjugated with Cy5
against mouse Ig (Jackson ImmunoResearch,
715-175-150) and Alexa Fluor 488 Plus against
rabbit Ig (Thermo Fisher Scientific, A11008)
were diluted at 1:200. Before imaging, em-
bryos were washed three times for 5 min in
wDPBS+1% BSA, transferred 10 min at room
temperature in wDPBS+1% BSA supplemented
with DAPI (1:1000, Thermo Fisher Scientific,
D3751) to stain DNA, washed three times for
5 min in wDPBS+1%BSA andmounted in 5 mL
drops of wDPBS for imaging the same day.

Confocal microscopy

Imaging of immunostained embryos was per-
formed with LSM 780 (Zeiss). C-Apochromat
403 1.1 NA water objective (Zeiss) was used.

Light-sheet microscopy

Embryos were live-imaged using InVi-SPIM
(Luxendo). Embryoswere aligned in a V-shaped
sample holder covered with transparent fluori-

nated ethylene propylene foil (FEP, Luxendo),
in approximately 100 mL of culture medium
covered with 200 mL ofmineral oil to prevent
evaporation. The sample holder was enclosed
in an environmentally controlled incubation
box with 5% CO2 and 5%O2 at 37°C (mouse),
38°C (monkey) or 38.5°C (rabbit). For Fig. 1,
embryos were isolated in wells to facilitate
their identification after imaging, fixation and
immunostaining. To shape the wells, we used
a flamed glass capillary (Marienfeld Superior,
2930210) with a spherical tip of approxima-
tively 200 mm of diameter to carefully press
and stretch the FEP foil shaping up to 50 wells
per sample holder. InVi-SPIM was equipped
with a Nikon 25x/1.1NA water immersion de-
tective objective and aNikon 10x/0.3NAwater
immersion illumination objective. The illumi-
nation plane and focal plane were aligned
before each imaging session and maintained
during the imaging. Images were taken by a
CMOS camera (Hamamatsu, ORCA Flash4.0
V2) using software LuxControl (Luxendo). The
lasers and filters used were 488 nm with
BP525/50 and 561 nmwith LP561 to image GFP
and tdTomato/RFP fluorophores respectively.
Exposure time for each plane was set to 30ms.
Imaging was done using a lateral resolution of
0.104 mm/px or 0.208 mm/px binned to 0.416 mm
for analysis. Due to technical difficulties with
the motorized stage, the InVi-SPIM used a
larger than requested step size between optical
slices. To determine the real step size, we
computed for each embryo the width:depth
ratio and the height:depth ratio in voxels of all
cells at every time point of the segmented 8-cell
stage. Assuming that these ratio equals 1 on
average, as with the width:height ratio, we
determined the real step size in mm for each
embryo individually (see table S1). Imaging
settings, including duration of imaging and
time interval for each dataset, are summarized
in table S1.

Generation of cluster of spheres in silico

We describe the method to generate in silico
surrogates of packings such that they can be
manipulated using the software Surface Evolver
(54), a classical tool to study the surfaces and
topological transitions shaped by surface ten-
sion. Input data provides the geolocation of the
center of masses of cells, area of contact be-
tween cells and volume of each cell. Output
data are a file compatible with Surface Evolver
(file extension fe). For each cell, we created a
cloud of points at distance R of its center of
mass, such that the enclosed volume corre-
sponded to volume of the cell. For adjacent cells,
we created a triangle—a simplex—that was
shared among the two cells in contact. Then,
we created the convex hull of the cloud of
points, including the contact simplices if pres-
ent, even though they can break locally the
convexity of the object. This resulted in a

structuremade of triangular simplices towhich
we provided a consistent orientation such that
they can be properly interpreted by Surface
Evolver. Volumes were also given consistently
with the volumes in the input data. The first
optimization steps of Surface Evolver are suf-
ficient to generate a structure akin to the input
data, both at the topological and geometrical
level, and also to remove the potential non-
convex regions generated at the contact points.
The surface tensions can then bemodified such
that one reproduces the compaction process.
See also fig. S4F for a schematic description
of the process.

In silico compaction and energy minimization

Following previous findings that cell-cell adhe-
sion during mouse compaction could be de-
scribed well by the analogy to soap bubble
(35, 40), the energy of a given configuration
is defined by

Etot ¼
X8
i¼1

gcf A
i
cf þ

1

2
gccA

i
cc

� �

where we have summed by all eight cells their
cell-fluid energy (gcf being the cell-fluid ten-
sion andAi

cf the cell-fluid aa of cell i) and their
cell-cl energy (gcc being t cell-cell tension and
Ai
cc the area of cell i in contact with other

cells, note that the factor 1
2 is to avoid double

summation). We set all cellular volumes to
unity. We can set gcc = 1 without loss of gen-
erality, so that theminimizationproblemdepends
only on the tension ratio a ¼ gcc

2gcf
. It has been

shown previously that this parameter a can be
estimated from the angles between cell-cell con-
tacts and the fluid interface (Young-Dupré
equation, see also Fig. 4A and fig. S2G). Note
that a ¼ 1

2 corresponds to soap bubbles (all
tensions are equal and all angles are 120°), a = 0
corresponds to only cell-fluid tension so
that the embryo will be perfectly spherical
regardless of the contact topology, and a >
1 corresponds to the non-adhesive case as it
becomes energetically favorable for cells to
dissociate (as cell-cell tensions are larger than
cell-fluid tensions).
To explore how each of the 13 rigid packings

evolve with compaction, we first initialized the
software with the 13 possible packings and a
very small adhesion strength (a = 0.95), which
ensured that cells showed very small cell-cell
contacts, and no tricellular junctions, in analogy
with adhesive hard colloids (47). We then slowly
decremented a by 0.05, each time allowing for
equilibration to aminimal energy configuration.
This allowed us to calculate how energies of
each configuration evolve as a function of a.
Importantly, while for a close to 1, energies of
all 13 packings were very similar, as expected
theoretically, decreasing a broke the degeneracy
of the system. The local stability of these en-
ergy minima was verified in Surface Evolver
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by coarsening and remeshing the surface, ef-
fectively adding noise and checkingwhether the
system always converged toward the same en-
ergy configuration.

Nearest neighbor algorithm

For cell tracking, registration or alignment of
two sets of 3D points (PA and PB) or 3D seg-
mentation (SA and SB), we developed a nearest
neighbor algorithm in Python, available in the
package morphomap (see section Code avail-
ability). For segmentation, the center of mass
of each cell in SA and SB was used to generate
PA and PB respectively. First, we computed
CA and CB, the centers of mass of PA and PB
respectively. Second, PA and PB were trans-
lated to the origin such that PA0 = PA-CA and
PB0 = PB-CB. Third,we generated 125,000 trans-
formationmatrices including rotation (10 values
between 0° and 360° for pitch, roll and yaw)
and scaling (5 values 0.5, 0.75, 1.0, 1.25, and
1.50 along the X, Y, and Z axis), corresponding
to 125,000 transformations tPB0 of PB0. Pairwise
Euclidean distances between points of tPB0
and PA0 were computed and sorted. The pair
were assigned once, in order from the smallest
distance to the biggest distance. If tPB0 had
unassigned cells after the first round, a second
round of assignation was done, assuming
mitosis. The alignment score was computed as
the sum of the squared distance between
assigned points of PA0 and tPB0. The best three
scores were kept and a new set of 125,000
transformation matrices was generated explor-
ing the grid cell around the selected values,
progressively refining a grid search of rota-
tions and scaling. The algorithm stopped after 3
iterations (corresponding to variations of 0.36°
for the rotation and 0.025% for the scaling). In
case of segmentation, the score was weighted
by the Jaccard index between segmented cells
(number of voxels in common divided by the
total number of voxels). The nearest neighbor
algorithm produced a translation vector, rota-
tion parameters, scaling parameters, and a list
of cell assignment. Computation was distrib-
uted on the EMBL’s cluster.

Tracking and manual curation

For mouse embryos, nuclear centers were de-
tected using aDifference of Gaussians algorithm
(103) (DoG). The best parameters for the DoG
algorithm were found by a grid-search proce-
dure which explored thousands of different
configuration parameters simultaneously using
EMBL’s computing cluster. The best outputwas
manually chosen and used for tracking using
our nearest neighbor algorithm. Manual cura-
tion from the 4-cell stage to the 32- or 64-cell
stage was performed by one operator using
the software Mov-IT (103) and validated by a
second operator. Alternatively, for rabbit and
monkey embryos, we used a custom-made cell
detection and tracking algorithm (unpublished)

based on nuclear segmentation with Cellpose
(104, 105) and semi-automatic shape tracking
using Napari (106). All the cells were ins-
pected.We excluded from analysis all embryos
showing sign of aneuploidy based on nuclear
signal (fragmented nuclei, micro-nuclei and
lagging chromosomes) and membrane signal
(abnormal cytokinesis).

Identification of cell fate and back-tracking

Identification of inner-cell-mass (ICM) and
trophectoderm (TE) progenitor cells was done
by fixation and immunostaining of embryos
less than 15 min after the end of the live
imaging. Sox2 and Cdx2 positive cells (respec-
tively ICM- and TE-fated cells) were identified
by the signal intensity and mapped on the last
time point of the live-imaged dataset. The align-
ment of the cells from the confocal imaging of
immunostained embryos and the cells from the
corresponding live-imaged embryos was done
using our nearest neighbor algorithm. The
identity of cells as determined by the im-
munostaining was then transferred to the
last time point of the live-imaged dataset.
Finally, cell identity was propagated backward
with a higher priority to TE-fated cells.

Measurement of cleavage timing variability

Cells were annotated with their generation
number determined by the number of cells
at the beginning of the imaging (zygote stage
being the first generation). After each mitosis,
daughter cells’ generation was incremented.
The variability in division timing at the nth

cleavage was measured as the standard devia-
tion of the timing of division (in hours) of the
cells of the nth generation in one embryo.
When multiple embryos were pooled, the
timing of division at one generation was first
centered to zero for each embryo before ex-
tracting the standard deviation from the fitting
of a Gaussian distribution to the pooled cells at
that generation. Because fitting with a Gaussian
distribution predicts unreliable standard devia-
tion if more than 30% of the data are missing
from one side of the curve, embryos with less
than 80% of cells dividing to the nth genera-
tion during the imaging period were removed
from the analysis.

Time and spatial difference between cells

For each embryo, all unique pair of cells of the
same generation were generated. The time
difference was measured as the time (in hour)
between the divisions of the cells in the pair.
The spatial difference was measured as the
Euclidean distance between the two cells 15min
before the first of the two mitoses.

Normalization by cell cycle length

Embryos of different species may have signifi-
cantly different cell cycle length (approximately
20 hours in early monkey, compared to 11 hours

formouse and rabbit embryos). Tominimize the
impact that such difference may have on the
measured timing of division, we normalized
the variance by the average cell cycle length of
the previous generation, if possible. Because the
imaging period often started during the 4-cell
stage inmouse,wenormalized the variability of
the division timing during the third cleavage
(4- to 8-cell stage) by the average cell cycle
length of the 8-cell stage instead.

Membrane segmentation and curation

The segmentation pipeline used to process the
3D images of the membrane signal uses the
PlantSeg package (107) based on previous work
done in electron microscopy images of neural
tissue (108–110) where a combination of a
strong boundary predictor and graph parti-
tioning methods has been shown to deliver
accurate segmentation results. Briefly, the
method consists of twomajor steps. In the first
step, a convolutional neural network (CNN)
is trained to predict cell boundaries. Then, a
region adjacency graph is constructed from the
pixels with edge weights computed from the
boundary predictions. In the second step, a
partitioning of the region adjacency graph is
computed to produce the segmentation. The
accuracy of this method is highly dependent
on the boundary segmentation given by the
CNN. Since no ground truth segmentation was
initially available for our data, no dedicated
CNN could be trained to accurately segment
cell membranes. Instead, we used the following
iterative procedure. In the first iteration a
pretrained CNN available in the PlantSeg pack-
age was used to generate the initial membrane
probability maps. Specifically, we used a CNN
trainedon the confocal stacks of theArabidopsis
ovules dataset named “confocal_unet_bce_-
dice_ds2”. Having the cell boundary predic-
tion, the initial segmentation was produced
with PlantSeg. Then, the segmentation has
been improved by visually choosing themost
correctly segmented regions,manually correcting
the remaining errors and using the results as
training data for a dedicated neural network
for the membrane prediction task. This pro-
cess of choosing the best segmentation, proof-
reading, and re-training the network was
performed three times. A fourth optimization
was performed individually for each dataset,
using five time points regularly spaced in the
time series and manually curated to generate
a dedicated neural network for the membrane
prediction of a unique dataset, allowing for the
segmentation of hundreds of time points with
almost no curation required.
The resulting network was used as a basis

for the graph partitioning in PlantSeg. For the
final segmentation of embryos into cells we
have chosen theMultiCut graph partitioning
strategy (111–113), implemented (114) inPlantSeg.
The best hyperparameters for the MultiCut
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algorithm have been found by a grid-search
procedure which explored thousands of dif-
ferent configuration parameters simultane-
ously using EMBL‘s computing cluster. Manual
curation and editing were performed by one
operator using a custom-made application
(unpublished) and validated by a second
operator.

Preparation of the labeled data for analysis

After curation, the segmentation data were
scaled without interpolation with Fiji (115)
to generate isotropic voxel size of 0.416 ×
0.416 × 0.416 mm3. Polar bodies were automa-
tically removed from the segmentation file
based on volume size and blastomeres were
automatically tracked using our weighted
nearest neighbor algorithm. Finally, segmen-
tation holes and gaps between cells were closed
with a dilation of one voxel around each labeled
cell. For each embryo, we checked sudden
changes of cell volume and Jaccard index over
time to identify and correct potential segmen-
tation errors.

Parametrization with exponential splines

Each cell has been parametrized independent-
ly using exponential splines. Assuming a con-
tinuous surface without holes, cells are modeled
as deformations of a continuously defined
parametric spline sphere with n longitudes
and m latitudes. In this study, we used n = 5
and m = 5 to maximize the accuracy of the
geometrical approximation while avoiding over-
fitting of artefactual information (e.g., voxel
aliasing). Equations have been re-derived from
previous work (39) to accommodate for mathe-
matical errors. The Python package splinefit is
available as part of the package morphomap
(see section Code availability).

Setup

Data are assumed to be 3D image volumes (in
TIFF format) containing integermasks for each
individual cells. Each cell is a single connected
component which voxels are all labeled with
the same integer value. Label values may be
any unique integer, and background voxels are
labeled as 0.

Fitting pipeline

Cells are assumed to have a sphere topology
(no void, no hole). We therefore model them
as deformations of a continuously defined
parametric spline sphere. The resulting closed
surfaces are C2 smooth. We advocate for a
continuously defined parametric (implicit)
representation as it allows for fast surface com-
parison across physical object size and voxel
size. In this pipeline, each cell is processed
independently. The embryo is thus defined as
a collection of non-interacting deformed sphe-
roids with no built-in notion of contact or
spatial interactions.

Parametrization, general form
The sphere s of radius r ∈ℝ, embedded inℝ3, is
defined in its parametric form for s; t ∈ 0; 1½ � as

s s; tð Þ ¼
r cos 2ptð Þ sin psð Þ
r sin 2ptð Þ sin psð Þ

r cos psð Þ

0
@

1
A:

The two parameters, t and s, run along the
latitude and longitudes respectively, as depicted
in fig. S2A. Note that latitudes are defined as full
circles (closed), while longitudes are half-circle
arcs (open). The parametric form of a 3D ellip-
soid naturally follows fors; t ∈ 0; 1½ � as

h s; tð Þ ¼
a cos 2ptð Þ sin psð Þ
b sin 2ptð Þ sin psð Þ

c cos psð Þ

0
@

1
A;

with a, b, c ∈ ℝ as the three ellipse axes.

Parametrization, spline model

The 3D ellipsoid h can be perfectly interpo-
lated as a spline surface following

h s; tð Þ ¼
XMs

l¼�1

XMt�1

k¼0

c l; k½ �ϕ 2p
Mt
;per

Mtt � kð Þϕ p
Ms�1

Ms � 1ð Þs� lð Þ ð1Þ
where c[k,l] are the parameters of the model,
called control points. The integers Mt and Ms

correspond to the number of parameters
along each latitude and longitude, respectively.
The function ϕa: ℝ→ℝ is the exponential
spline basis (116), given by

ϕa xð Þ

cos a xj jð Þcos a
2

� �
� cos að Þ

1� cos að Þð Þ
1� cos a

3

2
� xj j

� �� �� �

2 1� cos að Þð Þ

0

0≤ xj j < 1

2

1

2
≤ xj j < 3

2
3

2
≤ xj j

8>>>>>>>>>><
>>>>>>>>>>:

ð2Þ
The basisϕa reproduces the space generated

by 1; x; eja; e�ja
� �

. Because latitudes are closed
circles, the basis associated to t isMt-periodized
as ϕ 2p

Mt
;per tð Þ ¼

X
n∈Z

ϕ2p
Mt

t �Mtnð Þ.
The expression (1) is here normalized such

that the two continuous parameters run in 0; 1½ �.
For the ellipsoid to be properly closed,

smoothnessmust be ensured at the poles. This
translates to the two following conditions:
Interpolation, i.e., all longitudes meet at two

well-defined points, the north pole cN and the
south pole cS:

cN ¼ c 1; k½ �ϕ p
Ms�1

�1ð Þ þ c 0; k½ �ϕ p
Ms�1

0ð Þ
þ c �1;k½ �ϕ p

Ms�1
1ð Þ ð3Þ

cS ¼ c Ms; k½ �ϕ p
Ms�1

�1ð Þ þ c Ms � 1; k½ �
ϕ p

Ms�1
0ð Þ þ c Ms � 2; k½ �ϕ p

Ms�1
1ð Þ ð4Þ

Smoothness, i.e., each pole has a properly
defined tangent plane characterized by two
tangent plane vectors:

@h
@s

s; tð Þjs¼0 ¼ T 1;N cos 2ptð Þ þ T2;N sin 2ptð Þ;

@h
@s

s; tð Þjs¼1 ¼ T 1;S cos 2ptð Þ þ T 2;S sin 2ptð Þ;

withT1;N ;T2;N ;T1;S;T2;S ∈ℝ3 the tangent plane
vectors of the north and south pole, respec-
tively. From (1), the above relations translate to

T1;Ncos 2ptð Þ þ T2;N sin 2ptð Þ ¼

T1;N Ms � 1ð Þ
XMs

l¼�1

XMt�1

k¼0

c l; k½ �ϕ 2p
Mt
;per

Mtt � kð Þϕ0
p

Ms�1
�lð Þ ð5Þ

T1;S cos 2ptð Þ þ T2;S sin 2ptð Þ ¼

T1;S Ms � 1ð Þ
XMs

l¼�1

XMt�1

k¼0

c l; k½ �ϕ 2p
Mt
;per

Mtt � kð Þϕ0
p

Ms�1
Ms � 1ð Þ � lð Þ

The initial set of control points parameteriz-
ing an ellipse of axes a; b; c ∈ℝ and center
p0 ∈ℝ3, with the north-south axis aligned
along z, are given by

cN ¼ p0 þ
0
0
c

0
@

1
A;

T1;N ¼
ap
0
0

0
@

1
A;

T1;S ¼
ap
0
0

0
@

1
A;

cS ¼ p0 �
0
0
c

0
@

1
A;

T2;N ¼
0
bp
0

0
@

1
A;

T2;S ¼
0
bp
0

0
@

1
A;

and

c l; k½ � ¼ p0

þ

aC2p
Mt

cos
2pk
Mt

� �
C p
Ms � 1

sin
pl

Ms � 1ð Þ
� �

bC2p
Mt

sin
2pk
Mt

� �
C p
Ms � 1

sin
pl

Ms � 1ð Þ
� �

cC p
Ms � 1ð Þ

cos
pl

Ms � 1ð Þ
� �

0
BBBBBBB@

1
CCCCCCCA

for l=1,…, Ms−2 and k=0,…, Mt−1, with

Ca ¼ 2 1� cos 2p
a

� 	� 	
cos p

a

� 	� cos 3p
a

� 	

The surface (1) is thus fully determined by
Mt(Ms − 2)+6 parameters: cN, cS, T1,N, T2,N, T1,S,
T2,S, and c[l,k] for l = 1,…,Ms − 2, k = 0,…Mt −
1 (see also fig. S2B). Due to the support size of
the exponential spline basis, extra control points
are added at the extremities of each open
longitude to ensure a correct behavior at the
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boundaries. The extra control points c[l,k]
for l = −1, 0, Ms − 1, Ms, k = 0,… Mt − 1 are
computed from the known parameters as

c �1; k½ � ¼ c 1; k½ � � T 1;NcMt k½ � þ T 2;NsMt k½ �
Ms � 1ð Þϕ0

p
Ms�1

1ð Þ
ð6Þ

c 0; k½ � ¼ cN�ϕ p
Ms�1

1ð Þ c �1;k½ �þc 1;k½ �ð Þ
ϕ p

Ms�1
0ð Þ ð7Þ

c Ms; k½ � ¼ c Ms � 2; k½ �
� T1;ScMt k½ � þ T2;SsMt k½ �

Ms � 1ð Þϕ0
p

Ms�1
1ð Þ ð8Þ

c Ms � 1; k½ � ¼ cS�ϕ p
Ms�1

1ð Þ c Ms�2;k½ �þc Ms ;k½ �ð Þ
ϕ p

Ms�1
0ð Þ

ð9Þ
with

ca k½ � ¼ Cacos
2pk
a

� �
;

sa k½ � ¼ Casin
2pk
a

� �

The relation (6) is obtained by identifying that

T1;Ncos 2ptð Þ þ T2;N sin 2ptð Þ

¼ T 1;N

XMt�1

k¼0

cMt k½ �ϕ 2p
Mt

;per Mtt � kð Þ

þ T 2;N

XMt�1

k¼0

sMt k½ �ϕ 2p
Mt

;per Mtt � kð Þ ð10Þ

¼ Ms � 1ð ÞXMs

l¼�1

XMt�1

k¼0

c l;k½ �ϕ 2p
Mt

;per Mtt � kð Þϕ0
p

Ms�1
�lð Þ

ð11Þ

¼ Ms � 1ð Þ
XMt�1

k¼0

c 0; k½ �ϕ0
p

Ms�1
0ð Þϕ 2p

Mt
;per Mtt � kð Þ

þc �1;k½ �ϕ0
p

Ms�1
1ð Þϕ 2p

Mt
;per Mtt � kð Þ

þc 1; k½ �ϕ0
p

Ms�1
�1ð Þϕ 2p

Mt
;per Mtt � kð Þ ð12Þ

¼ Ms � 1ð Þ
XMt�1

k¼0

c �1; k½ � � c 1; k½ �ð Þϕ0
p

Ms�1
1ð Þ

ϕ 2p
Mt
;per Mtt � kð Þ ð13Þ

First, (10) is the direct expansion of the
cosine and sine in the basis ϕa(2). Then, (11)
is obtained directly from (5). Finally, (12) is
obtained by noticing that, becauseϕa is sup-
ported in �3

2 ; 32

 �

, all terms in the sum vanish
except for j = −1,0,1. The symmetry properties
of the basis impose thatϕ′a(0) = 0 andϕ′a(−1) =
ϕ′a(1) yielding (13). One obtains (8) in a similar
way. The relations (7) and (8) are obtained
directly from (3) and (4), respectively. Note that
c 0; k½ � ≠ cN and c Ms; k½ � ≠ cS due to the non-
interpolatory behavior of ϕa.
For visualization purpose, the continuously

defined spline surface can be discretized as

h j
Ms�1ð ÞRsþ1 ;

i
MtRt

� �
for j = 0,…,(Ms−1)Rs and i = 0,…,

MtRt−1, with Rt,Rs ∈ ℕ* some user-defined
sampling rates (i.e., amount of samples in each
interval between successive control points)
along t and s, respectively. In this study, we
chose Ms = 5, Mt = 5, Rs = 5, and Rt = 5 to
optimize smoothing, geometrical accuracy
and computation time.

Axes identification

When parametrizing a cell, the identification
of the north-south axis is an important design
choice. We identified the following strategies:
1. Canonical ℝ3 basis: The north-south axis

is aligned with z and control points are placed
along ray sr k½ � ¼ cos 2pk

Mt

� �
x þ sin 2pk

Mt

� �
y in the

x, y plane,
2. Custom axis: We determine a rotation

matrix R and a center (e.g., obtained from the
alignment of two embryos) ontowhich themodel
can be registered. The north-south axis is aligned
with z′=Rz and control points are placed along
rays r k½ � ¼ cos 2pk

Mt

� �
x0 þ sin 2pk

Mt

� �
y0 in the x, y

plane, with x′ = Rx and y′ = Ry.

Data sampling, ray tracing

Considering the surface model (1) and well-
defined parametrization axes, interpolation
points are identified by ray tracing in order
to reconstruct the spline surface from voxel
data.
Ray tracing is implemented relying on the 3D

Digital Differential Analyzer (DDA) algorithm
(117). A ray between two floating-point valued
positions p0 and p1 is defined for t ≥ 0 as p0+nt,
with n =p1− p0. The algorithm is initialized by
defining, for each image dimension d, the two
quantities td;max ¼ ld

vd
and dd ¼ sign vdð Þ

vd
. The

DDA then proceeds as described by the fol-
lowing algorithm:
Result:Matrix P of grid intersection points
begin

q ¼ p0b c
P empty matrix
while q < p1b c do

dmin ¼ argmin td;max

pdmin ¼ qd¼dmin þ 1
for d ≠ dmin do
pd ¼ p0;d þ td;maxvd

end
insert p as new row of P
qdmin ¼ qdmin þ sign vdminð Þ
tdmin;max ¼ tdmin;max þ ddmin

end
end
Each step of the algorithm requires D float-

ing point comparisons (whereD is the image di-
mension) and 2 floating point addition, making
it reasonably fast.
In our case, data contain instance segmented

volumes and ray tracing is thus carried out to
identify sample points on the object surface. In
this context, rays are traced in latitude planes,
starting from the north-south axis and ex-

panding until the image boundaries. Tracing
stops at the first zero-labeled voxel.

Data sampling, interpolation

Given a set of data points p j; i½ � ¼ h j
Ms�1ð ÞRsþ1; i

MtRt

� �

on the surface, the corresponding c l; k½ � can
be estimated by solving the linear system

FC = P,

where C is a Mt (Ms+2) × 1 control points
matrix with entries [C]k+Mt(l+1)=c[l,k], F is a
(MtRt) ((Ms − 1) Rs+1) × Mt (Ms+2) basis
functions matrix with entries

F½ �iþj MtRtð Þ;kþMt lþ1ð Þ

¼ ϕ 2p
Mt
;per

i

Rt
� k

� �
ϕ p

Ms�1

j Ms � 1ð Þ
Ms � 1ð ÞRs þ 1

� l

� �

P is a (MtRt) ((Ms − 1) Rs+1) × 1 data point
matrix with entries [P]i+j(MtRt) = p[j,i].
The system is solved for C by finding the

least-square best solution that minimizes the
squared l2 norm P � FCk k22. The poles are es-
timated from c[l,k], l = −1,…,Ms, k = 0,…,Mt − 1,
relying on (7) and (9) as

cS ¼ 1

Mt

XMt�1

k¼0

ϕ p
Ms�1

0ð Þc 0; k½ �

þϕ p
Ms�1

1ð Þ c �1; k½ � þ c 1; k½ �ð Þ:

cS ¼ 1

Mt

XMt�1

k¼0

ϕ p
Ms�1

0ð Þc Ms � 1; k½ �

þϕ p
Ms�1

1ð Þ c Ms � 2; k½ � þ c Ms;k½ �ð Þ:

The tangent planes are retrieved from (6)
and (8). For the north tangent plane,

T1;NcMt k½ � þ T2;NsMt k½ � ¼ g c �1; k½ � � c 1; k½ �ð Þ
T1;NcMt kþ 1½ � þ T2;NsMt kþ 1½ � ¼ g c �1; kþ 1½ � � c 1; kþ 1½ �ð Þ

�

leading to
T1;N ¼ g

Mt

XMt�1

k¼0

sMt kþ 1½ � c �1; k½ � � c 1; k½ �ð Þ � sMt k½ � c �1; kþ 1½ � � c 1; kþ 1½ �ð Þ
cMt k½ �sMt kþ 1½ � � sMt k½ �cMt kþ 1½ �

T2;N ¼ g
Mt

XMt�1

k¼0

cMt kþ 1½ � c �1; k½ � � c 1; k½ �ð Þ � cMt k½ � c �1;kþ 1½ � � c 1; kþ 1½ �ð Þ
cMt kþ 1½ �sMt k½ � � cMt k½ �sMt kþ 1½ � ;

with
g ¼ Ms � 1ð Þϕ0

p
Ms�1

1ð Þ:

A similar development follows for the south
tangent plane.

Time normalization at the 8-cell stage

Time progression through the 8-cell stage was
normalized between 0 (first time point with 8
cells) and 1 (last time point with 8 cells).

Pair-wise distance and 2D projection

To compute the geometrical distance between
two sets of 3D images, we first generated the
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corresponding segmentation SA and SB. Sec-
ond, we used our nearest neighbor algorithm
to determine the best transformation matrix
(M) and the best list of cell assignments be-
tween SA and SB. Then we computed the spline
parameters for SA with a North/South axis
aligned with the Z-axis of the image, and the
spline parameters for SB with a North/South
axis V such that theMV aligned with the Z-axis
of the image. Finally, for each pair of assigned
cells between SA and SB, we computed the
squared Euclidean distance (d) between spline
parameters with the same latitude/longitude.
The final geometrical distance was defined
as the sum of all the distances d, divided by
10,000 for visual clarity.
The projection was done using the imple-

mentation of the t-SNE algorithm found in
scikit-learn (118). Although the t-SNE algorithm
tries to keep close objects nearby after pro-
jection, it may not always be possible. Because
of that, some embryos may be split in two or
more smaller clusters after projection, while
being one single cluster in high dimensional
space (e.g., the long lines crossing the pro-
jected morphomap in Fig. 2B). We adjusted
the parameters of the t-SNE projection to be
as representative as possible of the high di-
mensional space, however, the 2D projection,
including the isolines in Figs. 2B,F,G, 3B, 5E,
S5I and S7C,D, should only be used as a vi-
sual aid.
The morphomap pipeline was implemented

in the Python package morphomap (see sec-
tion Code availability).

Measurement of the parameter a

To determine the a-parameter, we used the
segmentation data. We developed the Python
package interfaces (see section Code availability)
to determine the angle between two cells, and
the corresponding value of a. First, we identi-
fied all the voxels on the surface of the embryo
(VS, nonzero voxelswith 6-connected neighbors
of exactly 2 voxel types, itself and zero), all the
voxels on the external line interface between
two cells (VL, nonzero voxels with 6-connected
neighbors of exactly 3 different voxel types,
itself, zero and a third arbitrary value) and
all the voxels belonging to the external in-
terface between three cells or more (VP, non-
zero voxels with 6-connected neighbors of at
least 4 different voxels types, itself, zero and
other arbitrary values). We defined two pa-
rameters: the exclusion radius RE and the in-
clusion radius RI.
For each points P of VL, between cell A and

B, that is further thanRE away from any points
inVP,we listed all the points PA andPBofVS that
are within a RI distance from P and belongs
to cell A and B respectively. We fitted two plans
such that P belongs to them and the Euclidean
distance to PA and PB is minimized. Finally, we
computed the angle between the two plans and

determined the a-parameter using the Young-
Dupré equation as previously described (40).
RE (20 voxels) and RI (15 voxels) values were
optimized to accurately described theoretical
data with known a-parameter.

Estimation of contacts and surface areas

To estimate the surface area, we used our
Python package interfaces (see section Code
availability) and we triangulated the voxels
belonging to the surface of interest using a
marching cube algorithm (119) and the sur-
face areameasurement implemented in scikit-
image (120). Using the segmentation data, the
interface between two cells was defined as the
list of nonzero voxels with 6-connected neigh-
bors of exactly 2 voxel types. Note that the
interface between a cell and the background
is included (one voxel type being zero). The
triangulation was performed on the whole
cells, but only the triangles less than 2 voxels
away from the interface were used in the esti-
mation of the surface area. The interface surface
areas were linearly corrected to ensure that the
sum of all the interface surface areas equals
the estimated surface of the whole cell.

Identification of the closest rigid packing

Rigid packings are named using the Schoenflies
notation which characterises the packing ac-
cording to its internal symmetries. A number
between parenthesis is added to differentiate
packings sharing the same Schoenflies notation.
Identification of the closest rigid packing is
available as a python package rbb (see section
Code availability).

Preliminaries

1. With 4 hard spheres, we refer to the only
possible minimally rigid packing as the ideal
packing, as described in ref. (47);
2. With 8 hard spheres, we refer to the 13

possible minimally rigid packings as the 13
ideal packings, as described in ref. (47);
3. Data of cell contacts is provided as amatrix

where the two indices of each position represent
the labeling of the two cells in potential contact;
4. The entries of the matrix display the pro-

portion of the surface area of the first cell in-
volved in the contact with the second cell.
While it is theoretically possible to classify

the topologies with 16 hard spheres and more,
the number of rigid topologies increases super-
exponentially with the number of cells (121),
and further conceptual and technical advance-
ments are required to perform such exhaustive
classification.

Rigidity condition

Prior to any computation, we perform a first
check whether the topological structure under
study is rigid or floppy. In rigid structures, no
independent movements of the elements are
allowed unless we perform some work over

the system (46) (see also fig. S3A). For three
dimensions, the condition of rigidity for a
system with n elements and k constraints
(in our case, links) states that:
1. k ≥ 3n� 6 which, in the case of n ¼ 8

implies that k ≥ 18 that is, that the network of
cell cell-contacts has at least 18 links,
2. No node of the network has less than three

links. That means that no cell of the packing is
in contact to less than 3 other cells.

Distance between two arbitrary packings

To evaluate the distance between two pack-
ings wemust consider the adjacency matrix of
the network describing the topological struc-
ture of the packing. Given a packingmade ofV .
cells u1;⋯; u8ð Þ, the values of the adjacency
matrix A of the packing are defined such that
Aij ¼ 1 if cell ui d uj are in contact and Aij ¼ 0
otherwise. Given that there are 8! ¼ 40320
different ways to label the cells leading to the
same topological structure, the direct compari-
son of adjacency matrices is not affordable.
Furthermore, onemust consider that soft spheres
maydefine contacts in placeswherehard spheres
cannot, making the space of possible equivalent
configurations even bigger. Therefore, it is much
more suitable toworkwith the ordered spectrum
of eigenvalues, which is invariant under permu-
tation of the adjacency matrices. Since, by con-
struction, the adjacency matrix is symmetric
andmade of nonnegative real entries, the eigen-
value spectrum is all made of real numbers.
Thanks to this last property, one can easily
compute the distance between two packings:
The vector representing the eigenvalue spec-
trum of the adjacency matrix A is defined as
uA ¼ l1; :::; l8ð Þwhere l1 > l2 > ::: > l8. Con-
sider that these two packings can be represented
by adjacency matrices A and A′, respectively.
The distance between these two packings is
obtained by considering the Euclidean distance
between the vectors representing the (ordered)
eigenvalue spectrum of each:

d uA;uA0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX8
i¼1

li � l
0
i

� �2

vuut ;

where

uA ¼ l1; :::; l8ð Þ and uA0 ¼ l
0
1; :::; l

0
8

� �
:

Finding the closest ideal packing to the real
embryo packing

To identify the closest ideal packing to the
topological structure of the embryo under study,
we proceed as follows:
1. Count the number k of nonzero contacts

in the matrix;
2. If k= 3n− 6, withn as the number of cells,

go to step 3, otherwise set the smallest contact
area of the matrix to 0 and go to step 1;
3. Set all nonzero contacts of the matrix to

1 (binarization);
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4. Compute the distance to all 13 ideal rigid
packings as described above;
5. Pick the closest ideal packing.

Enumeration of topological transitions

A topological transition was defined as two
consecutive time points with different identi-
fied closest minimally rigid packing. Tempo-
rary transitions lasting one time point were
ignored from the analysis unless the identified
topologies right before and right after were
different. For example, the sequence AABABB
(three transitions, with A and B two arbitrary
topologies) was transformed to AAAABB (one
transition), while the sequenceAABCC (2 tran-
sitions, with C as a third arbitrary topology)
was not modified.

Inner/outer cell classification

Cells at the 8-cell stage were all considered
outer. For the 16-cell stage, we computed the
contact-free area (i.e., the surface area of the
cell that is not in contact with another cell)
and binned the cells in 10 groups from 0%
(completely inside) to approximately 60% (most
of the cell surface exposed to the outside
environment). The resulting count histogram
exhibited a bimodal distribution.We fitted the
histogram valueswith the sumof twoweighted
Gaussian distributions. The cutoff between
inner and outer cells was defined as the value
of contact-free surface area at which the two
gaussians intersect.

Measurement of the packing parameter

We first determine the centroid ci of the outer
cells i. We then used the average coordinates
of outer cells’ centroid to obtain the centroid of
the embryo e. For every outer cell, we computed
the Euclidean distance di from ci to e. The
packing parameter was defined as the invert
of the standard deviation of d1; d2:::dif g(see
fig. S6B for a graphical representation of the
packing parameter). The packing parameter
at the 8-cell stage was measured at approx-
imatively 80%of the intermitotic period (Fig. 6,
G and H, and Fig. 7B) or at every available
time point (Fig. 6, I and J). The packing param-
eter at the 16-cell stage was measured two
hours after the beginning of the intermitotic
period (Fig. 7, B, C, and F, and fig. S7, D and E).

Count of ectopic Sox2+ and Cdx2+ cells

For the early blastocyst stage, fate-based cell
type was determined as Sox2+ (Cdx2+ respec-
tively) if the immunostaining signal intensity
for Sox2 (Cdx2) was higher than the one for
Cdx2 (Sox2). Sox2+ andCdx2+ cellswere labeled
as inner and outer respectively, based on fate
markers.
Additionally, we computed the a-shape of

the cell centers (122) using the R package
alphashape3d (123) and labeled the cells as
outer and inner if they belongs to the surface

determined by the a-shape or not, respectively.
Ectopic cells are, by definition, cells with label
discrepancies between fate markers and their
positions in the embryo. Embryos with no
identified inner or outer cells based onmarker
signal intensity and/or cell coordinates were
excluded from the analysis.

Dataset usage

Use of live imaging datasets in figures is de-
scribed in table S2.

Code availability

Code used to produce the figure panels and
the analyses in this study is available at
Zenodo (124).

Statistical Analysis

All statistical analyses were performed using
RStudio 2022.12.0+353 (125) with R 4.2.2 (126),
with the base library and the following libraries:
alphashape3d (123), ggplot2 (127), ggrepel (128)
and namespace (129). No statistical analysis was
used to predetermine sample size. No sample
was excluded. No randomization method was
used. The investigators were not blinded during
experiments. Sample sizes, statistical tests, and
P-values are indicated in the text, figures, and
figure legends. n-values indicate number of
embryos analyzed for different experimental
conditions unless mentioned otherwise. Error
bars indicate mean ± s.d. unless mentioned
otherwise.
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