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Single-cell Ribo-seq reveals cell 
cycle-dependent translational pausing

Michael VanInsberghe1 ✉, Jeroen van den Berg1, Amanda Andersson-Rolf1, Hans Clevers1 & 
Alexander van Oudenaarden1 ✉

Single-cell sequencing methods have enabled in-depth analysis of the diversity of cell 
types and cell states in a wide range of organisms. These tools focus predominantly on 
sequencing the genomes1, epigenomes2 and transcriptomes3 of single cells. However, 
despite recent progress in detecting proteins by mass spectrometry with single-cell 
resolution4, it remains a major challenge to measure translation in individual cells. 
Here, building on existing protocols5–7, we have substantially increased the sensitivity 
of these assays to enable ribosome profiling in single cells. Integrated with a machine 
learning approach, this technology achieves single-codon resolution. We validate this 
method by demonstrating that limitation for a particular amino acid causes ribosome 
pausing at a subset of the codons encoding the amino acid. Of note, this pausing is 
only observed in a sub-population of cells correlating to its cell cycle state. We further 
expand on this phenomenon in non-limiting conditions and detect pronounced GAA 
pausing during mitosis. Finally, we demonstrate the applicability of this technique to 
rare primary enteroendocrine cells. This technology provides a first step towards 
determining the contribution of the translational process to the remarkable diversity 
between seemingly identical cells.

Single-cell ribosome sequencing (scRibo-seq) combines nuclease foot-
printing with small-RNA library construction and a size enrichment to 
measure translation dynamics in single cells (Fig. 1a). By directly inte-
grating this process into a one-pot reaction, we were able to markedly 
increase the sensitivity and scalability of existing ribosome profiling 
techniques. In brief, single live cells are sorted into a lysis buffer con-
taining cycloheximide to stabilize and halt ribosomes on transcripts. 
Exposed RNA is then digested by micrococcal nuclease (MNase) and 
the resulting ribosome-protected footprints (RPFs) are released. These 
footprints are converted into sequencing libraries by ligating adaptors 
that contain a unique molecular identifier (UMI) and priming sites for 
subsequent cDNA synthesis and indexing PCR. Finally, the reaction 
products are pooled and size-selected to enrich for inserts that cor-
respond to the typical RPF length.

To validate this method, we generated scRibo-seq libraries from 
HEK 293T and hTERT RPE-1 cells. The resulting single-cell libraries detect  
3,348 ± 15 genes with 10,451 ± 85 unique reads per cell (mean ± s.e.m.) 
(Extended Data Fig. 1) and exhibit several features that are characteristic 
of ribosomal profiling experiments (Fig. 1b, c, Extended Data Fig. 2). 
First, the fragments map predominantly to coding sequences (CDSs) 
(Fig. 1b, c), with their 5ʹ ends sharply increasing approximately 15 nucle-
otides (nt) upstream of the start codon and decreasing approximately 
18 nt upstream of the stop codon (Fig. 1b, left and right). Second, there is 
an increase in local density over both the start and stop codons (Fig. 1b), 
originating from ribosomes that are in the initiation and termination 
phases of translation. Third, the 5ʹ end of the fragments shows a clear 
but modest 3-nt periodicity along the CDS (Fig. 1b), with 40.7% ± 0.07% 

of the 5ʹ ends of the footprints occurring in frame 1 (Extended Data 
Fig. 2c). Finally, the mapping frequencies to common contaminants, 
different biotypes and across the untranslated regions (UTRs) and 
CDS of protein-coding genes are all similar to those from conventional 
ribosome profiling methods6,8–10 (Extended Data Fig. 2).

scRibo-seq libraries also display patterns associated with the MNase 
digestion. Consistent with previous reports6,11, we observe a broad 
distribution of footprint lengths, a complex association between frag-
ment length and the predominant frame of the 5ʹ end (Extended Data 
Fig. 2c, top row), and a strong preference for an MNase cut to occur to 
the 5ʹ of an adenine or uracil (Extended Data Fig. 3a). In conventional 
ribosome profiling, the exit (E), peptidyl (P) and aminoacyl (A) active 
sites of the ribosome can be positioned in the footprint using a con-
stant offset from the end of the read (Extended Data Fig. 3b), thereby 
positioning ribosomes on transcripts with single-codon resolution. 
We predicted that the strong sequence bias of MNase would result in 
incomplete digestion of the RPFs, resulting in a sequence-dependent 
relationship between the 5ʹ end of the fragment and the active sites.

We trained a random forest classifier to correct the MNase sequence 
bias. Similar to previous approaches12, our model predicts the offset 
between the 5ʹ end of the footprint and the ribosome A site given the 
length of the fragment and the sequence context around the 5ʹ and 3ʹ  
cut sites (Extended Data Fig. 3c). The classifier was trained on reads that 
span a stop codon, achieving a high prediction accuracy (96.5% ± 0.06%, 
fivefold cross-validation) (Extended Data Fig. 3d). The accuracy was 
further confirmed by examining footprints within the CDS, where 
63.9% ± 0.07% of predicted A sites were found to be in frame (Extended 
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Data Figs. 2c, 3g); this result is reproducible between cells (Extended 
Data Fig. 3f), and is again similar to that obtained by conventional ribo-
some profiling methods (RPE-1 (ref.10): 61.4% ± 4.2% of 29-nt reads; 
HEK 293T8: 75.4% ± 1.4% of 29-nt reads; and HEK 293T9: 55.4% ± 17.5% of 
28-nt reads) (Extended Data Fig. 2c). As expected, the sequence com-
position around the 5ʹ end has the highest permutation importance, 
followed by the fragment length, and only a minor contribution from 
the 3ʹ sequence context (Extended Data Fig. 3e), suggesting that our 
model is indeed capturing the MNase sequence bias.

Ribosomes have previously been observed to dwell over a subset of 
codons encoding essential amino acids that have been removed from 
the culture medium6,13. Ribosome profiling exposes this pausing as 
an increase in footprint density over the affected codons. To further 
validate that scRibo-seq measures translation dynamics, we removed 
arginine and leucine from HEK 293T culture media for 3 and 6 h before 
sorting. By comparing the change in codon occupancy in the predicted 
E, P and A sites between pseudobulk analyses of the depletion and 
rich conditions, we observed treatment-specific pausing (Fig. 2a). For 
example, arginine depletion resulted in footprints more frequently 
containing CGC and CGU codons compared to rich media (Fig. 2a, 
blue), and this increase was not seen upon removal of leucine (Fig. 2a, 
green). Similarly, an increase in UUA occupancy was seen only with 
leucine starvation.

Treatment-specific pausing was also evident in single cells. Reiter-
ating our previous findings from the pseudobulk analysis, we again 
observed that pausing on arginine and leucine codons was seen only 
in cells isolated from the starvation conditions, and only over a subset 
of codons encoding the removed amino acids (Fig. 2b, Extended Data 
Fig. 4a). Furthermore, the position in the ribosome footprint where 
pausing occurs was roughly as expected, as the increases in codon 
occupancies were only apparent in and upstream of the A site. This 
ribosome-site specificity was also apparent on several codons that have 
been previously associated with ribosome pausing, with, for example, 
AAA and GAA showing increased occupancies in the A sites14,15, and 
proline codons in the E sites16 (Extended Data Fig. 4a).

Of note, only a subset of the cells from each limitation condition 
exhibited a pausing response (41 out of 155 from arginine limitation 
and 24 out of 202 from leucine limitation). Clustering cells using the 
RPF counts per CDS identified four clusters distinguished by cell 
cycle marker genes (Fig. 2c, f, Extended Data Fig. 4e). On the basis of 
these clusters, it is apparent that the cell cycle state has an influence 
on the effect of amino acid limitation on translational pausing. The 
vast majority (89.7%) of cells that paused under arginine limitation 
were in either early (cluster 2, 5 cells) or late (cluster 1, 30 cells) S phase 
(CGC: P = 0.0096, CGU: P = 0.014, Fisher’s exact test) (Extended Data 
Fig. 4b–d), whereas the cells that respond to leucine limitation are not 
significantly associated with any cluster (UUA: P = 0.33, Fisher’s exact 
test) (Fig. 2d, Extended Data Fig. 4d).

The location of ribosome pausing on individual genes was also evi-
dent in single cells. Examining the RPF density over H3C2, one of the 
genes that exhibits an increase in CGC pausing under arginine starva-
tion, revealed several pausing hotspots (Fig. 2e, g). The most prominent 
of these regions includes two successive CGC codons (Fig. 2e), poten-
tially explaining the increased density at this location compared with 
other identical codons on this transcript. Additionally, these repetitive 
codons may cause the increase in CGC and CGU occupancy downstream 
of the A and P sites seen in Fig. 2b.

After seeing that the cell cycle state can affect the response to 
amino acid limitation, we next tested whether translational properties 
changed through the unperturbed cell cycle. Translational regulation 
has previously been identified as an important cell cycle control mecha-
nism10,17. However, these studies only coarsely resolve the main cell 
cycle states and rely on arresting or synchronizing cells with methods 
that also act on translational machinery18–20. We generated scRibo-seq 
libraries from 3,276 single hTERT-RPE-1 cells expressing fluorescent 
ubiquitination-based cell cycle indicators (FUCCI)21 collected from 
interphase (2,261 cells), contact-inhibition G0 (291 cells), and mitotic 
shake-off (724 cells) fractions (Fig. 3a, f). Clustering single cells using 
the RPF counts per CDS identifies eight clusters delineating the main 
phases of the cell cycle (Fig. 3b). The progression and identity of these 
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clusters closely follow those expected based on fluorescence measure-
ments of the FUCCI markers collected during index sorting (Fig. 3d, 
e, g). Pseudotime ordering further resolves this progression through 
the cell cycle, establishing trajectories through the uniform manifold 
approximation and projection (UMAP) (Fig. 3c) and FUCCI markers 
(Fig. 3h), and revealing the translation dynamics of 1,853 significantly 
differentially translated genes (Extended Data Fig. 5a). Additionally, 
the change in abundance of several canonical cell cycle markers follows 
the expected pattern, further confirming the cell ordering.

In addition to this expected fluctuation in the RPF abundance of 
numerous genes over the cell cycle, the frequency of certain codons in 
the ribosome footprints also varies. While most codons have constant 
frequencies of occurrence across ribosome sites and cell cycle stages 
(for example, CAG, Fig. 3i), we identified ten codons whose frequencies 
of occurrence in at least one of the ribosome active sites significantly 

changed throughout the cell cycle (adjusted P (Padj) < 10−15 Wilcoxon 
rank-sum test) (Extended Data Fig. 5b).

Most of these variable codons display similar changes in occupancy in 
not only the ribosome E, P and A sites but also in positions immediately 
upstream (−1 and −2) and downstream (+1 and +2). For example, UGC 
is approximately 1.4 times more likely to occur in all RPF sites in cells 
in G0 and late G1 (clusters 3 and 8; 1.06% ± 0.003% of RPF sites) than 
in cells in mitosis (cluster 7; 0.78% ± 0.002% of RPF sites; P < 2 × 10−16,  
Wilcoxon rank-sum test) (Fig. 3i). However, because these changes are 
not isolated to specific ribosome active sites, they are probably the 
result of fluctuations in codon usage22 rather than changes to transla-
tional elongation processes.

Notably, CGC and CGU, the two codons that show the strongest 
response to arginine limitation in HEK 293T cells, also show these 
site-agnostic increases in RPE-1 cells in late S phase (cluster 5; Fig. 3i, 
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Extended Data Fig. 6b). A substantial fraction of the translational 
activity in these cells goes towards producing histones (6.8% ± 0.1% of 
RPFs per cell), which are enriched for CGC and CGU codons (Extended 
Data Fig. 6a). Although these observations again suggest that these 
site-agnostic increases reflect a change in codon usage, the increased 
demand for arginine may indicate why HEK 293T cells in S phase are 
more susceptible to arginine limitation (Fig. 2a, b).

Conversely, the other codons exhibit site-specific changes in cells 
undergoing mitosis. Among the codons with variable frequencies of 
occurrence along the cell cycle are four whose A-site occupancies either 
increase (GAA, GAG and AUA) or decrease (CGA) in mitotic cells, whereas 
the other active sites remain constant (Fig. 3i; mitotic cells: cluster 7, 
purple). Of these, the increase in A-site pausing over GAA is the most 
pronounced and stage-specific (Fig. 3i, j), with 5.6% ± 0.07% of the 
RPFs from cells in mitosis containing a GAA in the A site, compared 
with 3.8% ± 0.01% in the other stages (P < 2 × 10−16, Wilcoxon rank-sum 
test). Not all codons follow this same trend, however. For example, cells 
that are in late mitosis (marked by the sharp decrease in monomeric 
Azami-Green (mAG–GMNN) fluorescence) exhibit higher AUA pausing 
than those in early mitosis (Fig. 3i, k), whereas CGA pausing decreases 
in mitotic and G0 cells compared with the other stages (Fig. 3i). These 
stage-specific pausing signals are distinct from changes in codon usage 
as they are specifically isolated to ribosome A sites.

These changes in A-site pausing are global, affecting the majority of 
translated genes. Comparing the gene-wise frequency of occurrence 
of GAA codons in RPF A sites between each cluster and the background 

reveals that most genes experience increased GAA pausing during 
mitosis (Fig. 3m). For example, in mitotic cells 22.7% ± 0.5% of the RPFs 
aligning to MYL6 have a GAA in the A site, with most of these occurring 
at E6 and E91; in the other stages, only 15.4% ± 0.2% of the A sites contain 
a GAA (Fig. 3l). Averaged across all genes, this is a modest increase of 
1.23 ± 0.01-fold; however, it is widespread, as 41.5% of GAA-containing 
genes detected across more than three clusters (165 of 398 detected 
genes) show a significant increase in A-site GAA pausing in mitotic cells. 
While not as strong, this same trend is also observed for GAG, AUA and 
CGA (Extended Data Fig. 7). These global stage-specific changes to 
A-site pausing may reflect global alterations in translation elongation 
dynamics during mitosis.

Having demonstrated scRibo-seq on cell lines, we next generated 
ribosome profiles for primary mouse intestinal enteroendocrine 
(EEC) cells, a population of rare cells in the gastrointestinal epithelium 
(less than 1% of cells) that produces and secretes diverse hormones in 
response to nutrient stimuli23. They are further subclassified on the 
basis of the hormones that they produce, with the seven cell lineages 
producing different hormones as they mature, resulting in up to 20 
different EEC cell types being described24,25. Their scarcity, diversity and 
plasticity make primary EEC cells inaccessible to existing ribosome pro-
filing methods, making it challenging to study post-transcriptional and 
translational regulation of their behaviours. We generated ribosomal 
profiles from 350 single mouse EEC cells expressing a bi-fluorescent 
Neurog3 reporter24 that were isolated from intestinal crypts (Extended 
Data Figs. 8, 9). Clustering cells on the basis of the RPF counts per CDS 
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identifies eight clusters representing the main EEC cell types in the 
crypts that are delineated by the translation of established hormone 
marker genes (Extended Data Figs. 8a, 9a, b). Among the cells are two 
minority subpopulations that show genome-wide ribosome pausing 
over CAG-glutamine (n = 16 cells) and GAA-glutamic acid (n = 6) codons 
(Extended Data Figs. 8f–k, 9c). Notably, the GAA-pausing population 
is only present in the late enterochromaffin cluster (6 out of 29 cells), 
whereas the CAG-pausing cells were distributed between the cell clus-
ters (GAA: P = 1.9 × 10−7; CAG: P = 0.014; Fisher’s exact test). Together, 
these results establish that scRibo-seq is directly applicable to complex 
primary samples, enabling the measurement of translational dynamics 
in rare cell populations.

scRibo-seq measures translation at the single-cell level, filling a cru-
cial gap in existing capabilities for single-cell genomics. Our results 
demonstrate that scRibo-seq provides a marker-free and transgene-free 
method for ribosomal profiling with the sensitivity and resolution to 
measure ribosome behaviour down to individual codons on specific 
transcripts in populations of single cells. Compared with the recently 
described Ribo-STAMP26, which uses APOBEC-mediated RNA edit-
ing to identify transcripts that have been associated with ribosomes, 
scRibo-seq provides an instantaneous snapshot of translation, has 
single-codon resolution, and does not require the expression of an 
exogenous fusion protein. These unique capabilities enabled us to 
examine translation during the mammalian cell cycle in detail, provid-
ing evidence supporting widespread changes to translational regula-
tion during mitosis. Furthermore, our application of scRibo-seq to 
primary EEC cells demonstrates its applicability to rare primary sam-
ples, enabling the systematic exploration of translation in samples 
that would be impossible to access with bulk assays. We anticipate that 
this method will see broad application, particularly in highly dynamic 
systems such as development, in which rare and short-lived populations 
are impossible to measure with existing techniques.
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Methods

Cell culture and dissociation
HEK 293T cells were obtained from the Medema laboratory (R.H.M., 
Department of Cell Biology, The Netherlands Cancer Institute, Amster-
dam, The Netherlands) and were cultured in DMEM (Gibco) supplemented 
with 10% FBS (Gibco), 1× GlutaMAX (Gibco) and 1× Pen-Strep (Gibco) at 
37 °C and 5% CO2. HEK 293T cells routinely tested negative for Mycoplasma 
contamination and were not authenticated. For amino acid limitation 
experiments, HEK 293T cells were cultured to about 70% confluency 
in ‘rich’ medium based on powdered DMEM medium for stable isotope 
labelling using amino acids in cell culture (SILAC) (Thermo Fisher Sci-
entific) that was supplemented with 10% dialysed FBS (Thermo Fisher 
Scientific), 105 mg l−1 l-leucine (Sigma-Aldrich), 84 mg l−1 l-arginine HCl 
(Sigma-Aldrich) and 146 mg l−1 l-lysine HCl (Sigma-Aldrich). Three and 
six hours before sorting, cells were washed once with phosphate buff-
ered saline (PBS) and resuspended in medium that did not contain either 
arginine or lysine. Before sorting, cells were mechanically dissociated 
to a single-cell suspension by pipetting up and down, washed and resus-
pended in PBS containing DAPI (Thermo Fisher Scientific) as a viability 
stain and bovine serum albumen (BSA, Thermo Fisher Scientific) to reduce 
aggregation. Cells were passed through a 20-µm mesh before sorting and 
all viable single cells were sorted (Extended Data Fig. 10a).

RPE-1 hTERT FUCCI cells were obtained from the Medema lab and were 
cultured in DMEM supplemented with 10% FBS (Gibco), 1× GlutaMAX 
(Gibco) and 1× Pen-Strep (Gibco) at 37 °C with 5% CO2. RPE-1 hTERT FUCCI 
cells routinely tested negative for Mycoplasma contamination and were 
not authenticated. For the RPE-1 cell cycle experiments, we used previ-
ously characterized RPE-1 hTERT FUCCI cells27, and generated three 
fractions: interphase, mitotic shake-off and G0-arrested. For the inter-
phase fraction, 7.5 × 104 cells were plated in a 6-well plate and collected by 
trypsinization (TrypLE, Gibco) 36 h later. For the mitotic fraction, 3 × 106 
cells were plated in a 145-mm dish and were collected 36 h later by gently 
tapping the culture dish and collecting the medium (otherwise known 
as a mitotic shake-off). Finally, for the G0-arrested fraction, 1 × 105 cells 
were plated in a 24-well plate and collected 72 h later by trypsinization. 
Cells were washed once and resuspended in PBS containing DAPI as a 
viability stain and BSA to reduce aggregation. Cells were passed through a 
20-µm mesh before sorting. For the interphase fraction, viable single cells 
were sorted (Extended Data Fig. 10b). For the G0 fraction, viable single 
mAG-negative and mKO2-positive or -high cells were sorted (Extended 
Data Fig. 10c). To further enrich the mitotic shake-off, we sorted viable, 
mKO2-negative cells (Extended Data Fig. 10d).

Mouse EEC cells were isolated from the intestines of Neurog3Chrono 
mice, closely following the methods outlined by Gehart et al.24. In brief, 
mouse small intestines were collected, cleaned, flushed with PBS0, and 
separated into proximal, medial and distal sections. Pieces were cut open 
and villi were scraped off with a glass cover slip and discarded. Tissue 
pieces were then washed in cold PBS0 before transferring to PBS0 with 
2 mM EDTA (Gibco), incubated at 4 °C for 30 min on a roller, and then 
vigorously shaken. Detached crypts were pelleted, resuspended in warm 
TrypLE Select (Gibco), and mechanically disrupted by pipetting to gener-
ate single-cell suspensions. Single-cell suspensions were washed twice 
in Advanced DMEM/F12 (Gibco), strained with a 20-µm mesh, and resus-
pended in Advanced DMEM/F12 containing 4 mM EDTA and 1 µg ml−1 DAPI 
for sorting. Example gating strategies are shown in Extended Data Fig. 10e.

Mice
All mouse experiments were conducted under the project license 
AVD8010020151 granted by the Dier Experiment Commissie/Animal 
Experimentation Committee (DEC) or Central Committee Animal 
Experimentation (CCD) of the Dutch government and approved by 
the Hubrecht Institute Animal Welfare Body (IvD). The Neurog3Chrono 
allele was maintained on a mixed Mus musculus C57BL/6 background. 
Animals used in the experiments were between 8 and 22 weeks of age. 

Both male and female mice were used for the experiments. Mice were 
housed in open housing with 14:10 h light:dark cycle at 24 °C and 
45–70% relative humidity with food and water ad libitum. The intestines 
from two individuals were pooled together during cell dissociation; 
randomization and blinding were not performed.

FACS
Following dissociation, HEK 293T and RPE-1 cells were washed once 
in 1× PBS0, resuspended in PBS0 with 0.1% BSA (Thermo Fisher) and 
1 µg ml−1 DAPI, and passed through a 20-µm mesh. Single cells were 
index sorted using a BD FACS Influx with the following settings: sort 
objective single cells, a drop envelope of 1.0 drop, a phase mask of 10/16, 
extra coincidence bits of maximum 16, drop frequency of 38 kHz, a noz-
zle of 100 µm with 18 PSI and a flowrate of approximately 100 events 
per second, which results in a minimum sorting time of approximately 
5 min per plate.

Doublets, debris, and dead cells were excluded by gating forward and 
side scatter in combination with the DAPI channel. For the hTERT RPE-1 
FUCCI cells, the measurements in the monomeric Azami-Green (mAG) 
and monomeric Kusabira-Orange 2 (mKO2) channels were used in com-
bination with the cell preparation treatments to enrich G0 and mitotic 
populations. For the mouse intestinal EEC cells, the measurements of 
dTomato and mNeonGreen were used to select EEC cells expressing the 
Neurog3Chrono reporter24 and DAPI was used to exclude dead cells. 
Fluorescence intensities from all channels were stored as index data.

Example gating strategies and cell frequencies for all cell fractions 
are shown in Extended Data Fig. 10.

Library construction
Library construction progressed through three general steps (Fig. 1a): 
cell lysis and ribosome footprint generation, small-RNA library prepara-
tion, and pooling and purification. Reagents were dispensed to micro-
well plates using either the Nanodrop II (Innovadyne Technologies) 
or the Mosquito (TTP Labtech). Plates were spun at 2,000g after each 
liquid transfer step.

Cell lysis and footprint digestion
Single cells were sorted into 384-well hardshell plates (Bio-Rad) that 
were pre-filled with 5 µl of light mineral oil (Sigma-Aldrich) and 50 nl 
of lysis buffer (22 mM Tris-HCl pH 7.5, 16.5 mM MgCl2, 5.5 mM CaCl2, 
165 mM NaCl, 1.1% Triton X-100, 2.2 U µl−1 RNaseIN Plus (Promega), 
0.11 mg ml−1 cycloheximide (Sigma-Aldrich)). After sorting, plates 
were spun down at 2,000g for 2 min and kept on wet ice until all plates 
were ready for further processing. Next, 50 nl of MNase (10,500 U µl−1, 
New England Biolabs) was added to each well, and plates were incu-
bated at 37 °C for 30 min. To stop digestion, 50 nl of stop mix (0.0186 
U µl−1 Thermolabile Proteinase K (New England Biolabs), 62 mM EGTA 
(Sigma-Aldrich), 16.5 mM EDTA (Ambion), and 697.5 mM guanidium 
thiocyanate (GuSCN, Sigma-Aldrich)) was added to each well, and plates 
were incubated at 37 °C for 30 min then 55 °C for 10 min and held at 4 °C.

Small-RNA library preparation
After ribosome footprint digestion, libraries were constructed using 
a one-pot small-RNA library preparation protocol that incorporated 
end repair, two RNA ligations, cDNA synthesis, and an indexing PCR. 
First, 50 nl of end-repair mix (4.1× T4 RNA Ligase Buffer (New England 
Biolabs), 16.4 mM MgCl2, 4.1 mM uridine triphosphate (New England 
Biolabs), 1.37 U µl−1 T4 Polynucleotide Kinase (New England Biolabs) 
and 0.82 U µl−1 RNaseIN Plus) was added to each well, and plates were 
incubated at 37 °C for 1 h and held at 4 °C. Next, 264 nl of 3ʹ ligation brew 
(1× T4 RNA Ligase Buffer (New England Biolabs), 1 µM pre-adenylated 
3ʹ adapter (OMV630_miRNA4_3App, Supplementary Table 1; Inte-
grated DNA Technologies), 35.5% PEG-8000 (New England Biolabs), 
0.1% Tween-20 (Sigma-Aldrich), 1 U µl−1 RNaseIN Plus, and 21.3 U µl−1 
T4 RNA Ligase 2 Truncated KQ (New England Biolabs)) was added to 



each well and plates were incubated at 4 °C for 18 h. The cDNA synthesis 
primer was then pre-annealed to the 3ʹ ligation products by adding 50 
nl of the reverse transcription primer mix (5.2 µM reverse transcription 
primer (OMV572_miRNA4_RT, Supplementary Table 1; Integrated DNA 
Technologies), 13.5 µM adenosine triphosphate (ATP, New England 
Biolabs), and 1% Tween-20) to each well, heating to 65 °C for 1 min, 
37 °C for 2 min, 25 °C for 2 min, and holding at 4 °C. Five-prime adapt-
ers were then ligated by adding 156 nl of 5ʹ ligation brew (1× T4 RNA 
Ligase Buffer, 30.75% PEG-8000, 0.1% Tween-20, 0.5 µM 5ʹ adapter 
(OMV632_miRNA5_5A_10U, Supplementary Table 1; Integrated DNA 
Technologies), 1.25 U µl−1 T4 RNA Ligase 1 (Ambion)) and incubating at 
37 °C for 2 h and holding at 4 °C. Complementary DNA synthesis was 
then performed by adding 770 nL of reverse transcription brew (1.88× 
5× RT Buffer (Thermo Fisher Scientific), 1.25 mM dNTPs (Promega), 
0.1875% Tween-20, 1.875 U µl−1 RNaseIN Plus, and 9.375 U µl−1 Maxima H 
Minus Reverse Transcriptase (Thermo Fisher Scientific)) to each well, 
and heating at 50 °C for 1 h, then 85 °C for 5 min and holding at 4 °C. 
Finally, single-cell libraries were indexed during PCR by transferring 150 
nl of 20 µM unique forward index primers (miRv6-PCR_F-cbc, Supple-
mentary Table 1; Integrated DNA Technologies) and 3.2 µl of PCR brew 
(1.5× Q5 Hot Start High-Fidelity 2× Master Mix (New England Biolabs), 
0.15% Tween-20, and 0.94 µM reverse index primer (RPI-, Supplemen-
tary Table 1; Integrated DNA Technologies)) to each well. Plates were 
then incubated at 98 °C for 30 s followed by 10 cycles of 98 °C for 15 s, 
65 °C for 30 s, 72 °C for 30 s, and then a final incubation at 72 °C for 5 min 
and holding at 4 °C. Plates were then frozen at −20 °C until pooling.

Pooling and purification
After library construction the plates were pooled and purified. The con-
tents of each plate were first collected in VBLOK200 reservoirs (Click 
Bio) by centrifuging at 2,000g for 2 min. The aqueous phase (~1.9 ml per 
plate) was separated from the light mineral oil by centrifugation, and 
concentrated to approximately 500 µl using n-butanol (Sigma-Aldrich) 
and diethyl ether (Sigma-Aldrich). Product was then cleaned up using 
AMPure XP beads (Beckman Coulter) that had been diluted 5× in bead 
binding buffer (20% PEG-8000 (Sigma-Aldrich) 2.5 M sodium chloride 
(Sigma-Aldrich)); diluted beads were added to the sample at a 2.1:1 
ratio, and the final product was resuspended in 50 µl low TE buffer 
(LoTET, 3 mM Tris-HCl pH 8.0 (Ambion), 0.2 mM EDTA pH 8.0 (Gibco), 
0.1% Tween-20). Half of each of the cleaned-up library pools was then 
run on a 10-cm 7% polyacrylamide gel at 200 V for ~6 h, and the ~10-bp 
region from 175 to 185, corresponding to an insert size of ~30–40 nt 
was excised. The band was then crushed and soaked overnight at 4 °C 
in elution buffer (5:1 LoTET:7.5 M ammonium acetate (Sigma-Aldrich)). 
Finally, eluate was precipitated in ethanol.

Sequencing
Libraries were sequenced using v2.5 chemistry on a NextSeq 500 (Illu-
mina; NextSeq Control Software version 2.2.0.4; RTA version 2.4.11) 
with 75 cycles for read 1, 6 cycles for the i7 index read (plate index), 
and 10 cycles for the i5 index read (cell index).

Data analysis
Reference genomes and annotations. The reference genome and 
annotations were obtained from Gencode using human release 34 
(GRCh38.p13) and mouse release 24 (GRCm38.p6). The reference ge-
nomes were prepared for alignment by masking all tRNA genes and 
pseudogenes and including unique mature tRNAs genes as artificial 
chromosomes. tRNA genes and pseudogenes were identified using 
tRNAscan-SE (version 2.0.7) using the eukaryotic model (-HQ) and 
the vertebrate mitochondrial model (-M vert -Q). Sequences for ribo-
somal RNAs were downloaded from NCBI RefSeq (human: 12S_RNR1, 
16S_RNR2, RNA45SN5, RNA45SN1, RNA45SN4, RNA45SN2, RNA45SN3, 
RNA5S9, RNA5S1-17; mouse: Rn45s, Rn5s, 12s_16s, and Rn47s). For meta-
gene analyses, a set of canonical transcripts was defined on the basis 

of the APPRIS annotations, with the longer isoforms being selected in 
cases of multiple primary isoforms.

Read processing. Reads were first demultiplexed using bcl2fastq 
(version 2.20.0.422) with --use-bases-mask Y*,I*,Y* --no-lane-splitting 
--mask-short-adapter-reads 0 --minimum-trimmed-read-length 
0. Next, the UMI was extracted from the first 10 bases of read 1 and 
concatenated to the start of the cell barcode in read 2. Adapter 
sequences were then trimmed from read 1 using cutadapt (ver-
sion 3.2) with -m 15: -a TGGAATTCTCGGGT. Trimmed reads were 
aligned to the reference genome using STARSolo (version 2.7.6a) 
with a 50-base overhang (--sjdbOverhang 50) with the following 
parameters: --seedSearchStartLmax 10 --alignIntronMax 1000000 
--outFilterType BySJout --alignSJoverhangMin 8 --outFilterScoreMin 0 
--outFilterMultimapNmax 1 --chimScoreSeparation 10 --chimScoreMin 
20 --chimSegmentMin 15 --outFilterMismatchNmax 5. Aligned 
reads were deduplicated with UMI-tools (version 1.1.1) using 
--spliced-is-unique --per-cell --read-length --no-sort-output, and sorted 
using sambamba (version 0.8.0).

Read parsing and quantification. Aligned and deduplicated reads were 
parsed to extract the mapping coordinates and the reference sequence 
contexts around both the 5ʹ and 3ʹ ends of the reads. Count tables report 
the number of unique RPFs aligning within any annotated CDS for each 
gene. Reads were only counted if they aligned to the correct strand, if 
the trimmed length was between 30 and 45 nt long, and if the trimmed 
length was equal to the mapped length. Additionally, for these counts, 
the CDS was expanded to include 25 nt upstream and downstream of 
the start and stop codons.

Random forest training and prediction. A random forest model was 
trained to predict the A site location within an RPF read on the basis 
of the footprint length and the sequence context around the 5ʹ and 3ʹ 
ends. The model was implemented in R (version 3.6.3) using ranger 
(version 0.12.1) with mlr (version 2.17.1) wrappers for training, tuning, 
assessment, and prediction. The model was trained on reads spanning 
a stop codon that satisfied the counting requirements listed above. 
The number of nucleotides between the 5ʹ end of these reads and the 
annotated stop codon was used for training.

Single-cell expression analysis and plotting. Data are reported as 
mean ± s.e.m. Manipulations, statistics and plotting were performed in 
R (version 3.6.3) using dplyr (version 1.0.2), tidyr (version 1.1.2), ggplot2 
(version 3.3.2), cowplot (version 1.1.0), and ComplexHeatmap (version 
2.5.3) and Python (version 3.8.2) using numpy (version 1.20.0), pandas 
(version 1.2.2) and pysam (version 0.16.0).

Values for box plots were calculated using the default settings in 
geom_boxplot (ggplot2): the middle line represents the median, the 
lower and upper hinges correspond to the first and third quartiles, the 
upper whisker extends from the upper hinge to the largest value no 
further than 1.5 times the interquartile range, the lower whisker extends 
from the lower hinge to the smallest value no further than 1.5 times the 
interquartile range, and data beyond the whiskers are deemed outliers 
and plotted individually.

Gene set enrichment analysis was performed using FGSEA28 (version 
1.12.0) with 1 × 105 permutations, and a Benjamini–Hochberg adjust-
ment for multiple test correction.

Analyses of single-cell RPF counts were performed using Seurat29 
(version 3.2.2) following standard workflows for normalization, batch 
integration, dimensionality reduction, and differential expression 
analysis. All clustering, differential expression, and pseudotime analy-
ses were performed using the unique RPF counts per CDS. Differen-
tial expression testing was performed using Wilcoxon rank-sum tests 
between each cell cluster and all other cells. Genes were only tested 
if they were detected in at least 25% of the cells in either cluster, and 
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if there was an average of at least a log 0.25-fold change difference 
between the two groups (FindAllMarkers(min.pct = 0.25, logfc.thresh-
old = 0.25)). Significance was assigned at a Bonferroni-corrected P value 
less than 0.01. To identify codons whose frequencies of occurrence 
varied over the cell cycle, the log-fold change threshold was decreased 
to 0.17 to permit smaller signals.

Cells were selected for further analysis if they met two quality 
control thresholds: a minimum number of unique reads aligning to 
protein-coding transcripts, with a minimum fraction of these reads 
aligning to CDS. These thresholds removed cells where the library 
construction and/or nuclease footprinting failed. The values of these 
cut-offs were adjusted slightly for each plate and sample type to com-
pensate for differences in sequencing depth and coding-sequence cov-
erage. Additionally, primary EEC cell doublets that were not removed 
during sorting were filtered using measurements of forward scatter 
and side scatter collected during index sorting.

Pseudotime ordering of cells along the cell cycle was done using 
GrandPrix30 (version 0.1) partially refactored to work with recent ver-
sions of tensorflow (version 2.3.1) and gpflow (version 2.1.1) in Python 
(version 3.7.3). The model was fit with a periodic squared exponential 
kernel to the normalized and z-score transformed RPF counts and mKO2 
and mAG fluorescence index data. The GrandPrix model was initial-
ized with each cell’s progression through the cell cycle as measured 
using the mKO2–CDT1 and mAG–GMNN index data. To compute this 
initial progression, 30 cells were first randomly selected from the data, 
organized into a path through the fluorescence space using the Con-
corde travelling salesman problem solver (version 03.12.19), and each 
cell’s distance along the path was recorded. This process was repeated 
500,000 times and the median path distance for each cell was used to 
initialize the pseudotime cell ordering for the GrandPrix model.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Raw sequencing data, metadata and count tables have been made avail-
able in the Gene Expression Omnibus under the accession number 

GSE162060. Raw sequencing data for comparisons to conventional 
ribosomal profiling methods were downloaded from Gene Expression 
Omnibus accessions GSE37744, GSE125218, GSE113751 and GSE67902.

Code availability
All scripts to process raw data and generate figures are available at 
https://github.com/mvanins/scRiboSeq_manuscript.
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Extended Data Fig. 1 | Library metrics for scRibo-seq libraries. a, Distributions of the number of unique coding-sequence mapped reads per cell.  
b, Distributions of the number of protein-coding genes detected per cell. c, Duplicate rate per cell. The mean ± standard error of each distribution is indicated.
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Extended Data Fig. 2 | Comparison of scRibo-seq to conventional 
ribosomal profiling. a, b, Heat maps of the percentage of protein-coding 
reads per library aligning along metagene regions around the start codon 
(left), in the CDS (middle), and around the stop codon (right). The mapping 
coordinate of the 5ʹ end (a), or the random-forest predicted P-site of each read 
(b) is reported. Libraries are from this work (scRibo-seq), and representative 
bulk ribosomal profiling methods: Darnell6, using MNase on HEK 293T; Ingolia8, 
using RNase I on HEK 293T; Martinez9, using RNase I on HEK 293T; and 
Tanenbaum10, using RNase I on RPE-1. c, Frame and read-length distributions of 
the 5ʹ end of RPFs and random-forest predicted P-sites averaged across library 

sets. d, Distributions of the percentage of trimmed reads aligning to rRNA and 
tRNA. e, Region-length normalized distributions of RPF mapping frequencies 
in the 5ʹ UTR, CDS, and 3ʹ UTR regions of protein-coding transcripts.  
f, Distributions of the percentage of trimmed reads that uniquely align to 
protein coding, lncRNA, snoRNAs, or other biotypes. In the box plots in d-f the 
middle line indicates the median, the box limits the first and third quartiles, and 
the whiskers the range. Each point is from a single-cell or bulk library.  
g, Comparisons of the RPF counts per CDS in HEK 293T cells between the 
different studies. Spearman correlation coefficients for each comparison are 
indicated.



Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | A Random Forest model corrects the MNase 
sequence bias to position ribosome active sites within RPF reads. a, Logos 
of the sequence context around the 5ʹ and 3ʹ cut locations. b, Schematic 
illustrating how a nuclease sequence bias can result in a sequence-dependent 
offset (arrowed lines) between the cut position (triangles) and the ribosome 
exit, peptidyl, and aminoacyl active sites. Ribosome schematic adapted from 
ref. 31. c, Schematic describing the parameters used to train the random forest 
model. Reads spanning a stop codon were used for training. The model 
predicts the offset between the 5ʹ end of each read and the P-site based on the 

read length and the sequence context around each end of the read. d, Truth 
table of the model prediction results on validation data. e, Permutation 
importance of the model features. f, Frame distributions of the 5ʹ end of RPFs 
and random-forest predicted P-sites in single cells. Both the 5ʹ and predicted 
P-sites are uniform between cells and cell types. g, Number of footprints per 
cell along a metagene region within CDS before (top, reads whose 5ʹ ends align 
at the given region) and after (bottom, number of predicted P-sites at each 
location) the random forest correction.



Extended Data Fig. 4 | Ribosome pausing in single cells under amino acid 
limitation. a, Heat map of the log2 fold change of amino acid occupancy in the 
RPF active sites. b, Distribution of cells exhibiting ribosome pausing in 
clusters. The threshold used to distinguish pausing cells was calculated as the 
mean plus 4 standard deviations of the signal of the cells from the rich 

condition. c, Proportions of treatment type per cluster. d, Proportions of 
treated cells that show a pausing response per cluster. e, Gene set enrichment 
analysis28 on the Reactome Pathway database showing the top twenty 
categories based on marker genes for HEK 293T cell clusters. Categories 
associated with the cell cycle are highlighted in bold.
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Extended Data Fig. 5 | Marker gene expression and site-specific codon 
abundance over the cell cycle. a, Heat map of RPF abundance per CDS in 
hTERT RPE-1 FUCCI cells, showing the translation dynamics of 1,853 
significantly differentially translated genes during the cell cycle. Common cell 
cycle markers are highlighted. b, Heat map showing ribosome-site-specific 

pausing over all codons for hTERT RPE-1 FUCCI cells. Cells are ordered based on 
cell cycle progression, and codons are clustered based on the average change 
in the frequency of occurrence across all sites. Codons with significantly 
different site occupancies between clusters are indicated with an asterisk.



Extended Data Fig. 6 | Ribosome pausing is distinct from changes in codon 
usage. a, Frequency of arginine and leucine codons in histone genes compared 
to all other genes. Histone genes (light grey) are highly enriched in CGC and 
CGU codons compared to other genes. Histone genes were defined as those in 
HGNC gene group 864. In the box plots the middle line indicates the median, 
the box limits the first and third quartiles, and the whiskers the range. Each 
point represents a gene. b, Heat map of the fold change in codon occupancy for 

CGC and CGU codons in the ribosome active sites (top) and the expression of 
histone genes (bottom) in RPE-1 cells. The site-agnostic increases in CGC and 
CGU in RPF active sites are synchronous with the increase in translation of 
histone genes during late S phase (cluster 5, teal). The increases of CGC and 
CGU codons in all active sites is distinct from the pattern seen in the GAA site 
occupancies, where the increase is specific to the A site.
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Extended Data Fig. 7 | Scatter plots showing the fold change in gene-wise 
A-site frequency of occupancy between each cell cluster and the 
background for the listed codons. The increases (GAA, GAG, and AUA) and 

decreases (CGA) of the A-site abundance affect the majority of the genes 
detected across clusters.



Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Single-cell ribosome profiling in primary mouse 
intestinal EEC cells. a, UMAP (n = 350 cells) generated using the RPF counts 
per CDS. Corresponding cell types and associated marker genes for each 
cluster are indicated. b, c, UMAPs illustrating the fluorescence of the 
mNeonGreen (b) and dTomato (c) markers from the bi-fluorescent 
Neurog3Chrono reporter24. d, UMAP depicting the intestinal region origin of 
each cell. As expected, there is no enrichment of the cell types within each 
region. e, Scatter plots of the Neurog3Chrono fluorescence denoting the 
position of each cell cluster within the FACS space. As expected, progenitor 
cells show an increased mNeonGreen fluorescence, that changes through a 
double-positive population to dTomato-positive as EEC cells develop. f, Heat 

map showing ribosome-site-specific pausing over CAG and GAA codons. To 
remove any effects of the uneven distribution of RPFs along highly translated 
hormone genes, any gene that was more than an average of 2.5% of the RPFs per 
cell was removed from this analysis. g, h, UMAPs showing the CAG (g) and GAA 
(h) pausing. i, Heat map showing the distribution of RPF A sites along the Chgb 
CDS. Cells are grouped based on their CAG and GAA pausing status. The 
position of CAG (orange) and GAA (purple) codons within the CDS are denoted 
as ticks at the top, with shared prominent pausing sites for each codon 
indicated with inverted triangles. j, k, Scatter plots showing the fold change in 
gene-wise A-site frequency of occurrence between the pausing and non-
pausing (normal) cells within each cluster.



Extended Data Fig. 9 | Marker genes and codon pausing for EEC cells. a, Heat 
map of 1,517 genes significantly differentially expressed between the cell 
clusters. Common EEC marker genes are indicated. b, UMAPs (n = 350 cells) 
showing the expression of common EEC marker and hormone genes. c, Heat 
map showing ribosome-site-specific pausing for all codons in the EEC cells. 

Cells are clustered based on the profiles across the codons. To remove any 
effects of the uneven distribution of RPFs along highly translated hormone 
genes, any gene that was more than an average of 2.5% of the RPFs per cell was 
removed from this analysis (removed genes: Chga, Chgb, Clca1, Fcgbp, Gcg, 
Ghrl, Gip, Nts, Reg4, Sst).
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Extended Data Fig. 10 | Example gating strategies and population frequencies. a, HEK 293T cells. b–d, hTERT RPE-1 FUCCI interphase (b), contact-inhibition 
G0 (c) and mitotic shake-off fractions (d). e, Primary mouse EEC cells. Points are pseudocoloured based on density.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Sequencing data were collected on the Illumina NextSeq 500 (NextSeq Control Software version 2.2.0.4), using standard software for 
basecalling (RTA version 2.4.11). Sample demultiplexing was performed using bcl2fastq (v2.20.0.422). 
 
FACS data were collected on a BD Influx (BD FACS Sortware version 1.2.0.142).

Data analysis Data were analyzed using a combination of publicly available and custom software.  
 
Publicly available software included: cutadapt (version 3.2), STARSolo (version 2.7.6a), UMI-tools (version 1.1.1),  sambamba (version 0.8.0), 
tRNAscan-SE (version 2.0.7), python (versions 3.7.3 & 3.8.2), GrandPrix (version 0.1), tensorflow (version 2.3.1), gpflow (version 2.1.1.), numpy 
(version 1.20.0), pandas (version 1.2.2), pysam (version 0.16.0) , R (version 3.6.3), ranger (version 0.12.1), mlr (version 2.17.1), dplyr (version 
1.0.2), tidyr (version 1.1.2), ggplot2 (version 3.3.2), cowplot (version 1.1.0), ComplexHeatmap (version 2.5.3), FGSEA (version 1.12.0), Seurat 
(version 3.2.2), Concorde (version 03.12.19). 
 
All custom scripts and conda environment definitions to process raw data and generate figures are available at https://github.com/mvanins/
scRiboSeq_manuscript

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Raw sequencing data, metadata, and count tables have been made available in the Gene Expression Omnibus under the accession number GSE162060.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical methods were used to predetermine sample size. The number of cells analyzed was chosen to enable sufficient technical 
validation and benchmarking of scRibo-seq.

Data exclusions All raw data are uploaded in public repositories.  
 
In downstream analyses, cells were excluded if they did not meet two quality control thresholds: a minimum number of unique reads aligning 
to protein-coding transcripts, with a minimum fraction of these reads aligning to coding sequences. These thresholds removed cells where the 
library construction and/or nuclease footprinting failed. The values of these cutoffs were slightly adjusted for each plate and sample type to 
compensate for differences in sequencing depth and coding-sequence coverage. 
 
For single HEK293T cells we required a minimum of 1000 reads mapping to protein-coding sequences and a minimum of 75 % of mapped 
reads aligning to coding sequences. For RPE-1 cells these thresholds were increased to a minimum of 4500 reads aligning to protein-coding 
sequences and at at least 85 % of aligning reads stemming from coding regions. For enteroendocrine cells the thresholds were a minimum of 
2000 protein-coding reads and 75 % aligning to coding regions.  
 
Additionally, primary enteroendocrine cell doublets that were not removed during sorting were filtered using measurements of forward 
scatter and side scatter collected during index sorting.

Replication For the HEK293T starvation experiment, data are from one experiment. 
 
For the hTERT-RPE-1 cell-cycle experiments, the interphase fraction was measured in three independent experiments, and the G0 and mitotic 
shake-off in two; all replication attempts were successful. 
 
For the primary mouse enteroendocrine cell analyses, data are generated from one experiment using tissue pooled from two independent 
animals; no obvious differences between animals were observed.

Randomization No randomization was performed. Batch and plate effects were mitigated by designing sorting plate layouts so that each condition was 
present on each plate, thereby allowing us to separate biological effects from any potential plate effects.  

Blinding No blinding was performed since we performed unsupervised analysis techniques (e.g., clustering and dimensionality reduction).

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) HEK293T and hTERT RPE-1 FUCCI cells were both obtained from the Medema lab at the Netherlands Cancer Institute.

Authentication None of the cell lines were authenticated.

Mycoplasma contamination All cell lines routinely tested negative for Mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)

No commonly misidentified cell lines were used in the study.

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals The Neurog3Chrono allele was maintained on a mixed Mus musculus C57BL/6 background. Animals used in the experiments were 
aged between 8-22 weeks. Both males and females were used for the experiments. Mice were housed in open housing with 14:10 h 
light:dark cycle at 24 °C and 45-70 % relative humidity with food and water ad libitum. The intestines from two adults were pooled 
together during cell dissociation; randomization and blinding were not performed.

Wild animals The study did not involve wild animals.

Field-collected samples The study did not involve samples collected from the field.

Ethics oversight All mouse experiments were conducted under a project license granted by the Dier Experiment Commissie / Animal Experimentation 
Committee (DEC) or Central Committee Animal Experimentation (CCD) of the Dutch government and approved by the Hubrecht 
Institute Animal Welfare Body (IvD). 

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation HEK293T cells: Cells were dissociated to a single-cell suspension by pipetting up and down. The single-cell suspension was 
washed and resuspended in PBS containing DAPI as a viability stain and BSA to reduce aggregation. Cells were passed 
through a 20-micron mesh before sorting. 
 
hTERT RPE-1 FUCCI cells: Cells were dissociated to a single-cell suspension using TrypLE, washed and resuspended in PBS 
containing DAPI as a viability stain and BSA to reduce aggregation. Cells were passed through a 20-micron mesh before 
sorting. 
 
Mouse enteroendocrine cells: Mouse enteroendocrine cells were isolated from the intestines of Neurog3Chrono mice, 
closely following the methods outlined by Gehart et al. Briefly, mouse small intestines were harvested, cleaned, flushed with 
PBS0, and separated into proximal, medial, and distal sections. Pieces were cut open and villi were scraped off with a glass 
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cover slip and discarded. Tissue pieces were then washed in cold PBS0 before transferring to PBS0 with 2 mM EDTA (Gibco), 
incubated at 4 °C for 30 minutes on a roller, and then vigorously shaken. Detached crypts were pelleted, resuspended in 
warm TrypLE Select (Gibco), and mechanically disrupted by pipetting to generate single-cell suspensions. Single-cell 
suspensions were washed 2× in Advanced DMEM/F12 (Gibco), strained with a 20-μm mesh, and resuspended in Advanced 
DMEM/F12 containing 4 mM EDTA and 1 μg/mL DAPI for sorting. 

Instrument BD Influx

Software BD FACS Sortware 1.2.0.142

Cell population abundance Cell population purity and abundance was not explicitly determined after sorting. FACS was primarily used to i) distribute 
single cells into individual wells of a 384-well plate for subsequent processing, ii) measure the fluorescence of cell-cycle 
progression markers of these cells, and iii) measure the fluorescence of the Neurog3Chrono markers.

Gating strategy HEK293T: Doublets, debris, and dead cells were excluded by gating forward and side scatter in combination with the DAPI 
channel. Viable single cells were sorted. An example gating strategy is provided in Extended Data Figure 13a. 
 
hTERT RPE-1 FUCCI: Doublets, debris, and dead cells were excluded by gating forward and side scatter in combination with 
the DAPI channel. The gating strategy varied between the interphase, G0, and mitotic fractions. Example gating strategies for 
each are provided in Extended Data Figures 13 b-d. Interphase: viable single cells were sorted. G0: Viable single cells that 
were mAG negative and mKO2 positive/high were sorted. Mitotic: Viable single cells that were mKO2 negative were sorted. 
 
Mouse enteroendocrine: Doublets, debris, and dead cells were excluded by gating forward and side scatter in combination 
with the DAPI channel. The measurements of dTomato and mNeonGreen were used to select enteroendocrine cells 
expressing the Neurog3Chrono reporter and DAPI was used to exclude dead cells. 

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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