Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can cause coronavirus disease 2019 (COVID-19), an influenza-like disease that is primarily thought to infect the lungs with transmission through the respiratory route. However, clinical evidence suggests that the intestine may present another viral target organ. Indeed, the SARS-CoV-2 receptor angiotensin-converting enzyme 2 (ACE2) is highly expressed on differentiated enterocytes. In human small intestinal organoids (hSIOs), enterocytes were readily infected by SARS-CoV and SARS-CoV-2, as demonstrated by confocal and electron microscopy. Enterocytes produced infectious viral particles, whereas messenger RNA expression analysis of hSIOs revealed induction of a generic viral response program. Therefore, the intestinal epithelium supports SARS-CoV-2 replication, and hSIOs serve as an experimental model for coronavirus infection and biology.

Fig. 1. SARS-CoV and SARS-CoV-2 Infect 2D human airway cultures. (A) Live virus titers can be observed by virus titrations on VeroE6 cells of apical washes at 2, 24, 48, 72, and 96 h after infection with SARS-CoV (blue) and SARS-CoV-2 (red). The dotted line indicates the lower limit of detection. Error bars indicate SEM. N = 4. *P < 0.05, **P < 0.01, ***P < 0.001. (B and C) Immunofluorescent staining of SARS-CoV-2–infected (B) and SARS-CoV–infected (C) differentiated airway cultures. Nucleoprotein (NP) stains viral nucleocapsid (red), which colocalized with the ciliated cell marker AcTUB (green). Goblet cells are identified by MUC5AC (blue). Nuclei are stained with TO-PRO3 (white). Scale bars, 20 μM. Top panels are side views and bottom panels are top views.

Lamers et al., Science 369, 50–54 (2020) 3 July 2020

"CORONAVIRUS

SARS-CoV-2 productively infects human gut enterocytes

Mart M. Lammers1*, Joep Beumer2*, Jelte van der Vaart2*, Kévin Knoops1, Jens Puschhof1, Tim I. Breugem1, Raimond B. G. Ravelli1, J. Paul van Schayck3, Anna Z. Mykytyn1, Hans Q. Duimei2, Elly van Donseelaar1, Samra Riesebosch1, Debby Schipper1, Willine J. van de Wetering3, Miranda de Graaf1, Marion Koopmans1, Edwin Cuppen4,5, Peter J. Peters2, Bart L. Haagmans1†, Hans Clevers2†‡

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can cause coronavirus disease 2019 (COVID-19), an influenza-like disease that is primarily thought to infect the lungs with transmission through the respiratory route. However, clinical evidence suggests that the intestine may present another viral target organ. Indeed, the SARS-CoV-2 receptor angiotensin-converting enzyme 2 (ACE2) is highly expressed on differentiated enterocytes. In human small intestinal organoids (hSIOs), enterocytes were readily infected by SARS-CoV and SARS-CoV-2, as demonstrated by confocal and electron microscopy. Enterocytes produced infectious viral particles, whereas messenger RNA expression analysis of hSIOs revealed induction of a generic viral response program. Therefore, the intestinal epithelium supports SARS-CoV-2 replication, and hSIOs serve as an experimental model for coronavirus infection and biology.

These authors contributed equally to this work.

*Corresponding author. Email: h.clevers@hubrecht.eu (H.C.); b.haagmans@erasmusmc.nl (B.L.H.)
infectious virus (Fig. 2 and fig. S1). In organoids induced to generate EECs, virus yields were similar to those in EXP medium (Fig. 2, D and H). In differentiated hSIOs, SARS-CoV-2 titers remained stable at 60 hours after infection, whereas SARS-CoV titers dropped by 1 to 2 log (Fig. 2, B, C, F, and G). The latter decline was not observed in infected hSIOs grown in EXP medium. Culture supernatants across culture conditions contained lower levels of infectious virus compared with lysed hSIOs, implying that virus was primarily secreted apically (fig. S1, A to D). Despite this, viral RNA was detected readily in culture supernatants, correlating with the infectious virus levels within hSIOs (Fig. 2, E to H, and fig. S1, E to H).

ACE2 mRNA expression differed greatly between the four conditions. EXP-hSIOs expressed 300-fold less ACE2 mRNA compared with DIF-hSIOs when analyzed in bulk (fig. S2), BMP treatment induced 6.5-fold up-regulation of ACE2 mRNA compared with DIF treatment alone. Because this did not yield infection rate differences, the DIF-BMP condition was not analyzed further.

SARS-CoV-2 infects enterocyte lineage cells

To determine the target cell type, we then performed confocal analysis on hSIOs cultured in EXP, DIF, or EEC conditions. We stained for viral double-stranded RNA (dsRNA), viral nucleocapsid protein, KI67 to visualize proliferative cells, actin (using phalloidin) to visualize enterocyte brush borders, and DNA (DAPI) and cleaved caspase 3 to visualize apoptotic cells. Generally, comparable rates of viral infections were observed in the organoids growing in all three conditions. We typically noted staining for viral components (white) in rare, single cells at 24 hours. At 60 hours, the number of infected cells had substantially increased (Fig. 3A). Infected cells invariably displayed proliferative enterocyte progenitor phenotypes (EXP; Fig. 3B, top) or ApoA1+ enterocyte phenotypes (DIF; Fig. 3B, bottom). SARS-CoV also readily infected enterocyte lineage cells (fig. S3, A and B), as was shown previously (26, 27). Some infected enterocyte progenitors were in mitosis (fig. S3C). Whereas EEC organoids produced appreciable titers, we never observed infection of chromogranin-A+ EECs (fig. S3, D and E). We also did not observe infection of goblet cells across culture conditions. At 60 hours, apoptosis became prominent in both

Fig. 2. SARS-CoV and SARS-CoV-2 replicate in hSIOs. (A to D) Live virus titers can be observed by virus titrations on VeroE6 cells of lysed organoids at 2, 24, 48, and 60 h after infection with SARS-CoV (blue) and SARS-CoV-2 (red). Different medium compositions show similar results. (E to H) qRT-PCR analysis targeting the E gene of similar time points and medium compositions as (A) to (D). The dotted line indicates the lower limit of detection. Error bars indicate SEM. N = 3. *P < 0.05, **P < 0.01, ***P < 0.001.

Fig. 3. SARS-CoV-2 infects proliferating cells and enterocytes. (A) Immunofluorescent staining of SARS-CoV2-infected hSIOs. NP stains viral capsid. After 24 hours, single virus-infected cells are generally observed in organoids. These small infection clusters spread through the whole organoid after 60 hours. (B) SARS-CoV-2 infects both postmitotic enterocytes identified by Apolipoprotein A1 (APOA1) and dividing cells that are KI67-positive. Infected cells are visualized by dsRNA staining. Enterocytes are shown in differentiated organoids and proliferating cells in expanding organoids. Arrows point to APOA1-positive cells. (C) Immunofluorescent staining of ACE2 in hSIOs in expansion and differentiation condition. Scale bars, 50 μm.
SARS-CoV- and SARS-CoV-2–infected enterocytes (fig. S5). ACE2 protein was readily revealed as a bright and ubiquitous brush border marker in hSIOs in DIF medium (Fig. 3C). In hSIOs in EXP medium, ACE2 staining was much lower, yet still apical, in occasional cells in a subset of organoids that displayed a more mature morphology (Fig. 3C). In immature (cystic) organoids within the same cultures, the ACE2 signal was below the detection threshold. The percentages of infected organoids under EXP and DIF conditions are given in fig. S4. Figure S5 shows images and quantification of apoptotic cells upon infection.

Ultrastructural analysis of the viral life cycle in enterocytes

Unsupervised transmission electron microscopy (28) was performed on selected highly infected samples. Figure 4 shows two hSIOs selected from 42 hSIOs imaged at 60 hours after SARS-CoV-2 infection. These differ in the state of infection: Whereas the cellular organization within organoid 1 was still intact (Fig. 4A, entire organoid; B to D, intermediate magnification; E to K, high magnification), many disintegrated cells can be seen in organoid 2 (Fig. 4, bottom; L, entire organoid; M to O, intermediate magnification; P to R, high magnification). Viral particles of 80 to 20 nm occurred in the lumen of the organoid (Fig. 4I) at the basolateral (Fig. 4J) and apical side (Fig. 4K) of enterocytes. Double-membrane vesicles, which are the subcellular site of viral replication (29), are visualized in Fig. 4, E and P. The nuclei in both organoids differed from nuclei in mock-infected organoids by having a slightly rounder shape. Other differences were that the nuclear contour index (30) was 4.0 ± 0.5 versus 4.3 ± 0.5 for the control set, and there was more heterochromatin (Fig. 4N) and one or two dense nucleoli in the center (Fig. 4O).

RNA expression changes in infected enterocytes

We then performed mRNA-sequencing analysis to determine gene expression changes induced by SARS-CoV and SARS-CoV-2-infection of hSIOs cultured continuously in EXP medium and hSIOs cultured in DIF medium. Infection with SARS-CoV-2 elicited a broad signature of cytokines and interferon (IFN)–stimulated genes (ISGs) attributed to type I and III IFN responses (Fig. 5A and tables S1 and S2), as confirmed by gene ontology analysis (Fig. 5B). An overlapping list of genes appeared in SARS-CoV-2–infected DIF organoids (fig. S6 and table S3). mRNA-sequencing analysis confirmed differentiation of DIF organoids into multiple intestinal lineages, including ACE2 up-regulation (fig. S7). SARS-CoV also induced ISGs but to a much lower level (table S4). Figure 5C shows the regulation of SARS-CoV-2–induced genes in SARS-CoV–infected organoids. This induction was similar to infections with other viruses such as norovirus (31), rotavirus (32), and enteroviruses (33, 34). A recent study (33) described an antiviral signature induced in human cell lines after SARS-CoV-2 infection. Whereas the ISG response was broader in hSIOs, the induced gene sets were in close agreement between the two datasets (fig. S8).
One obvious similarity was the low expression of type I and III IFNs: We only noticed a small induction of the type I IFN IFNL1 in SARS-CoV-2–infected organoids. In SARS-CoV–infected organoids, we did not observe any type I or type III IFN induction. We confirmed these findings by enzyme-linked immunosorbent assay (ELISA) on the culture supernatant and qRT-PCR on extracted RNA of the hSIOs, which in addition to IFNL1, picked up low levels of type I IFN IFNβ1 in SARS-CoV-2– but not in SARS-CoV–infected organoids (fig. S9). The specific induction of IFP-10/CXCL10 and ISG15 by SARS-CoV-2 was also confirmed by ELISA and qRT-PCR, respectively (fig. S10).

As in a previous study (35), a few cytokine genes were induced by both viruses, albeit to modest levels. For a comparison with (35), see fig. S11. Altogether, these data indicate that SARS-CoV-2 induces a stronger IFN response than SARS-CoV in hSIOs.

Finally, the infection was repeated in a second experiment in the same ileal hSIO line and analyzed after 72 hours. Analysis involved viral titration (fig. S12), confocal imaging (fig. S13), and RNA sequencing (fig. S14). This experiment essentially confirmed the observations presented above. A limited, qualitative experiment applying confocal analysis demonstrated the infectability of two other lines available in the laboratory (one ileal and one duodenal) from independent donors (fig. S15).

This study shows that SARS-CoV and SARS-CoV-2 infect enterocyte lineage cells in an hSIO model. We observed similar infection rates of enterocyte precursors and enterocytes, whereas ACE2 expression increased ~1000-fold upon differentiation at the mRNA level (fig. S2). This suggests that low levels of ACE2 may be sufficient for viral entry.

SARS-CoV-2 is the third highly pathogenic coronavirus (after SARS-CoV and MERS-CoV) to jump to humans within <20 years, suggesting that new zoonotic coronavirus spillovers are likely to occur in the future. Despite this, limited information is available on coronavirus pathogenesis and transmission, in part because of the lack of in vitro cell models that accurately model host tissues. Very recently, it was shown that human induced pluripotent stem cells differentiated toward a kidney fate supported replication of SARS-CoV-2 (23). Our data suggest that human organoids represent faithful experimental models with which to study the biology of coronaviruses.

REFERENCES AND NOTES
18. J. Gu, B. Han, J. Wang, Gastroenterology 158, 1518–1519 (2020).

ACKNOWLEDGMENTS
We thank E. Eijenes and R. Rottier for providing human lung material. A. de Graaff and the Hubei Imaging Centre (HIC) for microscopy assistance. Single Cell Discoveries for RNA library preparation, and the Utrecht Sequencing Facility (subsidized by the University Medical Center Utrecht, Hubei Institute, Utrecht University and NWO project 984.034.039). Funding: This work was supported by ERC Advanced Grant 6703 and by Lung Foundation.

Competing interests: H.C. is an inventor on patents held by the Royal Netherlands Academy of Arts and Sciences that cover organoid technology (PCT/NL2008/050543, WO2009/022907; PCT/NL2010/00014017, WO2010/090513; PCT/IB2011/002167, WO2012/104076; PCT/IB2012/052950, WO2012/168930/PCT/EP2015/060815; WO2015/173425; PCT/EP2015/077990, WO2015/083613; PCT/EP2015/077988; WO2016/083612; PCT/EP2017/054797/WO2017/149025; PCT/EP2017/085101; WO2017/220666; PCT/EP2018/086716, and GB1302924.5). H.C.’s full disclosure is given at https://www.uu.nl/staff/JCDevers/. Data and materials availability: Organoid lines may be requested directly from the nonprofit HUB (https://huborganoids.nl/), which does not directly benefit from this research. RNA-sequencing data can be accessed through GEO GSE149312. Data were deposited to the Image Data Resource (https://idr.openmicroscopy.org) under accession number idr0083. This work is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/. This license does not apply to figures/photos/artwork or other content included in the article that is credited to a third party, obtain authorization from the rights holder before using such material.

SUPPLEMENTARY MATERIALS

science.sciencemag.org/content/369/6499/50/suppl/DC1

Materials and Methods
Figs. S1 to S14
Tables S1 to S4
References (36–44)

MDAR Reproducibility Checklist

View/request a protocol for this paper from Bio-protocol.

9 April 2020; accepted 29 April 2020
Published online 1 May 2020
10.1126/science.abc1669
Intestinal organoids as an infection model

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes an influenza-like disease with a respiratory transmission route; however, patients often present with gastrointestinal symptoms such as diarrhea, vomiting, and abdominal pain. Moreover, the virus has been detected in anal swabs, and cells in the inner-gut lining express the receptor that SARS-CoV-2 uses to gain entry to cells. Lamers et al. used human intestinal organoids, a "mini-gut" cultured in a dish, to demonstrate that SARS-CoV-2 readily replicates in an abundant cell type in the gut lining—the enterocyte—resulting in the production of large amounts of infective virus particles in the intestine. This work demonstrates that intestinal organoids can serve as a model to understand SARS-CoV-2 biology and infectivity in the gut.

Science, this issue p. 50