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Alcohol-derived DNA crosslinks are repaired
by two distinct mechanisms
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Acetaldehyde s a highly reactive, DNA-damaging metabolite that is produced upon
alcohol consumption’. Impaired detoxification of acetaldehyde is common in the
Asian population, and is associated with alcohol-related cancers'?. Cells are protected
against acetaldehyde-induced damage by DNA crosslink repair, which when impaired
causes Fanconi anaemia (FA), a disease resulting in failure to produce blood cellsand a
predisposition to cancer**. The combined inactivation of acetaldehyde detoxification
and the FA pathway induces mutation, accelerates malignancies and causes the rapid

attrition of blood stem cells®”. However, the nature of the DNA damage induced by
acetaldehyde and how thisis repaired remains a key question. Here we generate
acetaldehyde-induced DNA interstrand crosslinks and determine their repair
mechanism in Xenopus egg extracts. We find that two replication-coupled pathways
repair these lesions. The first is the FA pathway, which operates using excision—
analogous to the mechanism used to repair the interstrand crosslinks caused by the
chemotherapeutic agent cisplatin. However, the repair of acetaldehyde-induced
crosslinks results inincreased mutation frequency and an altered mutational
spectrum compared with the repair of cisplatin-induced crosslinks. The second repair
mechanismrequires replication fork convergence, but does not involve DNA
incisions—instead the acetaldehyde crosslink itself is broken. The Y-family DNA
polymerase REV1completes repair of the crosslink, culminating in a distinct
mutational spectrum. These results define the repair pathways of DNA interstrand
crosslinks caused by an endogenous and alcohol-derived metabolite, and identify an
excision-independent mechanism.

To study the repair of alcohol-induced DNA damage, we generated an
acetaldehyde-crosslinked DNA substrate. Acetaldehyde reacts with
guanine to create a crosslink precursor, N*-propanoguanine (PdG)®
(Fig.1a).Ina5-CpG sequence, PdG reacts with the N*-amine of guanine
ontheopposite strand to create anacetaldehyde interstrand crosslink
(AA-ICL); this crosslink exists in equilibrium between three states’. We
synthesized asite-specific native AA-ICL, denoted AAy,-ICL, withinan
oligonucleotide duplex (Extended Data Fig. 1a, b, d, Supplementary
Fig.1). A control reaction of PdG with deoxyinosine—which lacks an
N*-amine—did not crosslink, thus confirming the site-specificity of the
AAICL (Extended Data Fig. 1c, for gel source data see Supplementary
Fig. 2). AAy,-ICLs were stable at physiological pH and temperature,
with less than 10% reversal after 72 h at 37 °C (Extended Data Fig. 1e).
However, increased temperature (55 °C) or exposure to acidic condi-
tions reversed AAy,-ICLs, whichis consistent with Schiff-base hydroly-
sis and protonation of the deoxyguanine (dG) N*-amine'® (Extended
DataFig. 1e, f). DNA crosslink repair is conserved among vertebrates

and has been comprehensively studied in Xenopus egg extracts". To
examine therepair of AAy,-ICLs using this system, the oligonucleotide
was ligated into a plasmid (pICL-AAy,r). We also generated plasmids
containing a cisplatin interstrand crosslink (pICL-Pt) or PdG (pPdG),
and unmodified control plasmids (pCon) (Extended Data Fig. 1g, h).
Crosslinked vectors were stable in non-replicating Xenopus egg extracts
(Extended Data Fig. 1i).

Acetaldehyde crosslinks are repaired by two routes

Cisplatin ICLs are repaired by the replication-dependent FA pathway,
which involves unhooking of the ICL by endonucleases, translesion
synthesis (TLS) to bypass the adduct, and homologous recombina-
tion to resolve double-strand breaks™* (Fig. 1b, Extended Data
Fig. 2a). Replication of pICL-Pt in Xenopus egg extracts generates a
temporal pattern of repair intermediates, starting with converged forks
(figure 8 structure) and followed by low-mobility products thatinclude
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Fig.1|AA-ICLrepair by Fanconi-dependent and Fanconi-independent
mechanisms. a, Reaction scheme of the formation of AAy,-ICL. Two
acetaldehyde molecules react with deoxyguanine (dG) to generate PdG; this
reactswitha5-CpG guanine onthe oppositestrand. The AAy,-ICL existsinan
equilibriumbetween three forms, shownin the dashed box. The crosslink can
be chemically reduced with sodium cyanoborohydride to form ICL-AA, (solid
box). b, Replicationintermediates generated during ICL repair. ¢, Plasmids
werereplicated in Xenopus egg extracts,and thereaction products were
resolved by electrophoresis and visualized by autoradiography. Figure 8
structures (F8), later RRIs, opencircle (OC) and supercoiled (SC) products
(grey arrow) are indicated. Six independent experiments were performed.

d, Scheme for the Notl ICL repair assay. Wavy lines indicate the part of the

homologous recombinationintermediates (termed replication/repair
intermediates (RRI)) and resolved nicked and supercoiled products™
(Fig.1b, c). Because the structures of cisplatin crosslinks and acetalde-
hyde crosslinks differ substantially (Extended Data Fig. 1j), we asked
whether they were repaired by similar mechanisms. We replicated
pICL-AAy,r and pICL-Pt in Xenopus egg extracts, along with non-
crosslinked controls, and separated the products by electrophoresis
(Fig. 1c). Nicked and supercoiled products accumulated rapidly in
experiments with pCon and pPdG, indicating that there was little or
no impediment to replication. Experiments with pICL-AAy,; resulted
inRRIproducts similar to those seen with pICL-Pt; however, an earlier
accumulation of nicked and supercoiled products compared with pICL-
Pt suggested that some pICL-AAy,; Were repaired quickly.
Wedeveloped anassay, termed the ‘Notl assay’, to determine whether
the nicked and supercoiled products that we observed were indeed
AA\.-ICL repair products. Repair intermediates were digested using
Notl, labelled at the 3’ end and resolved by denaturing PAGE (Fig. 1d).
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strand thatis synthesized during repair. e, Plasmids were replicated in Xenopus
eggextracts, repairintermediates were isolated, digested by Notl, and
resolved by PAGE. Accumulation of the 44-nt product (white arrow) indicates
replication/repair. The asterisk marks a product thatis probably generated
fromend-joining activity insome extracts. Tenindependent experiments were
performed.f, Quantification of ICL repair based onthe gelsine, asdescribedin
the Supplementary Methods. Tenindependent experiments were performed.
g, Quantification of repairin mock-depleted or FANCD2-depleted

(AFANCD?2) extract,based on the gelin Extended DataFig.2e. Three
independent experiments were performed. h, Quantification of repairinthe
presenceorintheabsence of p97i,based onthe gelin Extended DataFig.3c.
Threeindependent experiments were performed.

Before DNA replication (¢ = 0), this resulted in fragments of 88 nucle-
otides (nt) (2 x 44 nt, crosslinked), 44 nt (low-level background of
non-crosslinked plasmids) and the unresolved vector backbone. For
pICL-AAyrand pICL-Pt, the proportion of the 44-nt fragmentincreased
over time, confirming ICL repair (Fig. 1e). We quantified the repair
products and found that they accumulated in greater quantities for
pICL-AAy,; compared with pICL-Pt (around 30% compared with around
20%, respectively, at 180 min) and, notably, pICL-AA,; displayed a
faster rate of repair (11% compared with 1% at 50 min) (Fig. 1f, Extended
Data Fig. 1k, I). These data suggest that a proportion of pICL-AAyar
was processed in a similar manner to pICL-Pt, but that pICL-AAy,; was
additionally repaired by a second, faster mechanism.

Because cisplatin ICLs are repaired by the FA pathway (Extended Data
Fig.2a), we examined whether the same pathway also repaired AAy,-
ICLs. In Xenopus egg extracts, both pICL-Pt and pICL-AAy,; stimulated
monoubiquitination of FANCD2—the activation step of the FA path-
way (Extended Data Fig. 2b). FANCD2 depletion causes a defectin the
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Fig.2|Thealternative AA-ICL repair route requires DNA replication and fork
convergence but not DNA excision. a, Quantification of repairin the presence
orinthe absence of geminin, based onthe gelin Extended DataFig.4a. Three
independent experiments were performed. b, Schematic representation of
AA-ICL lacOplasmids, showingreplicationintermediate and digestion sites.

¢, Plasmids were replicated in Xenopus egg extractsinthe presence orinthe
absence of LacR. Repairintermediates were digested and separatedona
sequencing gel. Grey arrows, -1 product; white arrows, -20 product. Two
independent experiments were performed. d, Scheme of the assays used to
detectbase excision (left) and nucleotide excision (right) pathwaysineandf,

unhooking of cisplatin ICLs, which results in the persistence of nascent
leading strands one nucleotide before the ICL* (-1 position, Extended
DataFig. 2a). To visualize this, we replicated plasmids in mock and
FANCD2-depleted extracts, digested theintermediates, and separated
the products on a sequencing gel (Extended Data Fig. 2¢c, d). For both
pICL-Pt and pICL-AA\r, FANCD2 depletion resulted in persisting -1
products (Extended Data Fig. 2d) and fewer extension products, indicat-
ing thatthe repair of both pICL-Pt and pICL-AAy,; involves the FA path-
way. We then questioned whether the second route of AAy,-ICL repair
required the FA pathway. In Notl assays, FANCD2-depleted extracts did
not support pICL-Pt repair, but pICL-AAy,; was still partially repaired
(Fig.1g, Extended DataFig. 2e-h). FA-dependent pICL-Pt repair requires
unloading of the CMG helicase by the p97 segragase”. Consistent with
published results, ap97 segregase inhibitor (referred to as p97i) halted
pICL-Pt repair (Extended Data Fig. 2i-m). By contrast, p97i blocked
only a proportion of AAy,-ICL repair, while the faster route of repair
was unaffected by this treatment (Extended DataFig. 2i-m). Together,
theseresults indicate that pICL-AAy,; repair proceeds through both an
FA-dependent and an FA-independent mechanism.

Chemical reduction of AAy-ICL by sodium cyanoborohydride
results in asingle, stable form of the acetaldehyde crosslink (AAggp-
ICL), as confirmed by high-performance liquid chromatography (HPLC)
analysis (not shown), resistance to hydrolysis, and matrix-assisted laser
desorption/ionization (MALDI) mass spectrometry (Fig.1a, Extended
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respectively. DNA fragments formed after Hincll/APE1 digestion (left box) or
Hinclldigestion (top and right box). e, Plasmids were replicated in Xenopusegg
extracts with p97i. Repair intermediates were digested and separated by
electrophoresis. Red arrows indicate the arms from APElincisions. The
quantification of these speciesis shownin Extended DataFig. Se. Four
independent experiments were performed. f, Plasmids were replicated in
Xenopusegg extracts with or without p97i. Repair intermediates were digested
and separated by electrophoresis. White arrows indicate the arms from
backboneincisions. The quantification of these speciesis shownin Extended
DataFig.5h.Sixindependent experiments were performed.

DataFigs. 1f, 3a). Replication of a plasmid containing an AAggy-ICL (pICL-
AAgep) in Xenopus egg extracts yielded RRIs that resembled those of
the FA pathway, and there was very little accumulation of nicked and
supercoiled products (Extended DataFig.3b). The Notl assay revealed
that repair of pICL-AAggp, was slower than that of pICL-AA,;, and it was
abolished by p97i (Fig.1h, Extended Data Fig. 3c-e). AAgp-ICLis there-
forerepaired exclusively by the FA pathway, indicating that the alterna-
tive repair route is restricted to the native AA-ICL.

Fork convergence isrequired for AA-ICL repair

To further characterize the second, faster mechanism of AAy,-ICL
repair, we first asked whether it was replication-dependent. The addi-
tion of recombinant geminin, whichinhibits DNA replication, blocked
allrepair of both pICL-Pt and pICL-AA,; (Fig. 2a, Extended Data Fig.4a-c).
Two replication forks must converge in order for pICL-Pt repair to ini-
tiate, promoting the ubiquitination and unloading of CMG helicase.
Although CMG unloadingis not required for the second route of AAy,
ICL repair, we questioned whether fork convergence was necessary.
We generated an AAy,~ICL plasmid containing alacO array that, when
boundby Lacrepressor (LacR), blocks the replication fork'®”. Because
the AAy,-ICL is non-symmetrical we generated two versions of this
plasmid, withtheICLineither orientation with respect to the rightward
fork (pICL-AA-lacO and pICL-AAreverse-lacO, respectively, Fig. 2b).
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Fig.3|AA-ICLrepairis mediated by REV1. a, Scheme for the formation of
productsdetected onthesequencing gelin c.b, Western blot analysing REV1in
the mock-depleted and the REV1-depleted (AREV1) extract,compared with a
titration of undepleted extract. The asterisk indicates abackground band. Nine
independent experiments were performed. ¢, Plasmids werereplicated in
mock-depleted or REV1-depleted extracts and repair intermediates were
digested and separated on asequencing gel alongside asequencingladder.

Wereplicated these plasmids and separated the digested repair inter-
mediates on asequencing gel (Fig. 2b, ¢). Inthe absence of LacR, both
leftward and rightward leading strands arrived at the —20 position,
approached the -1 position, and were extended past the lesion over
time. Inthe presence of LacR, arrival of the leftward fork was inhibited
(asindicated by the absence of -1and -20 products), showing that the
LacR block was functional. The rightward fork persisted at the -20
position, which suggests afailure in repair progression. Moreover, the
formation of extension products was impeded upon incubation with
LacR, and thiswas similar for both orientations of AAy-ICL (Fig. 2c) and
pICL-Pt-lacO (Extended Data Fig. 4d). This indicates that the unhook-
ing of AAy,-ICL requires replication fork convergence. Consistent
with this, in the presence of LacR, repair of pICL-AA-lacO and pICL-
AAreverse-lacOwas greatly reduced (Extended Data Fig. 4e-h). These
data show that the collision of one replication fork with an AAy,-ICL
isinsufficient for repair. Although it is plausible that FA-independent
AAyxr-ICLunhookingisaconsequence of two forks colliding, we think
that the mechanismis morelikely to be enzymatic, asis the case for all
known ICL repair pathways.

New repair route does not involve DNA excision

Whereas cisplatin ICLs are unhooked by nucleolytic incisions, pso-
ralen and abasic site ICLs are preferentially cleaved at a glycosidic
bond by NEIL3 glycosylase'*'>'®, To investigate whether NEIL3 has a
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White arrows, 0 products; grey arrows, -1 products; openarrows, 0/-1
products. Threeindependent experiments were performed.d, Scheme of the
primer extension assay. Late repair products were digested and used as
template for primer extension from labelled TOP or BOT (bottom) primers.

e, Primer extension products were separated by denaturing PAGE. Four
independent experiments were performed.

rolein AAy-ICL repair, we complemented NEIL3-depleted extract with
recombinant wild-type or catalytically inactive NEIL3 (Extended Data
Fig. 5a). Unlike those of the psoralen-ICL plasmid (pICL-Ps0)*, pICL-
AAyrrepairintermediates were unaffected by the lack of NEIL3 activ-
ity (Extended Data Fig. 5b). Furthermore, human HAP1 cells in which
NEIL3 was knocked out (ANEIL3) were not hypersensitive to acetalde-
hyde, and NEIL3 deficiency did not further sensitize a FANCL-deficient
strain (Extended DataFig. 5c, d). Itis plausible that another glycosylase
unhooks the AA,-ICL, so we examined the accumulation of abasic
sites—the product of glycosylase cleavage. Recombinant APE1 cleaves
abasicsitesresultingin the generation of arm fragments upon lineari-
zation of replicationintermediates. Such arms were generated during
pICL-Pso repair, but they did not form during AAy-ICLrepair® (route 1,
Fig.2d, e, Extended Data Fig. Se-g). This indicates that no abasic site
is formed and that AAy,-ICL repair does not cut the N-glycosyl bond.

Next, we tested whether nucleotide excision products are formed
whenan AA,,-ICLis processed in Xenopus egg extract. Backbone inci-
sions should generate arm fragments when repair intermediates are
linearized, as shown for repair of pICL-Pt (route 2, Fig. 2d, f). These
arms were also formed during pICL-AAy,; repair, which is consistent
with FA pathway activity. Notably, when p97i was added—blocking
the FA repair route—no incision products formed, indicating that the
second ICL-AAy,; repair pathway does not create backbone incisions
(Fig. 2f, Extended Data Fig. 5h-j). To further confirm this, we examined
the formation of adducts. In the FA pathway, incisions of one strand
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resultin an unhooked adduct on the other (Extended Data Fig. 5k).
Therefore, late repair intermediates of pICL-Pt contain adducts on the
top or thebottom strand, because either canbe incised. Repair of pICL-
AAyralso generated adducts, but they were largely restricted to the
top stand—itis possible thatadducts onthe bottomsstrand either were
presentinamounts below the detection limit or were processed in the
extract (Extended Data Fig. 5k, right). However, after the addition of
p97ino adducts were detected, indicating that they depend on the FA
pathway. In conclusion, the second, faster repair route for AAy,-ICLs
doesnotinvolve aDNA excision step. This route must therefore operate
by cutting within the crosslink itself.

Role of REV1in acetaldehyde crosslink repair

Sucharepair pathway would create anadduct on one or both strands,
and should require TLS for nucleotide insertion opposite the adduct
and extension beyond it. The TLS factor REV1 s critical for pICL-Pt
repair, and so we tested whether it also operates in AAy,-ICL repair.
Plasmids were replicated in mock and in REV1-depleted extracts, and
digested intermediates were analysed on asequencing gel (Fig.3a-c).
For pICL-Pt, REV1 depletion led to the accumulation of insertion
products (0 products) and reduced amounts of extension products'
(Fig.3c). By contrast, for pICL-AAy,;, REV1depletionled to the accumu-
lation of -1 products, which is indicative of REVI-mediated insertion
oppositetheadduct (Fig. 3c, Extended Data Fig. 6a). Notably, this was
also the case for pICL-AAg, repair, indicating that there are different
TLS mechanisms within the FA pathway. Furthermore, REV1depletion
caused more extensive leading-strand stalling at the rightward than at
the leftward fork for AA-ICLy,; (Fig. 3¢). This suggests that unhooking by
the second pathway may create an adduct on the bottom strand, which
is bypassed by REVL. To test this, we inhibited the FA pathway using
p97i and examined lesion bypass in the second pathway of AAy,-ICL
repair. As expected, repair of pICL-Pt in the presence of p97i resulted
in persistent stalling at the -20 to —40 position, due to defective CMG
unloading® (Extended Data Fig. 6a). Similar stalled products were
observed for AAy,-ICL repair, indicating that the FA pathway repair was
inhibited (Extended Data Fig. 6a). However, we observed an accumula-
tionof rightward -1 products, indicating that REV1depletion prevents
lesionbypass by the second pathway. By contrast, the leftward fork was
extended without hindrance as no stalled products accumulated and
aconsiderableamount of extension products were formed (Extended
DataFig. 6a). Depletion of REV7 (the regulatory subunit of Pol ¢, which

Nucleotide Nucleotide

15-bpregion flanking the lesions. Strand specificity is lost because sample
preparationinvolves PCR amplification; as such, only the top sequenceis
indicated below the graphs. Mutation frequency is corrected for mutations
foundin pCon. Two independent experiments were performed.

isencoded by FANCV, also known as MAD2L2), had avery similar effect
on AA-ICL repair to that of REV1depletion (Extended Data Fig. 6d). It
also caused an insertion defect in the FA pathway during AAgg,-ICL
repair, as well as persistent stalling—especially of the rightward fork—in
AAy-ICLrepair. As Pol is primarily known for its extension activity®,
this defect could be due to co-depletion of the REV1-Pol { complex®
(Extended Data Fig. 6b, c). In summary, the second pathway of AAyr-
ICL repair generates an adduct on the bottom strand that requires
REV1and Pol {for bypass. The top strand, however, is readily extended
without these TLS factors.

To further examine adduct formation, we isolated late repair prod-
ucts and subjected them to primer extension reactions at the ICL region
using a high-fidelity polymerase (Fig. 3d). As expected, pICL-Pt repair
products—which contain adducts on either parental strand—induced
the formation of stalled extension products on both strands (Fig. 3e).
For AA\-ICL, stalling also occurred on both strands but was more
extensive on the bottom strand. Moreover, treatment with p97i—that
is, blocking the FA pathway—almost entirely eliminated stalling on
the top strand (Fig. 3e). These results suggest that the second repair
pathway regenerates dG onthetop strand, but createsadGadducton
the bottom strand.

Acetaldehyde crosslink repair is mutagenic

Finally, we examined the fidelity of AAy,-ICL repair. To achieve this, we
replicated plasmids in Xenopus egg extracts, recovered late repair prod-
ucts, and subjected them to high-throughput sequencing (Extended
Data Table 1, Fig. 4a, b). Consistent with a previous report'®, we con-
firmed that pICL-Pt is repaired with a low error rate—less than 2% of
the products carried amutation at sites corresponding to crosslinked
guanines (Fig. 4b, Extended Data Fig. 7a). The most common substitu-
tion was G>T transversion. Repaired pICL-AAy,; products show two
differences: first,around 10% carry mutations at the crosslinked sites;
and second, the mutational spectrum differs, with C>G, C>A, G>C and
G>T transversions all observed (Fig. 4b, Extended Data Fig. 7a-c). The
frequency of consecutive mutations (at least 2 nt) around the ICL was
around 100-fold lower than that of single mutations, in agreement with
areportsuggesting that ICLs do not drive tandem mutations caused by
acetaldehyde?. AAy,-ICL repair products generated in the presence of
p97i—blocking the FA route—lost most of their mutations at position
G8. Thisindicates that FA-dependent bypass of the top strand adduct
isthe predominant source of mutationat G8. Under these conditions,
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mutations are almost entirely restricted to C7 and the mutational spec-
trum is almost identical to that obtained from pPdG repair (Fig. 4b,
Extended Data Fig. 7b). These data strongly suggest that the second
route of AAyxr-ICL repair reverses this crosslink to yield amonoadduct
thatis similar oridentical to the original propanoguanine. Consistent
with this model, we found that the insertion step of TLS past a PAG
adduct is mediated by REV1 (Extended Data Fig. 6e).

Conclusion

Insummary, we have determined the repair mechanisms of animpor-
tant class of endogenous DNA crosslinks—those caused by acetal-
dehyde. The central role of the FA repair pathway in removing such
crosslinks agrees with the strong genetic evidence underpinning two-
tier protection against this aldehyde®®”. However, we also uncovered
anew pathway of DNA crosslink repair that operates without excision
repair. This mechanism requires replication fork convergence and is
uniqueinthatit unhooks the ICL by cutting within the crosslink itself.
Repair of AAy,~ICLs by both pathways s error-prone and requires the
TLS polymerases REV1 and Pol ¢. However, this new repair modality
has an obvious advantage in that it avoids the creation of DNA strand
breaks or abasicsites, both of which can promote large-scale genome
instability.
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Extended DataFig.1|Acetaldehyde ICLs are stable and are repairedin
Xenopus egg extracts. a, Scheme for the synthesis of the precursor, 4-(R)-
aminopentane-1,2-diol. b, Site-specific synthesis of aPdG adductina DNA
oligonucleotide. ¢, Denaturing PAGE showing crosslink formation between dG
and PdG, but not between dG and inosine (ino), which lacks an N> amine. Two
independent experiments were performed. d, Confirmation of AA-ICL
formation by MALDIMS. The peak at m/z12,370.2 represents theimine or
pyrimidopurinone form. Two further peaks at m/z5,979.41and 6,409.74 equate
tomasses for the two parent oligonucleotides, consistent with the mass of the
carbinolamine form after dissociation back to PdG and dG under the
desorption/ionization conditions. Threeindependent experiments were
performed.e, Stability of AAy,-ICL asafunction of temperature and time, as
determined by radiolabelling ([a-**P]dCTP) and resolution by denaturing PAGE.
Errorbarsrepresents.e.m.fromthreeindependent experiments.f, AAy,-ICLis
susceptible to hydrolysisinaqueousacid, whereas AAg.,-ICL is stable.Pre-
purification crosslink reactions wereincubated with or without formic acid
and products were resolved by denaturing PAGE. Three independent
experiments were performed. g, Scheme depicting the type and position of the
DNA lesions used in this study. Duplex DNA with or without the indicated
lesions was annealed into abackbone vector to generate circular plasmids with
orwithoutdamage. h, Todetermine the percentage of crosslinks, the ICL-

22. Huang, H., Zhu, L., Reid, B. R., Drobny, G. P. & Hopkins, P. B. Solution structure of a
cisplatin-induced DNA interstrand cross-link. Science 270, 1842-1845 (1995).

23. Cho, Y. J.,, Kozekov, I. D., Harris, T. M., Rizzo, C. J. & Stone, M. P. Stereochemistry modulates
the stability of reduced interstrand cross-links arising from R- and S-a-CH,-y-OH-1,N*-
propano-2'-deoxyguanosine in the 5'-CpG-3' DNA sequence. Biochemistry 46, 2608-2621
(2007).

containing plasmids were digested with Notl, labelled at the 3-end by end
filling with [a-**P]dCTP, and separated by denaturing PAGE. Crosslinked DNA
(88 nt) shows slower mobility compared with non-crosslinked DNA (44 nt). The
percentage of crosslinks was calculated by comparing the 88-nt product with
the44-ntproducts. Twoindependent experiments were performed. i, AAya-
ICLand Pt-ICL are stablein Xenopuseggextracts. Plasmids wereincubatedina
high-speed supernatant (HSS) extract. DNA was extracted and analysed as
describedinh. Threeindependent experiments were performed.j, Solution
structures ofacisplatinICLand areduced form of anacetaldehyde ICL (PDB:
1DDP??and 2HMD?, cartoon representation generated in PyMOL).k, The
indicated plasmids were replicated in Xenopus egg extracts and repair
intermediates were digested with Notl, labelled at the 3"-end, and resolved by
denaturing PAGE. Theincreaseinintensity of the 44-nt band over time
indicates ongoing replication and repair. A higher mobility band, probably
generated fromend-joining activity in some extracts, isindicated by an
asterisk. This gelis theindependent experimental duplicate of thatin Fig.1e.l,
Quantification of repair based on the intensity of the 44-nt product on the gel
ink, asdescribedinthe Supplementary Methods. Thisgraphisthe
independent experimental duplicate of thatin Fig. 1f. Additional replicates of
these experiments are presented in Fig. 2a, Extended Data Figs. 2k-m, 4b.
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Extended DataFig.2|Acetaldehyde ICLs are repaired by Fanconi-dependent
and Fanconi-independent mechanisms. a, Model for ICL repair by the FA
pathway. Upon convergence of two replication forks at the crosslink, the CMG
helicaseis unloaded from the DNA to enable the approach of one replication
fork tothe -1position. Ubiquitylation of FANCD2 promotes the recruitment of
the XPF-ERCC1-SLX4 (XES) complex to the ICL, which enables nucleolytic
incisions that unhook the crosslink. This step could be preceded by fork
reversal of one of the stalled replication forks®. Incisions generate abroken
strand and astrand with anadduct; thelatteris bypassed by TLS whereas the
brokenstrand is repaired by homologous recombination. Inmammalian cells,
ithasbeenshown thatasingle fork can pass over the ICL without unhooking®;
this ‘traverse’ givesrisetoastructure thatresembles the one generated after
fork convergence and CMG unloading and could follow the same steps
subsequently. b, Theindicated plasmids were replicated in Xenopusegg
extracts andreaction samples were analysed by western blot with FANCD2
antibody. Twoindependent experiments were performed. ¢, Western blot of
FANCD2, showingatitration of Xenopus egg extracts compared to mock and
FANCD2-depleted extracts. Twoindependent experiments were performed.
d, Theindicated plasmids were replicated in mock orin FANCD2-depleted
extractsinthe presence of [a-*>P]dCTP. Repair products were digested by AfllII,
separated onasequencing gel alongside aladder derived from extension
primerS, and visualized by autoradiography. The white arrow denotes the -1
product, whichis2ntlargerin pICL-Pt owingto the position of the ICL. Three
independent experiments were performed. e, Theindicated plasmids were

24. Amunugama, R. et al. Replication fork reversal during DNA interstrand crosslink repair
requires CMG unloading. Cell Rep. 23, 3419-3428 (2018).

25. Huang, J. et al. The DNA translocase FANCM/MHF promotes replication traverse of DNA
interstrand crosslinks. Mol. Cell 52, 434-446 (2013).

replicated inmock or FANCD2-depleted extracts and repair intermediates were
digested with Notl, labelled at the 3-end, and resolved by denaturing PAGE.
Quantification of repair based on the intensity of the 44-nt productis shownin
Fig.1g.f, Theindependent experimental duplicate of Fig.1g.g, The
independent experimental triplicate of Fig. 1g, but using only pICL-AA ;.

h, Plasmid pICL-AA\,; was replicated in FANCD2-depleted extract, or FANCD2-
depleted extract supplemented witharecombinant FANCI-FANCD2 complex
(ID). Reaction samples were resolved by native agarose gel and visualized by
autoradiography.RRIs, opencircle (OC) and supercoiled (SC) products are
indicated. The stalled repair product (grey arrow) isindicated. Two
independent experiments were performed. i, Theindicated plasmids were
replicated in Xenopus egg extractsinthe presence orinthe absence of p97iand
theintermediates were resolved by native agarose gel electrophoresis. The
stalled repair products (grey arrow) are indicated. Sevenindependent
experiments were performed. j, Theindicated plasmids werereplicatedin
Xenopus eggextractsinthe presence or in the absence of p97i, and repair
intermediates were digested with Notl, labelled at the 3’-end, and resolved by
denaturing PAGE. Theincreaseinintensity of the 44-nt band (white arrow) over
timeindicates ongoingreplication and repair. A higher mobility band,
probably generated from end-joining activity insome extracts, isindicated
with anasterisk. k, Quantification of repair based on the intensity of the 44-nt
productonthegelshowninj, asindicatedin the Supplementary Methods.

1, Quantified independent experimental duplicate of j. m, Quantified
independent experimental triplicate of j.
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Extended DataFig.5|The alternative route of AA-ICL repair does notinvolve
DNA excision. a, Western blot showingatitration of Xenopus egg extracts
compared tothe NEIL3-depleted (ANEIL3) extract and NEIL3-depleted extract
supplemented with recombinant wild-type NEIL3 (WT) or catalytically inactive
NEIL3 (MUT). Three independent experiments were performed.b, The
indicated plasmids were replicated in NEIL3-depleted extract containing
[a-*>P]dCTP, supplemented with wild-type (WT) or catalytically inactive (MUT)
NEIL3. Replicationintermediates were resolved by native agarose gel
electrophoresis and visualized by autoradiography. Threeindependent
experiments were performed. ¢, Clonogenic survival of wild-type, NEIL3-,
FANCL- or NEIL3/FANCL-deficient human HAP1 cells after a2-h exposure to
acetaldehyde. Threeindependent experiments were performed. Dataare
meanzts.e.m.d, The median lethal dose (LDs,) of acetaldehyde for the survival
of wild-type and deficient HAP1 cells was calculated by regression analysis of
thecurves presentedinc.Dataare mean+s.e.m.Threeindependent
experiments were performed. e, Quantification of the arm fragments resulting
from APE1treatment (AP sites) from the gelin Fig. 2e.f, Quantification of the

APElarmsasine, fromanindependent duplicate experiment without the
addition of p97i.g, Quantification of the APElarmsasine, froman
independent triplicate experiment without the addition of p97i. Asa positive
control we used a plasmid containing an abasic-site-induced interstrand
crosslink (pICL-AP) thatis also repaired via the glycosylase NEIL3.

h, Quantification of the Hincllarm fragments from the gel in Fig. 2f.i,
Quantification of the Hincllarms asinh, fromanindependent duplicate
experiment. j, Quantification of the Hincllarms asin h, fromanindependent
triplicate experiment. k, Schematic representation of the formation of DNA
adducts by unhookingincisions during ICL repair (left). These adducts are not
removed during ICL repair in Xenopus egg extracts* and can therefore be
visualized. Plasmids were replicated in Xenopus egg extractsin the presence or
intheabsence of p97i. Late reaction samples were digested with Aflllland Asel
andseparated onasequencing gel. Adducts oneither thetop or the bottom
strand (white arrowheads) were detected by strand-specific Southernblotting
(right). Threeindependent experiments were performed.
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Extended DataFig. 6 | See next page for caption.




Extended DataFig. 6| Bothroutes of AA-ICL repair are mediated by REV1
andREV7.a, Theindicated plasmids were replicated inmock or REV1-depleted
extracts, inthe presence orinthe absence of p97i.Reactionintermediates were
digested by either Afllll or Aflllland BamHI, separated on asequencing gel
alongside aladder derived from extension of primerS, and visualized by
autoradiography. White arrows denote O products, dark grey arrows indicate
-1products, and light grey arrows indicate O/-1products (not separated). Two
independent experiments were performed. b, Westernblot detection of REV7
inREV1-or mock-depleted Xenopus egg extracts compared to atitration of
undepleted extract. Two independent experiments were performed.

¢, Westernblotdetection of REV7 and REV1in REV7-depleted (AREV7) or mock-
depleted Xenopusegg extracts compared to atitration of undepleted extract.

Twoindependentexperiments were performed. d, The indicated plasmids
were replicated inmock- or REV7-depleted extracts and reactionintermediates
were digested by either Afllll or Aflllland BamHI, separated on asequencing
geland visualized by autoradiography. Grey arrows indicate -1 products. Two
independent experiments were performed. e, Indicated plasmids were
replicated in mock- or REV1-depleted extracts and reactionintermediates were
digested by Aflllland BamHI, separated on asequencing gel alongside aladder
derived from extension of primer S, and visualized by autoradiography. The
asteriskindicatesa121-ntbackground fragment caused by asecond BamHI
restrictionsitein the leftward fork. Twoindependent experiments were
performed.
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Extended DataFig.7 | Mutagenic outcome of acetaldehyde crosslink repair.
a, Frequency of nucleotide misincorporationina15-bp region flanking the
lesions presentin theindicated plasmids. The mutation frequencies for the
same plasmid that has notbeenreplicated in Xenopus egg extracts (NR) and for
the control vector (pCon) are plotted together. Strand specificity is lost
because the sample preparationinvolves PCR amplification; assuch, only the
topsequenceisindicated below the graphs. See Fig. 4.b, Distributionand

frequency of nucleotide misincorporationsin al5-bp region flanking the
lesions presentin theindicated plasmids. Independent duplicate sequencing
experiment of Fig. 4b. The heights of the bars represent the mutation
frequency minus the baseline mutations found in pCon. ¢, Frequency of
nucleotide misincorporationsinal5-bpregion flanking the lesions presentin
theindicated plasmids (data from the same sequencing experiment asinb).
The mutation frequency for pConis also plotted.



Extended Data Table 1| Sequence and read numbers for high-throughput sequencing experiments

a

Amplified amplicon
Experiment 1 AGAACCAATGCATGCGGCCGCGAAGACAGCCCTCTTCCGCTCTT
CTTTCGTGCGCGGCCGCGATCCGCTGCATTAATGAAT
Experiment 2 CTCGAGCGGAAGTGCAGAACCAATGCATGCGGCCGCGAAGACA
GCCCTCTTCCGCTCTTCTTTCGTGCGCG GCCGCGATCCGCTGCA
TTAATGAATCGGCCAACGC GCGGGGAGAGGCGGTTTGCGTATT
b
Sample Total Pair-matched Reads with Reads with Perfect
reads reads indels substitutions match reads
pICL-Pt 8886804 7928127 2649263 249138 5029726
pICL-AA 14852974 13541980 2396503 1458825 9686652
pPdG 10122605 9331173 69747 565567 8695859
pCon 10449164 9644715 6466 240998 9397251
pICL-AA + p97i 32164058 29539112 491796 1600097 27447219
pICL-Pt-NR 2571879 2385136 102534 58870 2223732
pICL-AA-NR 7316392 6729595 170216 200250 6359129
pPdG-NR 8857493 8137089 52886 270870 7813333
c
Sample Total Pair-matched Reads with Reads with Perfect
reads reads indels substitutions match reads
pICL-AA 13877258 4566626 388256 538491 3639879
pPdG 15334790 6649408 32855 585454 6031099
pCon 15403988 6714207 7772 171840 6534595
pICL-AA + p97i 15455175 5803423 75922 284148 5443353

a, Amplicon sequence for sequencing experiments 1and 2. b, Total and specific read numbers for sequencing experiment 1 (see Fig. 4). ¢, Total and specific read numbers for sequencing

experiment 2 (see Extended Data Fig. 7).
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Data exclusions | Data exclusion during sequencing data analysis is described in the method section

Replication Cellular studies were performed with a minimum of three independent experiments. All experiments using Xenopus egg extracts were

reproducible and repeated at least twice. For all experiments that show a quantification graph, triplicates are presented in the extended data
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Randomization | Randomization is not relevant to this study. For experiments in Xenopus egg extracts, we subjected common extracts to the treatments
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Antibodies used Antibodies against xXIFANCD2, xIREV1, xIREV7 were previously described (12,14,19). The xINEIL3 antibody was raised against a C-
terminal peptide of Xenopus laevis NEIL3 and affinity purified (New England peptide).
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Validation The xIFANCD2, xIREV1, xIREV7 antibodies were previously validated in Xenopus egg extract (12,14,19). The Neil3 antibody was
validated by western blot, immunodepletion, and rescue in Xenopus egg extract.

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) WT and NEIL3 deficient HAP1 cells were obtained directly from Horizon Discovery.
Authentication The parental cell line was not authenticated. Gene disruptions were confirmed by PCR and/or western blotting
Mycoplasma contamination All cell lines were confirmed mycoplasma negative.

Commonly misidentified lines  No misidentified cell line was used in this study.
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Laboratory animals Female Xenopus laevis frogs used in this study were older than 2 years and obtained from Nasco
Wild animals The study did not involve wild animals.

Field-collected samples This study did not involve field-collected samples.
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