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SUMMARY

The tumor suppressor BRCA2 is essential for homol-
ogous recombination (HR), replication fork stability,
and DNA interstrand crosslink repair in vertebrates.
We identify HSF2BP, a protein previously described
as testis specific and not characterized functionally,
as an interactor of BRCA2 in mouse embryonic
stem cells, where the 2 proteins form a constitutive
complex. HSF2BP is transcribed in all cultured hu-
man cancer cell lines tested and elevated in some tu-
mor samples. Inactivation of the mouse Hsf2bp gene
results in male infertility due to a severe HR defect
during spermatogenesis. The BRCA2-HSF2BP inter-
action is highly evolutionarily conserved andmaps to
armadillo repeats in HSF2BP and a 68-amino acid
region between the BRC repeats and the DNA bind-
ing domain of human BRCA2 (Gly2270-Thr2337)
encoded by exons 12 and 13. This region of BRCA2
does not harbor known cancer-associated missense
mutations and may be involved in the reproduc-
tive rather than the tumor-suppressing function of
BRCA2.

INTRODUCTION

Breast cancer-associated protein 2 (BRCA2) has been the sub-

ject of intense research because of its role as a tumor suppressor

and the mediator of homologous recombination (HR) in verte-

brates, yet many important questions remain open (reviewed in

Prakash et al., 2015; Roy et al., 2011; Zelensky et al., 2014). A

major breakthrough in the understanding of the molecular

function of BRCA2 came from the discovery that it interacts—

primarily via a set of short BRC repeats—with the eukaryotic

strand exchange protein RAD51 (Chen et al., 1998; Pellegrini
3790 Cell Reports 27, 3790–3798, June 25, 2019 ª 2019 The Author(
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et al., 2002; Sharan et al., 1997; Wong et al., 1997). This con-

nected BRCA2 to what is now believed to be its main role: facil-

itating proper RAD51 function in various HR contexts. Studying

BRCA2 interactions with other proteins, known (Martinez et al.,

2015) and yet undiscovered, will help address some of the unre-

solved questions.

BRCA2 appears to be essential for all forms of RAD51-medi-

ated HR in both mitotic and meiotic cells. In somatic cells, HR

is commonly described as an error-free pathway for the repair

of DNA double-strand breaks (DSBs), but this type of damage

can also be handled by various forms of non-homologous end

joining. DNA replication, however, creates problematic DNA

structures, such as one-ended DSBs from replication fork

collapse or collisions between the fork and DNA interstrand

crosslink (ICL), which can only be resolved by HR. The chemical

complexity of ICLs, which compromise both DNA strands, ne-

cessitates a sophisticated set of enzymes and signaling proteins

(22 identified to date, including BRCA2 and RAD51) referred to

as the Fanconi anemia (FA) pathway (Inano et al., 2017; Kotte-

mann and Smogorzewska, 2013).

In eukaryotes, HR is also required for the repair of meiotic

DSBs formed by a nuclease complex containing SPO11 and

TOPOVIBL (Robert et al., 2016). Formation and repair of these

DSBs is required for homologous chromosome pairing and for

the formation of crossovers, which, together with sister chro-

matid cohesion, ensure the correct separation of the homologs

during the first division of meiosis (Inagaki et al., 2010; Zickler

and Kleckner, 2015). Many events in meiotic HR are similar to

what happens during DSB repair in somatic cells, and proteins

that are essential formitotic HR are also required inmeiosis (Kuz-

netsov et al., 2007; Sharan et al., 2004; Simhadri et al., 2014; Xu

et al., 2003). The meiotic role of BRCA2 is conserved in inverte-

brate, plant, and fungal homologs, despite differences in domain

organization and low overall protein sequence conservation

(Klovstad et al., 2008; Kojic et al., 2002; Seeliger et al., 2012;

Siaud et al., 2004). FA pathway proteins also play a role inmeiotic

DSB repair, andmutations in FA pathway genes in bothmice and
s).
creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Identification of HSF2BP as a BRCA2-Interacting Protein

(A) SILAC ratios frommass spectrometric analysis of anti-GFP co-immunoprecipitates (coIPs) from Brca2GFP/GFP mESCs (exposed to 42�C and control). Known

members of the BRCA complex are indicated.

(B) Mass spectrometry of GFP coIPs from Hsf2bpGFP/+ and Rad51ap1GFP/GFP cells. Combined peptide intensities are plotted; missing values were imputed

(dotted lines; see Method Details).

(legend continued on next page)
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humans lead to meiotic defects (Alavattam et al., 2016). Despite

the fact that many components of HR in somatic and meiotic

cells are shared, certain steps are specifically adapted inmeiosis

to avoid usage of the sister chromatid as the repair template and/

or stimulate the incorporation of one of the chromatids of the ho-

mologous chromosomes into the HR process (interhomolog

bias). This meiotic specialization of HR is achieved at least in

part through the actions of specialized meiotic paralogs of

DNA metabolism proteins. For example, meiocytes express

DMC1, a meiosis-specific paralog of RAD51. It is essential for

meiotic HR and interacts with the conserved PhePP motif and

the BRC repeats of BRCA2 (Martinez et al., 2016; Thorslund

et al., 2007). Why both of these strand exchange proteins are

required in meiosis, how BRCA2 chaperones them to ensure

their proper function, and what other domains of BRCA2 may

be contributing to meiotic HR are the subjects of ongoing inves-

tigation (Abreu et al., 2018).

In this report, we describe a direct and highly evolutionarily

conserved interaction of BRCA2 with HSF2BP, a protein previ-

ously only identified in testis and not characterized functionally.

We generated Hsf2bp knockout mice and found a defect in

meiotic HR leading to male infertility.

RESULTS

HSF2BP Is a Member of the BRCA Complex in mESCs
We previously described efficient immunoprecipitation of

BRCA2-GFP andmost of the known BRCA2-interacting proteins

from Brca2GFP/GFP knockin mouse embryonic stem cells

(mESCs) (Reuter et al., 2014), and the phenomenon of BRCA2

degradation induced by mild hyperthermia (Krawczyk et al.,

2011). With these at hand, we performed quantitative stable

isotope labeling using amino acids in cell culture (SILAC)-based

mass spectrometry experiments and identified HSF2BP as one

of the proteins whose abundance in the BRCA2-GFP immuno-

precipitate co-varies with that of BRCA2 upon hyperthermia

treatment (Figure 1A). HSF2BP was previously described as a

testis-specific, heat shock factor 2 (HSF2)-binding protein

(Yoshima et al., 1998), and its association with BRCA2 or expres-

sion in tissues other than testis has not yet been reported. A

reciprocal mass spectrometry experiment—GFP immunopre-

cipitation from Hsf2bpGFP/+ knockin mESCs—confirmed the

interaction (Figure 1B). We used immunoprecipitation from

Rad51ap1GFP/GFP knockin cells (Figure 1B, x axis) as a control

in these experiments to ensure that the interactions were not

due to non-specific binding to nuclear GFP-tagged low-abun-

dance DNA repair proteins (Modesti et al., 2007). The untagged
(C) GFP coIPs from indicated knockin mESCs analyzed by immunoblotting with

(D) SILAC mass spectrometry of PALB2-GFP and RAD51AP1-GFP coIP, plotted

(E) Anti-53BP1 immunofluorescencemicroscopy ofHsf2bpGFP/GFP and control cel

represents 5 mm.

(F) Anti-geminin immunofluorescence microscopy of Hsf2bpGFP/GFP cells treated

MMC-treated cells, and HSF2BP foci quantification are shown (n = 2, lines indic

(G) Duration of mobile and immobile states for single HSF2BP-GFP and BRC

illumination microscopy (n = 3).

(H) GFP coIP from HEK293T cells producing GPF-HSF2BP (human or mouse) an

(I and J) CoIP of endogenous X. laevis BRCA2 and purified recombinant human

recombinant HSF2BP added.
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endogenous HSF2BP co-precipitated with HSF2BP-GFP pro-

duced from the knockin allele, which is indicative of oligomeriza-

tion either between HSF2PB species or via the BRCA complex

(Figure 1C). Furthermore, HSF2BP co-precipitated with PALB2,

a localizer of BRCA2 (Xia et al., 2006) from Palb2GFP/GFP knockin

mESCs (Figure 1D).

HSF2BP-GFP in Hsf2bpGFP/+ cells was predominantly nuclear

and localized to spontaneous and DNA damage-induced foci

that are readily detectable without pre-extraction (Figure 1E).

The foci colocalized with the DSB marker 53BP1 (78% partial

or complete colocalization in the nuclei containing both HSF2BP

and 53BP1 foci; SD 23%, n = 50) and were observed in the

subpopulation of cells that was positive for the S-G2-M marker

geminin (Figure 1F), as expected given that HR activity, and spe-

cifically BRCA2 expression in mESCs (Reuter et al., 2014), is

confined to S and G2 phases of the cell cycle. We previously

found, using oblique illumination microscopy and single-particle

tracking, that endogenous GFP-tagged BRCA2 diffuses in oligo-

meric clusters that become immobilized upon the induction of

DNA damage (Reuter et al., 2014). The same technique was

applied tomonitor and quantify HSF2BP-GFP diffusion in the nu-

cleus, which revealed heterogeneous behavior very similar to

that of BRCA2-GFP, including ionizing radiation-induced immo-

bilization (Figure 1G). Taken together, the immunoprecipitation

mass spectrometry and microscopy data suggest that HSF2BP

and BRCA2 exist in a physiological complex in mESCs, which

may be constitutive.

The interaction between HSF2BP and BRCA2 is evolutionarily

conserved, as not only their human orthologs (Figure 1H) but also

endogenous BRCA2 from the frog (Xenopus laevis) interacted

efficiently with both recombinant X. laevis HSF2BP (xlHSF2BP)

and recombinant human HSF2BP (Figures 1I and 1J). This inter-

action did not affect the interaction of BRCA2 with RAD51 (Fig-

ures 1I and 1J). Such conservation is remarkable, given the

evolutionary distance between the species, and indicates that

the interaction is under strong selective pressure and therefore

is functionally important.

Hsf2bp Inactivation Causes Meiotic HR Defect in Mouse
Testis
Given the reported testis-specific expression (Yoshima et al.,

1998) and our detection of HSF2BP in mESCs, we speculated

that the protein may function in meiosis or early development.

To investigate the physiological function, we engineered an

Hsf2bp-deficient mouse strain by excising exons 3–6 using

CRISPR/Cas9 in the zygote (Figures 2A and 2B). Hsf2bp�/�

animals were superficially normal; however, testis sizes were
the indicated antibodies. *Non-specific band.

as in (B).

ls treatedwith DNA-damaging agents; nuclei outlined based on DAPI, scale bar

with or without MMC. Two representative nuclei (geminin� and geminin+) from

ate mean and SD).

A2-GFP particles in live mESCs (control and irradiated) imaged by oblique

d MBP-BRCA2.

(H; I) or X. laevis (X; J) HSF2BP from Xenopus egg extracts with or without
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Figure 2. Physiological Role of HSF2BP

(A) Schematic of mouse Hsf2bp locus depicting the

location of Cas9 cuts used to produce the Hsf2bp

null allele.

(B) Immunoblot confirming the disappearance of

HSF2BP from the total testis lysates in the

Hsf2bp�/� mouse model.

(C–G) Representative image, displaying the strongly

reduced testis size of Hsf2bp�/� testis compared to

wild-type control (C). Body weight (D), testis (E), and

epididymis (F) weight, as well as sperm counts per

epididymis (G) were compared between all 3 ge-

notypes (15 weeks old, n = 4, lines indicate mean

and SD).

(H) Representative histological images of testis

cross-sections of wild-type (WT) and Hsf2bp�/�

(KO) 15-week-old mice.

(I) Spread spermatocyte nuclei immunostained with

anti-RAD51, anti-DMC1 (meiotic DSBmarkers), and

anti-SYCP3 (chromosomal axes and meiotic pro-

phase stage marker), scale bar represents 5 mm.
severely reduced, no sperm could be isolated from them (Fig-

ures 2C–2G), and no litters were produced from mating 9

different knockout males with wild-type females. Histological

analysis revealed the absence of meiotic metaphases and

post-meiotic cells and the frequent occurrence of aberrant

spermatocytes in Hsf2bp�/� testes (Figure 2H). Next, we per-

formed immunofluorescent staining of Hsf2bp�/� and control

spermatocyte nuclei (Figures 2I and S1A). In leptotene, no

specific RAD51 and DMC1 foci were observed, but zygotene

nuclei contained a low and variable number of foci that colo-

calized on the partially synapsing chromosomes. Usually

only 2–3 chromosome pairs appeared normally synapsed,

but in some nuclei, the majority of chromosomes were nor-

mally synapsed (lower right nucleus in Figure 2I, 12 normal-

looking synaptonemal complexes). In wild-type (WT) nuclei,

numerous colocalizing RAD51 and DMC1 foci were observed

in leptotene and zygotene nuclei, gradually decreasing in num-

ber as chromosome pairing progresses. In midpachytene,

DMC1 foci had disappeared and some RAD51 foci remained

prominent along the unsynapsed axes of the X chromosome.

In Hsf2bp�/� (knockout [KO]) nuclei, no pachytenes were

found.

These observations establishHSF2BP as aprotein required for

male meiosis, which is consistent with the initial description of

HSF2BP as a testis-specific protein and its association with
Cell R
BRCA2. Knockout females were fertile,

and the reduction in litter sizes was not

statistically significant in our cohort

(Hsf2bp+/+: n = 17, 133 pups, 6.6 per litter;

Hsf2bp�/�: n = 14, 79 pups, 5.6 per litter;

p = 0.35, unpaired t test). Thus, the effect

ofHSF2BPdeficiencyonmeiosis is less se-

vere than the loss of BRCA2 (Sharan et al.,

2004). In addition to the male infertility,

Hsf2bp�/� animals were born at a sub-

mendelian frequency (numbers observed

[expected] from Hsf2bp+/� crosses: +/+:
38[36], +/�: 83[72],�/�: 23[36]; n = 27, c2 p = 0.039), suggesting

an HSF2BP function in early development.

Hsf2bp Knockout Sensitizes ESCs to DNA Damage
To investigate the function of HSF2BP in ESCs, we created

Hsf2bp knockout mESC lines using 2 different gene targeting

strategies (Figures S1B–S1D). We tested their sensitivity to

ionizing radiation and the DNA crosslinking agent mitomycin C

(MMC) and measured the efficiency of HR by the Rad54 gene

targeting assay (Zelensky et al., 2013). While the efficiency of

HR was not significantly different (Figure S1G), both HSF2BP-

deficient cell lines showed increased sensitivity to ionizing radi-

ation and MMC (Figures S1E and S1F). Overproduction of

HSF2BP did not revert this phenotype, and in fact, it sensitized

cells to ionizing radiation (IR) and MMC, which suggests that

overproduction and loss of HSF2BP affects DNA repair in

ESCs (Figures S1B, S1E, and S1F).

HSF2BP Is Expressed in Human Cancer Cells
Although in mice we only detected the HSF2BP protein in testis,

we could readily detect HSF2BP transcripts by RT-PCR in all of

the human cancer cell lines we tested (Figures S2A–S2C).

Furthermore, inspection of public RNA expression datasets

(Harding et al., 2011; Petryszak et al., 2016; Shin et al., 2011;

Tang et al., 2017) indicated a high-level expression of HSF2BP,
eports 27, 3790–3798, June 25, 2019 3793



not only in testis but also inmouse embryonic ovaries and human

tumor samples derived from brain, breast, ovarian, and head and

neck cancers (Figure S2D). This further supports the hypothesis

that HSF2BP has roles outside spermatogenesis.

Mapping the BRCA2-HSF2BP Interaction
To identify the regions that are required for the interaction

between BRCA2 and HSF2BP, we engineered a series of

FLAG-tagged BRCA2 fragment expression constructs and

GFP-tagged HSF2BP expression constructs (Figures 3A–3C).

For BRCA2, starting by dividing the protein into 3 fragments

(N-terminal, middle, and C-terminal) (Figure S3A), we mapped

the HSF2BP-binding domain (HBD) to the 68-amino acid region

(BRCA2-F9, Gly2270-Thr2337 in hBRCA2) located between the

eighth BRC repeat (BRC8) and the DNA binding domain (Fig-

ure 3C). Despite the modest average conservation of the region

between BRC8 and the DNA binding domain, the HBD is highly

conserved and contains several amino acid motifs that are iden-

tical among vertebrate BRCA2 orthologs, including X. laevis (Fig-

ure S3B). Deletion of the corresponding region from full-length

BRCA2 (BRCA2DF9) essentially abolished the interaction with

HSF2BP (Figure 3C, lane 6), indicating that this is the only

high-affinity interaction site.

Most of the GFP-fused truncated or internally deleted forms of

HSF2BP we engineered were expressed at much lower levels

than the full-length protein in human cells, presumably due to

instability caused by misfolding (Figure 3C, lanes 8–10). How-

ever, we established that deletions of the central and C-terminal

parts of HSF2BP, which are predicted to adopt the armadillo

repeat folds (e.g., Phyre2; Kelley et al., 2015), abolished the inter-

action with BRCA2. Using internal deletions and, eventually, a

set of 7 point mutants (Figure S3C), we determined that this re-

gion is required for interaction with BRCA2 and that a single

amino acid change in HSF2BP at position 200 from arginine to

threonine (R200T) greatly reduces its ability to co-precipitate

BRCA2 (Figure 3C lanes 11–13) and abolishes localization of

the GFP-tagged HSF2BP to repair foci (Figure S3D). Notably,

this residue is fully conserved among vertebrates. We also

established that the N-terminal 92 amino acids, which are not

predicted to contain armadillo folds and show weak sequence

similarity to coiled-coil regions, are not required for the interac-

tion with BRCA2 (Figure 3C, lane 8).

To establish whether HSF2BP-BRCA2 interaction is direct, we

purified bacterially expressed HSF2BP variants and BRCA2

fragments with tobacco etch virus (TEV)-cleavable 6xHis or

glutathione S-transferase (GST) tags (Figure S3E). Full-length

HSF2BP was retained by the GST-tagged BRCA2-F6 fragment

immobilized on glutathione Sepharose beads, which demon-

strated direct interaction between BRCA2 and HSF2BP. Consis-

tent with the immunoprecipitation results, the purified HSF2BP

R200T mutant did not bind BRCA2-F6 efficiently (Figure S3E).

Moreover, analytical gel filtration of HSF2BP and the BRCA2-

F8 fragment, re-purified after cleaving off affinity tags, confirmed

the formation of a stable complex between the 2 proteins and the

disruption of this complex in the presence of the HSF2BP R200T

mutant (Figure 3D). The hydrodynamic volume of HSF2BP was

severalfold higher than expected for a globular monomeric pro-

tein of its size (37.6 kDa), suggesting that HSF2BP exists in olig-
3794 Cell Reports 27, 3790–3798, June 25, 2019
omeric and/or elongated forms (Figure S3F), which is also

consistent with the immunoprecipitation results (Figure 1C).

DISCUSSION

Our study reveals that BRCA2, a key mediator of HR in verte-

brates, forms a direct and evolutionarily conserved interaction

with a previously functionally uncharacterized protein HSF2BP.

Consistent with the initial identification of HSF2BP as a testis-

specific protein, we found that it is required for meiotic HR during

spermatogenesis. Focal accumulation of RAD51 and DMC1 is

delayed in the nuclei of spermatocytes from the Hsf2bp�/�

mice, and only a few foci were observed in the zygotene nuclei,

suggesting their impaired formation or reduced stability or both.

Chromosome synapsis was greatly impaired, but some normally

synapsed chromosomes were visible in the late zygotene-like

nuclei. This is consistent with the notion that at least some

DSB sites can accumulate strand exchange proteins and be

repaired in such a manner that they contribute to homology

recognition and synapsis. However, overall, there is a severe

chromosome pairing and meiotic DSB-repair defect in these

mice, since no pachytene nuclei were observed.

Given the importance of BRCA2 for meiotic HR, it appears

likely that the meiotic defect caused by the loss of HSF2BP in-

volves BRCA2 interaction, and some evidence for this was re-

ported independently (Zhang et al., 2019) while the present

article was under review. However, even an incomplete loss of

BRCA2 due to the inefficient expression of a ‘‘rescue’’ transgene

in the germline of the Brca2 knockout mouse leads to a more

general meiotic defect, as oocyte meiosis was also affected,

leading to female infertility (Sharan et al., 2004). This contrasts

with the normal female fertility observed in our cohort and sug-

gests that if HSF2BP exerts its role in meiosis via its interaction

with BRCA2, only part of the essential BRCA2 function is depen-

dent on it. Also noteworthy are spermatogenesis defects in

mousemodels deficient for the 2 transcription factors with which

HSF2BP was previously reported to interact: HSF2 (Yoshima

et al., 1998) and BNC1 (Wu et al., 2013). Loss of HSF2 in mice

leads to meiotic defects in both spermatogenesis and oogen-

esis, although the effect on fertility (normal in males, reduced in

females) is the opposite of what we observed in our Hsf2bp�/�

model (Kallio et al., 2002). Bnc1 knockout mice, in addition to

severe subfertility in both males and females, were born at

sub-mendelian ratios (Zhang et al., 2012), which parallels our ob-

servations from Hsf2bp+/� intercrosses. We hypothesized that

the role of Hsf2bp in mESCs, where it is expressed at levels

similar to testis and contributes to genome stability, may explain

our observation; however, other mechanisms are possible.

Further investigation of themolecular details, careful comparison

of the phenotypes of the existing mouse models, and generation

of the new ones (e.g., Brca2 DHBD) will be required to answer

these questions.

The BRCA2 gene has been extensively sequenced to identify

variants predisposing to breast cancer. We found no cancer-

associated missense mutations in the HSF2BP-binding domain

of BRCA2 in several curated databases (Béroud et al., 2016;

Fokkema et al., 2011; Szabo et al., 2000). However, 2 variants

(R2336H and I2285V) in this region and a naturally occurring
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Figure 3. Mapping of BRCA2-HSF2BP Interaction

(A and B) Schematic of the BRCA2 (A) and HSF2BP (B) domain structure, fragments, and internal deletion variants used to determine interacting (green) and non-

interacting (red) variants.

(C) GFP co-immunoprecipitation from HeLa cells stably expressing FLAG-tagged BRCA2 variants and transiently transfected with the indicated GFP-HSF2BP

expression constructs (WT, full-length wild type, D, N-terminal and internal deletions, R200T point mutant).

(D) Interaction between purified untagged hHSF2BP and BRCA2-F8 fragments studied separately (solid lines) or after co-incubation (dotted lines) by analytical

size exclusion chromatography. Complex formation between BRCA2-F8 and wild-type but not R200T mutant HSF2BP led to an increase in hydrodynamic radius

and elution in earlier fractions.
alternative splicing event leading to skipping exon 12 encoding

most of the HSF2BP-binding domain have been experimentally

characterized. R2336H is classified as potentially deleterious

or causal, but its effect is attributed to aberrant splicing and
BRCA2 protein truncation (Biswas et al., 2011; Claes et al.,

2004). Skipping exon 12 does not lead to a reading frameshift

and has no effect on in vitro BRCA2 functional assays (Bièche

and Lidereau, 1999; Li et al., 2009; Rauh-Adelmann et al.,
Cell Reports 27, 3790–3798, June 25, 2019 3795



2000). The second characterized polymorphism (I2285V,

c.6853A > G) increases the frequency of exon 12 skipping and,

in agreement with the in vitro data, is not associated with cancer

predisposition (Li et al., 2009). The meiotic defect caused by

Hsf2bp deficiency, its expression profile, the phenotype of

knockout mESCs, and the details of BRCA2-HSF2BP interaction

that we present here suggest that the highly conserved region of

BRCA2 encoded by exons 12 and 13 has a function in meiosis

rather than tumor suppression, and that polymorphisms in this

region may affect fertility.
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RAD51 (Tan et al., 1999) 2307
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FLAG M2 Sigma Cat# F3165; RRID:AB_259529

DMC1 Abcam Cat# ab11054; RRID:AB_297706

6xHis tag Abcam Cat# ab18184; RRID:AB_444306

GFP (clones 7.1 and 13.1) Roche/Sigma Cat# 11814460001; RRID:AB_390913

SYCP3 R&D systems Cat# AF3750; RRID:AB_2197194

SYCP1 (Meuwissen et al., 1992) N/A

HORMAD1 (Wojtasz et al., 2009) N/A

HSF2BP this paper SY8126

HSF2BP this paper SY8127

BRCA2 raised against residues 1842-2080 of xlBRCA2 this paper N/A

b-Catenin BD Biosciences Cat# 610153; RRID:AB_397554

53BP1 Novus Biologicals Cat# NB100-304; RRID:AB_10003037
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Protein: HSF2BP human this paper N/A
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Protein: BRCA2-F8 (Gly2270-Ala2351) this paper N/A

Anti-GFP agarose beads Chromotek Cat# gta-20

Protein A Sepharose Fast Flow beads GE Healthcare Cat# 17127901

Mitomycn C (MMC) Sigma Cat# M4287

Talazoparib (BMN 673) Axon Medchem Cat# 2502
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Experimental Models: Cell Lines

IB10 (a subclone of E14 129/Ola) mouse ES cells (Hooper et al., 1987) N/A

Brca2GFP/GFP mouse ES cells (Reuter et al., 2014) N/A

Hsf2bpGFP/+ mouse ES cells this paper N/A

Hsf2bpGFP/GFP mouse ES cells this paper N/A

Rad51ap1GFP/GFP mouse ES cells this paper N/A

Hsf2bpko/koNc mouse ES cells this paper N/A

Hsf2bpko2/ko2 mouse ES cells this paper N/A

Palb2GFP/GFP mouse ES cells this paper N/A

Experimental Models: Organisms/Strains

Mouse: C57BL/6 OlaHsd Envigo Cat# 057

Mouse: Hsf2bp�/� this paper N/A

Oligonucleotides

Primer: hHSF2BP-rt-F1 cgcaaattctgggaggttt this paper N/A

Primer: hHSF2BP-rt-R1 gatctggggagaagggacac this paper N/A

Primer: hHSF2BPdArm-R ggccttgacgacttcctcac this paper N/A
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Primer: mHSF2BP-geno-R2 atgctataccgcgcacacaa this paper N/A

Recombinant DNA

Plasmid: pGb-LPL-CAG/GFP-hHSF2BP this paper pAZ229

Plasmid: pGb-LPL-CAG/GFP-hHSF2BP R200T this paper pAZ284

Plasmid: pEGFPN1+mHSF2BP this paper pAZ022

Plasmid: pETM11+hHSF2BP this paper pAZ018

Plasmid: pETM30+BRCA2-F6 (Gly2270–Asp2479) this paper N/A

Plasmid: pETM11+BRCA2-F8 (Gly2270-Ala2351) this paper N/A

Plasmid: pETDuet-1+xhHSF2BP this paper N/A

Plasmid: pX459 V2.0 (Ran et al., 2013) Addgene Plasmid #62988;

RRID:Addgene_62988

Plasmid: pX459+Hsf2bp-GFP sgRNA this paper pAZ307

Plasmid: pBS+Hsf2bp-GFP donor this paper pAZ207

Plasmid: p15A+Hsf2bp-Ce3-BSD-neo ko1 donor this paper pAZ092

Plasmid: pBS+Hsf2bp-e2D-hygro ko2 donor this paper pAZ120

Plasmid: pCR-BluntII Hsf2bpe1 gRNA this paper pAZ074

Plasmid: pCR-BluntII Hsf2bpe2 gRNA this paper pAZ058

Plasmid: pCDNA3.3 Topo+Cas9 (Mali et al., 2013) Addgene Plasmid #41815;

RRID:Addgene_41815

Plasmid: gRNA cloning vector (Mali et al., 2013) Addgene Plasmid #41824;

RRID:Addgene_41824

Plasmid: pBS+Palb2-CGN targeting construct this paper pAZ209

Plasmid: pX459+Palb2 gRNA last exon this paper pAZ206

Plasmid: pBS+Rad51ap1-CGN targeting construct this paper pAZ311

Plasmid: mPB (Cadiñanos and Bradley, 2007) Sanger Institute Archives N/A

Plasmid: pCMV-hyPBase (Yusa et al., 2011) Sanger Institute Archives N/A

Plasmid: pGb-LNL-CAG (Zelensky et al., 2017) pAZ125

Plasmid: pGb-LPL-CAG/Flag-BRCA2 this paper pAZ148

Plasmid: pGb-LPL-CAG/Flag-BRCA2DF9 this paper pAZ304

Plasmid: phCMV-MBPx2-BRCA2 (Jensen et al., 2010) N/A

Software and Algorithms

Prism Graphpad RRID:SCR_002798

ImageJ (Abramoff et al., 2004) RRID: SCR_003070

Single particle tracking plugin (Reuter et al., 2014) N/A

MATLAB MathWorks RRID: SCR_001622

MATLAB track analysis script (Reuter et al., 2014) N/A

Hmmsearch (Potter et al., 2018) N/A
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by Alex N. Zelensky

(a.zelensky@erasmusmc.nl). Distribution of the Hsf2bp knockout strain is subject to a material transfer agreement.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines
mES cell lines were derived from the IB10 cell line, which is a subclone of E14 129/Ola frommale origin (Hooper et al., 1987), specific

pathogen free. Cells were cultured on gelatinized plastic dishes (0.1% gelatin in water) as described before (Zelensky et al., 2017) at

atmospheric oxygen concentration in media comprising 1:1 mixture of DMEM (Lonza BioWhittaker Cat. BE12-604F/U1, with Ultra-

glutamine 1, 4.5 g/l Glucose) and BRL-conditioned DMEM, supplemented with 1000 U/ml leukemia inhibitory factor, 10% FCS, 1x

NEAA, 200U/ml penicillin, 200 mg/ml streptomycin, 89 mM b-mercaptoethanol. HeLa (human cervical adenocarcinoma, female origin)

and HEK293T (human embryonic kidney, female origin) cells were cultured in DMEM supplemented with 10% FCS, 200 U/ml peni-

cillin, 200 mg/ml streptomycin.

Animals
All animals were kept in accordance with local regulations under thework protocol 17-867-11. Animal experiments were approved by

the Dutch competent authority (Centrale Commissie Dierproeven, CCD) and all experiments conform to relevant regulatory stan-

dards. Female mice for CRISPR/Cas9 injection were C57BL/6 OlaHsd from Envigo, age 5 weeks. For spermatogenesis defect anal-

ysis male mice were sacrificed at the age of 15 weeks. Female mouse fertility was assessed at the ages 9-28 weeks.

METHOD DETAILS

Generation of genetically modified cell lines
Hsf2bpGFP/+mES cells were created by gene targeting using the approach we used previously to engineer the BRCA2-GFP knock-in

lines (Reuter et al., 2014). The gene targeting construct was engineered by recombineering, startingwith the BAC clone bMQ-430H02

from the Sanger 129/Sv library (Adams et al., 2005), homology arms were 3.1 and 6.2 kb long, and the GFP-2A-neo cassette was

inserted after the last codon of the Hsf2bp CDS. After the completion of selection with 200 mg/ml G418 (Invivogen) clones were iso-

lated. Correct targeting was confirmed by Southern blotting on HindIII-digested genomic DNA with an external probe. Two out of the

14 screened cloneswere identified as correctly recombined.Hsf2bpGFP/GFP cells were produced using same targeting construct with

CRISPR/Cas9 stimulation. The target for sgRNA cloned into pX459 vector (Ran et al., 2013), a gift fromFeng Zhang (Addgene plasmid

# 62988 ; http://addgene:62988 ; RRID:Addgene_62988), was 50-acatctaaacattacagtcc-30. Seven independent Hsf2bpGFP/GFP

clones were isolated. Rad51ap1wt/GFP cells were produced by similar gene targeting procedure (BAC bMQ-338B20, 3.6 and 4.8

kb homology arms, resulting construct pAZ311) and converted to homozygosity by high-G418 selection as described before (Reuter

et al., 2014) to generate the Rad51ap1GFP/GFP line that was used as a control in the mass spectrometry experiments. The gene tar-

geting construct for the production of Palb2GFP/GFP cells was engineered using the same approach (BAC bMQ-128G09, 3.7 kb and

4.4 kb right homology arms, pAZ209) with Cas9 stimulation; the target for sgRNA cloned into pX459 was 50-tatataccgatacttttaag-30

(pAZ206). One line of Hsf2bp knockout ES cells (ko1) was produced by sequential gene targeting and site-specific recombination

steps using the knockout-first gene trap strategy (Skarnes et al., 2011) without CRISPR/Cas9 stimulation. Selection cassettes

were removed using two rounds of site-specific recombination, as shown in Figure S1C, followed by re-targeting of the second allele

with the same gene targeting construct, and excision of exon 3 using Cre/LoxP recombination; two independent cloneswere isolated

in the first round of targeting and converted to homozygous knockout using the described procedure. The second line of Hsf2bp

knockout ES cells was produced by CRISPR/Cas9-stimulated replacement of the first two exons and (part of) the promoter region

(358 bp upstream of the start codon) with a hygromycin resistance gene under the human phosphoglycerate kinase (PGK) promoter.

The gene targeting construct (pAZ120) contained 0.9 and 10.4 homology arms. The targets of the two gRNAs cloned into gRNA clon-

ing vector (Mali et al., 2013), a gift from George Church (Addgene plasmid # 41824 ; http://addgene:41824 ; RRID:Addgene_41824),

were in exons 1 and 2 with target sequences gcggctatggccgcaaccgt and ggacctggaacggctgacga, respectively (constructs pAZ074

and pAZ058). The gene targeting construct, two gRNA expression constructs and theCas9 expression construct (Addgene plasmid #

41815 ; http://addgene:41815 ; RRID:Addgene_41815) were co-transfected by electroporation into IB10 cells (15 mg each plasmid

DNA, 2-3*107 cells); colonies were picked after 8 days of selection with 200 mg/ml hygromycin B (Roche, 10843555001). Clones with

the homozygous loss of the wild-type allele were identified by genotyping PCRs and confirmed by immunoblotting; five independent

clones were isolated. Further details of the gene targeting procedures and DNA constructs can be provided upon request.

With the exception of U2OS GFP-HSF2BP clone #5, all stable cell lines were constructed using PiggyBac vectors by co-transfect-

ing themwith the transposase expression construct (mPB (Cadiñanos and Bradley, 2007) or hyPBase (Yusa et al., 2011)), followed by

selection with either 1.5 mg/ml puromycin or 800 mg/ml G418 was started and maintained for 6-10 days. Stable transformation was

highly efficient (> 95% GPF+ cells when GFP-tagged constructs were used) and therefore clonal isolation was not performed.

Mass spectrometry
Stable isotope labeling in cell culture (SILAC) of mES cells was performed by expanding the cell lines from 6 cm to 2x 145mm dishes

(gelatinized) in drop-out ES media (Mouse Stem Cell Expansion DMEM for SILAC, (#88207 Thermo Fisher) to which 3.5 mg/ml

D-glucose, 105 mg/ml L-leucine, 50 mL dialyzed FCS, 6 mL ultraglutamine (Lonza BE17-605E/U1) were added) complemented

with 84 mg/ml L-lysine (K) and 146 mg/ml L-arginine (R). Lysine and arginine differed in N and C isotopic content for three SILAC
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states: K0R0 for light, K3R6 for medium and K8R10 for ‘‘heavy’’; heavy-isotope amino acids were purchased from Cambridge

Isotope Laboratories. Sample preparation after pull-down with anti-GFP nanobody agarose beads (Chromotek) involved either

PAGE fractionation or on-beads digestion, followed by HPLC. Data acquisition was performed using LTQ-Orbitrap XL instrument

(Thermo) and analyzed using MaxQuant software (Cox et al., 2009). In SILAC experiments involving hyperthermia treatment of

Brca2GFP/GFP mES cells, two label-swapped replicates were performed. One SILAC state in each replicate corresponds to 1 h incu-

bation at 42�C (after 15 min pre-warming), which causes BRCA2 degradation (Krawczyk et al., 2011), the other to 37�C control.

Normalized SILAC ratios were plotted.

Analysis of proteins co-immunoprecipitated by GFP beads with HSF2BP-GFP and RAD51AP1-GFP was performed in two sepa-

rate experiments. Combined peptide intensities (Log10-transformed) were plotted. Missing intensity values representing proteins

detected in only one immunoprecipitate were replaced with values imputed from normal distribution with a downshift of 3 for visu-

alization purpose only; their ranges are demarcated with dotted lines on the plot. GFP co-immunoprecipitates from Palb2GFP/GFP and

Rad51ap1GFP/GFP knock-in mES cells was performed after SILAC labeling (H and L states, respectively). Log10 intensity values were

plotted, missing values were imputed as described above.

Expression Constructs
The CDS of human and mouse HSF2BP were PCR-amplified from first-strand cDNA synthesized from total RNA isolated from U2OS

and mES IB10 cells, respectively, with SuperScript II enzyme (Invitrogen) and oligo-dT primer. The PCR products were cloned into

pCR4 topo-TA vector (Invitrogen) and verified by Sanger sequencing. Clones containing sequences corresponding to the predicted

full-length HSF2BP CDS as annotated the NCBI GenBank database (NM_007031 and NM_028902) were used as templates for sub-

cloning. Re-cloning into destination vector was performed using isothermal Gibson assembly (Gibson et al., 2009). The GFP expres-

sion constructs used in the initial experiments were derived from pEGFP-N1 and pEGFP-C1 vectors for C- and N-terminal fusions,

respectively. Other GFP- and Flag- tagged expression constructs were assembled in PiggyBac described before (pAZ125 (Zelensky

et al., 2017)) or engineered using analogous steps in our lab. The PiggyBac vectors carried PGK-neo or PGK-puro selection cassettes

and CAG promotor-driven transgene as a separate expression unit. Human BRCA2 CDS fragment were PCR-amplified or excised

using restriction from phCMV-MBPx2-BRCA2 vector (Jensen et al., 2010) and cloned. All cloning junctions and fragments produced

by PCR were sequence-verified after cloning. Internal deletion constructs, such as Flag-BRCA2DF9 (pAZ304), were produced by

excising a fragment of full-length Flag-BRCA2 PiggyBac expression construct (pAZ148) using two unique restriction sites nearest

to the region targeted for deletion and patching the gap with appropriate PCR-amplified fragment(s) encoding the desired deletion

using Gibson assembly. Site-directed mutagenesis of GFP-HSF2BP was performed by amplifying two overlapping fragments with

themutation encoded by the overlapping part of the primers (20-25 bp) and cloning the two fragments into destination GFP PiggyBac

vector. Proofreading Q5 PCR polymerase (NEB) was used and clones were verified by Sanger sequencing. Details of the PCR

primers and cloning strategies are available upon request.

Rad54 gene targeting assay
Rad54-GFP gene targeting assay was performed as previously described (Zelensky et al., 2013): 6–12 million ES cells were electro-

porated with PvuI-linearized Rad54-GFP gene targeting construct and seeded in 10 cm dish. Next day media was replaced to start

selection with 1.5 mg/ml puromycin, and again on days 2 and 4. After colonies formed on day 6–8, cells were trypsinized, collected by

centrifugation, re-suspended in 1 mL 1%PFA in PBS, incubated for 15 min to fix, diluted 1:1 in PBS 0.2% Triton X-100 and analyzed

by FACS.

Clonogenic survivals
Before the experiment cells were maintained in 6-well plates and passaged at 5x105 per well every two days. The baseline seeding

density was 200 cells per well of a 6-well plate, it was increased to account for reduced plating efficiency at higher doses of damage.

At least three independent experiments were performed in 6-well plates, each with technical triplicates. On day 1 cells were trypsi-

nized, counted using Countess II automated cell counter (Thermo Fisher), a suspension with maximum concentration required for the

experiment was prepared (usually 10,000 viable cells per ml, for 100x the number of cells seeded in the untreated wells), and serially

diluted to produce lower concentrations (10x, 4x and 1x). The suspensions were then distributed at 2 mL per well into gelatinized

6-well plates (seeding densities: 4x for 2 Gy, 10x for 5 Gy, 100x for 8 Gy IR; 1x for 0.2 mg/ml, 4x for 0.3 and 0.4 mg/ml MMC). Next

day plates were irradiated using RS320 X-ray source (Xstrahl) or treated with MMC for 2 h; at the end of MMC treatment media

was removed, cells were washed with PBS, and 2 mL of fresh media was added. After six days media was aspirated, wells were

rinsed with PBS and stained with Coomassie Brilliant Blue R (0.25% in 40%methanol, 10% acetic acid). Plates were photographed

and macroscopically visible colonies were counted.

Antibodies and Immunoblotting
Antibodies used in this study were against RAD51 (rabbit 2307 (Tan et al., 1999)), BRCA2 (Ab-1, OP95, Millipore, RRID:AB_2067762,

1:1000), FLAG (M2 antibody, Sigma, F3165, RRID:AB_259529, 1:2500), GFP (clones 7.1 and 13.1, Roche, RRID:AB_390913, 1:1000-

1:5000), b-catenin (BD Biosciences, 610153, RRID:AB_397554), 6xHis tag (ab18184, Abcam, RRID:AB_444306), anti DMC1

(ab11054, Abcam, RRID:AB_297706), anti SYCP3 (AF3750, R&D systems, RRID:AB_2197194), anti SYCP1 (Meuwissen et al.,
e4 Cell Reports 27, 3790–3798.e1–e7, June 25, 2019



1992), anti HORMAD1 (Wojtasz et al., 2009). Anti-HSF2BP rabbit polyclonal antibodies SY8126 and SY8127 were raised against

purified recombinant untagged human HSF2BP (Kaneka Eurogentec, Belgium) and used either as crude serum or after affinity

purification against GST-HSF2BP immobilized on glutathione Sepharose as described (Chalkley and Verrijzer, 2004). The BRCA2

antibody was raised against residues 1842-2080 of xlBRCA2. The cDNA encoding the fragment was codon-optimized for E. coli,

synthesized (gBlocksGene Fragments, Integrated DNA Technologies), and ligated into the XhoI-BamHI sites of the pETDuet-1 vector

(Novagen). The fragment was overexpressed in E. coliBL21(DE3) cells (New England BioLabs) with a N-terminal His-tag, and purified

by the method described previously (Klein Douwel et al., 2014). The purified antigen was used for immunization of rabbits (PRF&L,

Canadensis, USA). Specificity of the antisera was confirmed using immunoblotting.

To prepare total protein lysates, cells were scraped in PBS and lysed in 2x Laemmli SDS loading buffer (120 mM Tris pH 6.8, 4%

SDS, 10%Glycerol), after determining the protein concentration in the lysate by Lowrymethod, the lysate was complemented by 10x

reducing additive (0.1% bromophenol blue, 0.5% b-mercaptoethanol). Mouse tissues were homogenized using Tissuelyzer

(QIAGEN) in 2x Laemmli buffer. Proteins were separated on polyacrylamide handcast tris-glycine, or precast bis-tris or tris-acetate

gels (Novex) and blotted on nitrocellulose or PVDF. For BRCA2 detection 4%–8% precast tris-acetate gels were used, and transfer

was performed in 2x Towbin transfer buffer (50 mM Tris, 384 mM glycine, 20%methanol) at 300 mA constant current for 2h at 4�C to

PVDFmembrane. Membranes were blocked in 3%milk in PBS+0.05% Tween. After overnight incubation with the primary antibody,

membranes were washed in PBS+0.05% Tween and incubated with horseradish peroxidase-conjugated secondary antibodies

(Jackson Immunoreserach). Blots were developed using homemade ECL reagents and detected with the Alliance 4.7 (UVItec).

Protein Purification
Human HSF2BP cDNA was re-cloned into pETM11 (6xHis-TEV) expression vector using Gibson assembly and transformed into

E. coli Rosetta2 (DE3) pLysS. A starter culture (LB + 50 mg/ml kanamycin, 30 mg/ml chloramphenicol) was grown overnight at

37�C, used to inoculate 4.5 L of LB which was grown at 37�C until the OD600 reached 0.6. Expression was induced by addition of

IPTG to 0.2mM, incubation was continued at 16�C for 16 h, cells were harvested and frozen, thawed in equal volume of 2x lysis buffer

(1M NaCl, 25mM Tris pH7.5, 5% Glycerol, 5 mM b-mercaptoethanol, 1x EDTA-free protein inhibitor cocktail (Roche)) and sonicated

(8x 30 s). The lysate was cleared by centrifugation at 35,000 rcf. for 45 min, and loaded on Ni-NTA beads equilibrated with binding

buffer (500 mMNaCl, 25mM Tris pH7.5, 5%Glycerol, 5 mM b-mercaptoethanol). Beads were washed with increasing concentration

of imidazole (20 and 40 mM) in binding buffer. Fractions were eluted with 250 mM imidazole and analyzed by SDS-PAGE. Fractions

containing HSF2BP were pooled and loaded on Superdex 200 16/60 gel filtration column equilibrated with GF buffer(250 mM NaCl,

25 mM Tris pH7.5, 5% Glycerol, 5 mM b-mercaptoethanol) on an ÄKTA FPLC system (GE Healthcare). Peak fractions containing

HSF2BP were pooled and further purified on a 5 mL HiTrap Q anion exchange column using a gradient from 100 till 600 mM NaCl

in 25 mM Tris pH7.5, 5%Glycerol, 5 mM b-mercaptoethanol. Fractions containing HSF2BP were pooled, concentrated, flash-frozen

in GF buffer using liquid nitrogen and stored at �80�C. To produce HSF2BP without his-tag, HSF2BP eluted from the Ni-NTA beads

was mixed with Tobacco Etch Virus (TEV) protease and dialyzed o/n at 4�C against GF buffer before loading onto the gel filtration

column. HSF2BP variant R200T was purified as wild-type. HSF2BP concentration was determined spectrophotometrically

(e280nm = 20970 M-1 cm-1).

Human BRCA2 fragment F6 (Gly2270–Asp2479) was cloned into pETM-30 (6xHis-GST-TEV) expression vector and purified and

stored according to the protocol described above for HSF2BP, without removal of the tag. Concentration of the fusion protein

was determined spectrophotometrically using e280nm = 52830 M-1 cm-1. BRCA2 fragment F8 (Gly2270-Ala2351) was cloned into

pETM11 and purified and stored according to a protocol similar to that for HSF2BP,up to and including TEV cleavage to remove

the tag. Subsequently the dialyzed material was loaded onto a 5 mL HiTrap S cation exchange column. BRCA F8 eluted in the

flow through, was concentrated and further purified on a Superdex 75 16/60 size exclusion chromatography column (GE Healthcare)

equilibratedwithGF buffer. Concentrated fractionswere flash frozen and stored at�80�C. The F8 concentrationwas estimated using

SDS-PAGE with Coomassie Brilliant Blue staining, using bovine serum albumin (BSA) as the standard.

The cDNA encoding full-length xlHSF2BPwas codon-optimized for E. coli, synthesized (gBlocks Gene Fragments, Integrated DNA

Technologies), and ligated into XhoI-BamHI sites of the pETDuet-1 vector. xlHSF2BPwas overexpressed with a N-terminal His-tag in

E. coliBL21(DE3) cells at 18�C. The cells were collected by centrifugation, resuspended in buffer A (50mM Tris pH 8.0, 10% glycerol,

500 mM NaCl, 1 mM phenylmethylsulphonyl fluoride, 10 mM imidazole, and 5 mM DTT), and disrupted by sonication. The soluble

fraction was collected by centrifugation at �40,000 3 g for 25 min at 4�C, and mixed gently with 1 mL Ni-NTA agarose resin (Life

Technologies) at 4�C for 1 h. The Ni-NTA agarose resin was packed into Poly-Prep chromatography column (Bio-Rad), and washed

with 50 mL buffer A containing 20 mM imidazole. The xlHSF2BP protein was eluted with 8 mL buffer A containing 400 mM imidazole,

and concentrated using a 30 kDaMWCOAmicon Ultra-15 centrifugal filter unit (Millipore). The sample was then loaded onto a Super-

dex 200 column (HiLoad 16/60 preparation grade, GE Healthcare) equilibrated with buffer B (25 mM Tris pH 7.5, 5% glycerol,

200 mM NaCl, and 5 mM DTT). The eluted xlHSF2BP protein was concentrated, and aliquots were flash frozen with liquid nitrogen.

The protein concentration was determined by SDS-PAGE with Coomassie Brilliant Blue staining, using bovine serum albumin (BSA)

as the standard protein.
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Sequence and expression analysis
HSF2BP domain composition analysis and structure prediction were performed using Phyre2 server (Kelley et al., 2015). The arma-

dillo repeat region is predicted starting at residues 100-140 with high confidence (e.g., 97% confidence for the model for A109-V334

of hHSF2BP by Phyre2 based on b-catenin structure PDB: 3SLA, which has 19% sequence identity). Public RNA-seq data was

analyzed using GEPIA server (Tang et al., 2017). Expression levels in mES were taken from two RNA-seq datasets (Lienert et al.,

2011; Wamstad et al., 2012), each with two biological replicates. Search for homologs was performed using hmmsearch software

(Potter et al., 2018).

Analytical Gel Filtration
A Superdex 200 increase 3.2/300 (GE Lifesciences) was equilibrated with GF buffer on an ÄKTA Micro system (GE Healthcare). In a

total volume of 50ml, 37mM untagged HSF2BP (wild-type or R200T) and/or 60mM BRCA2-F8, was applied to the column at a flow of

50 ml/min. 50 ml fractions were collected and analyzed using SDS-PAGE (15% acrylamide).

GST Pull-down
20ml of glutathione beads were prewashed with buffer (150 mM NaCl, 25mM Tris pH7,5, 5% Glycerol, 5mM b-mercaptoethanol).

200 mmol of GST or GST-BRCA2 F6 was bound for 1 h at 4�C. Beads were washed 3x with buffer. 500 mmol of HSF2BP (WT or

R200T) was added and incubated for 1hr at 4C. Beads were washed 3x with buffer. Samples were analyzed on SDS-PAGE.

Immunoprecipitation (IP)
For co-IP mES cells were washed twice in ice-cold PBS and lysed in situ in NETT buffer (100 mM NaCl, 50 mM Tris pH 7.5, 5 mM

EDTA pH 8.0, 0.5% Triton X-100) supplemented immediately before use with protease inhibitor cocktail (Roche) and 0.4 mg/ml Pe-

fabloc (Roche) (NETT++). Four hundred fifty ml NETT++ buffer was used per 145 mm dish. After 30 min lysis on ice, mixtures were

centrifuged (15 min, 4�, 14000 rcf.) and the supernatant (input) was added to washed anti-GFP beads (Chromotek). Beads and ly-

sates were incubated 2-4 h at 4�C while rotating, washed three times in NETT++ buffer and bound proteins were eluted by boiling

in 2x Sample buffer.

IP from Xenopus egg extracts was performed as described previously with modifications (Knipscheer et al., 2009). 3 ml BRCA2 or

HSF2BP antiserum was incubated with 30 ml Protein A Sepharose Fast Flow (PAS) beads (GE Healthcare) overnight at 4�C. The
beads were washed twice with 400 ml PBS, once with 400 ml ELB (10 mM HEPES–KOH (pH 7.7), 50 mM KCl, 2.5 mM MgCl2, and

250 mM sucrose), twice with 400 ml ELB supplemented with 0.5 M NaCl, and finally twice with 400 ml ELB supplemented with

0.25 mg/ml BSA. For IP with BRCA2 antiserum, 5 ml of the antibody-bound beads were incubated with 20 ml diluted NPE (4 ml

NPE and 16 ml ELB) for 1 hl at 4�C. 1.5 ml HSF2BP (3 mM) was then added to the beads, and the reaction mixture was incubated

for 3 h at 4�C. The beads were washed 4 times with 400 ml ELB containing 80 mM NaCl and 0.5% Triton X-100 (Sigma). For IP

with HSF2BP antiserum, 5 ml of the antibody-bound beads were incubated with 2 ml HSF2BP (3 mM) for 1 h at 4�C, and washed twice

with 400 ml ELB supplemented with 0.25 mg/ml BSA. The beads were then incubated with 20 ml diluted NPE (4 ml NPE and 16 ml ELB)

for 3 h at 4�C, andwashed 4 timeswith 400 ml ELB. The bound proteins were eluted by adding 10 ml 1x SDS sample buffer (75mMTris

pH 6.8, 10% glycerol, 2.5% SDS, 50 mM TCEP (Bond-Breaker TCEP solution, Life Technologies), and 0.025% Bromophenol blue),

separated by SDS-PAGE, and detected bywestern blotting with RAD51 (1:10,000), BRCA2 (1:1,000), or HSF2BP (1:2,500) antiserum.

Preimmune serum was used for mock immunoprecipitation.

Immunofluorescence and Microscopy
Direct HSF2BP-GFP imaging and immunofluorescence staining was performed on ES cells grown overnight on a glass coverslip

coated with laminin, which improves their attachment and morphology. Sterile 24 mm coverslip was placed in a 6-well plate, and

a 100 ml drop of 0.05 mg/ml solution of laminin (Roche, 11243217001) was pipetted in the middle of it. The plate was left for

�30 min in the cell culture incubator, after which the laminin solution was aspirated, and cell suspension was placed in the well.

DNA damage was induced by irradiation with 8 Gy X-ray followed by 2 h recovery, treatment with 1 mg/ml Mitomycin C (MMC, Sigma,

M4287) for 2 h followed by 2 h recovery, or incubation with 0.1 mM talazoparib (BMN 673, Axon Medchem, #2502) overnight. Cells

were washed with PBS, fixed for 15min in 2% paraformaldehyde in PBS at room temperature andmounted in VectaShield with DAPI

either directly, or after immunostaining with anti-53BP1 (Novus Biologicals, NB100-304, RRID:AB_10003037, 1:1000) or anti-geminin

(Proteintech, 10802-I-AP, RRID:AB_2110945, 1:400) antibody. Images were acquired using Leica SP5 confocal microscope.

Maximum projections from a z stack of 3-5 confocal planes through a 1 mm slice were produced for analysis.

Oblique illumination microscopy and particle tracking were performed exactly as described (Reuter et al., 2014) using inverted Ni-

kon Eclipse Ti-E microscope equipped with a Plan Apo TIRF objective (100x, N.A. 1.49, oil) and a QuantEM EMCCD camera (Roper

Scientific); a 491 nm Calipso diode-pumped solid-state laser (Cobolt) at 5–7 mW power at the objective back-focal-plane; built-in

Nikon Ti TIRF-E motorized illumination unit; Chroma ET-GFP filter cube with an HQ530/30M emission filter; the excitation filter

was removed; the hardware was controlled with MetaMorph 7.5 software (Molecular Devices). Video streams containing typically

200 frames (16-bit) were collected continuously using the full camera chip without binning, a frame acquisition time of 50 ms and

an EM Gain of 950 (3x). The lookup table was linear and covered the full range of the data. Live-cell imaging was carried out in

cell growth medium under a 5% CO2 atmosphere and at 37�C using a Tokai Hit stage heating system; coverslips were not coated
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with laminin. The experiment was repeated three times, two independent Hsf2bpGFP/+ clones were used in each. Duration of mobile

and immobile states under control conditions (Figure 1G, left column) or 2 h after irradiation with 10 Gy (middle), and the difference

between the two (right) were plotted. Image analysis was performed using the ImageJ (ImageJ, RRID: SCR_003070) plugin and

MATLAB scripts described in (Reuter et al., 2014).

Fresh testes from wild-type and Hsf2bp�/� male mice were processed to make meiotic nuclear spread preparations as described

previously (Peters et al., 1997). Triple staining of RAD51 (1:1000), DMC1 (1:1000) and SYCP3 (1:75) and double staining of SYCP1

(1:5000) and HORMAD1 (1:100) was performed as described (Carofiglio et al., 2013). Confocal images were taken using a Zeiss

LSM700 confocal, equipped with a digital camera.

Hsf2bp knockout mouse model
Female donor mice (age 5 weeks, C57BL/6 OlaHsd from Envigo) were superovulated by injecting 5-7.5 IE folligonan (100-150 ml, IP

(FSH hormone; time of injection ± 13.30 h; day�3). Followed at day �1 by an injection of 5-7.5 IE chorulon (100-150 ml, IP (hCG hor-

mone; time of injection 12.00 h). Immediately after the chorulon injection, the females were put with fertile males in a one to one ratio.

Next day (0) females were euthanized by cervical dislocation. Oviducts were isolated, oocytes collected and injectedwith ribonucleo-

protein complexes of S.p.Cas9 3NLS (IDT cat. no. 1074181), crRNA and tracrRNA (both Alt-R, synthesized by IDT). Target sequences

for crRNA were ACTGCAGTAGTAAACGGAGG (upstream of Hsf2bp exon 3) and ACTGCTGGATCAACTGTTTA (downstream of

exon 6). For ribonucleoprotein formation equal volumes (5 mL) of crRNA and tracrRNA (both 100 mM in IDT annealing buffer) were

mixed, heated to 95�C for5 min and allowed to cool on the bench. The annealed RNAs (1.2 mL, 50 mM) were mixed with Cas9

(10 ml diluted to 200 ng/ml in the DNA microinjection buffer (10 mM Tris-HCl, pH 7.4, 0.25 mM EDTA in water) at the final concentra-

tions 0.12 mM Cas9, 0.6 mM of each of the two crRNA:tracRNA complexes in microinjection buffer. Foster mothers (minimum age

8 weeks) were set up with vasectomized males in a 2 to 1 ratio. Next day (0), pseudopregnant females (recognized by a copulation

prop) were collected. For transplanting the injected oocytes, pseudopregnant females were anesthetized by an IP injection of amix of

Ketalin (12 mg/ml ketamine in PBS)-Rompun (0.61 xylazine mg/ml PBS) 100 mL per 10 g bodyweight). Post-surgery pain relief was

given when the mouse was anaesthetized (S.C. Rimadyl Cattle, 5mg/ml in PBS, dose 5 mg/g mouse). Transplantation resulted in

21 pups from three litters, of which 8 (7 males, 1 female) contained the expected deletion allele as determined by PCR

genotyping with primers mHSF2BP-geno-F1 actaccccctcactgtagcat, mHSF2BP-geno-F2 gccagctgctctctcttagt, mHSF2BP-geno-

F3 tggtcgtgaattcttggtga, mHSF2BP-geno-R1 tcatcctggggccactagtaa and mHSF2BP-geno-R2 atgctataccgcgcacacaa used in

different combinations. The founder animals were backcrossed and intercrossed to produce the experimental cohort. Routine

PCR genotyping of was performed using MyTaq Red mix (Bioline) and a combination of three genotyping primers: mHSF2BP-

geno-F2, mHSF2BP-geno-F3 and mHSF2BP-geno-R1, which allows simultaneous amplification of the wild-type and the deletion

alleles (PCR products 434 and 586 bp, respectively).

Adult wild-type andHsf2bp�/�males were sacrificed andweighed, and testes and epididymides were collected and also weighed.

Epididymides were collected in PBS, dounced, and sperm cells were counted. From each animal 1 testis was fixed in Bouin solution

overnight and further processed for histological analysis using standard methods. The other testis was placed in PBS and further

processed for immunocytochemistry as described in the corresponding section. For fertility assessment breedings were set up be-

tween Hsf2bp�/� and wild-type C57BL/6 animals and maintained for 6 weeks.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical details of experiments can be found in figure legends or in the text of the Results section if data is not plotted, n represents

the number of independent experiments or number of animals analyzed. Quantitative functional experiments on knockout cells were

repeated at least three times, with at least two independent clones per mutant genotype; data from independent clones was treated

as biological replicates and are plotted separately. In clonogenic survival plots mean values and s.e.m are plotted. For other plots

individual values are shown, lines indicate means and s.d. Measurements from all analyzed animals are plotted, no data was

excluded. Statistical analysis and curve fitting were performed using GraphPad Prism software. Statistical significance was

determined using Student’s t test, or c2 test for genotype frequencies. Significance levels are indicated on the plots as * p < 0.05,

*** p < 0.001, **** p < 0.0001.
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