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SUMMARY

Paused RNA polymerase (Pol II) is a pervasive
feature of Drosophila embryos and mammalian
stem cells, but its role in development is uncertain.
Here, we demonstrate that a spectrum of paused
Pol II determines the ‘‘time to synchrony’’—the time
required to achieve coordinated gene expression
across the cells of a tissue. To determine whether
synchronous patterns of gene activation are signifi-
cant in development, we manipulated the timing of
snail expression, which controls the coordinated
invagination of �1,000 mesoderm cells during
gastrulation. Replacement of the strongly paused
snail promoter with moderately paused or non-
paused promoters causes stochastic activation of
snail expression and increased variability of meso-
derm invagination. Computational modeling of the
dorsal-ventral patterning network recapitulates
these variable and bistable gastrulation profiles and
emphasizes the importance of timing of gene activa-
tion in development. We conclude that paused Pol II
and transcriptional synchrony are essential for coor-
dinating cell behavior during morphogenesis.

INTRODUCTION

The earlyDrosophila embryo is the premier system for visualizing

gene activity in animal development. In a period of just 1 hr,

broadly distributed maternal determinants generate localized

patterns of gene activity, including segmentation stripes of

gene expression (Chen et al., 2012). A variety of studies suggest

that enhancers, typically 300–500 bp in length, are responsible

for determining where and when developmental control genes

are switched on and off (Ong andCorces, 2011).With few excep-
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tions, localized patterns of expression can be attributed to

discrete enhancers located upstream, downstream, or within

the gene of interest.

The enhancer is therefore seen as the key agent of differential

gene activity in animal development (Ong and Corces, 2011).

Considerably less is known about the role of the promoter in

the regulation of the spatial or temporal limits of gene expres-

sion, although they are known to control the rates of RNA synthe-

sis (Juven-Gershon and Kadonaga, 2010). In the simplest view,

enhancers determine the limits of gene expression (where and

when genes are active), whereas the promoter controls the levels

of expression (e.g., how many transcripts are produced in a

given unit of time).

The purpose of this study is to determine whether the pro-

moter regions of developmental control genes can influence

the timing or spatial limits of gene expression in the early

Drosophila embryo. We were motivated by the recent finding

that many developmental control genes contain paused RNA

polymerase (Pol II) prior to their activation during embryogenesis

(Adelman and Lis, 2012; Levine, 2011). The function of paused

Pol II is uncertain, despite its apparent prevalence (�30% of all

protein coding and noncoding genes) in both Drosophila em-

bryos and mammalian stem cells (Guenther and Young, 2012).

The prototypic example of paused Pol II, Drosophila heat

shock genes, underlies rapid induction of gene expression in

response to stress (Boehm et al., 2003). There is also evidence

that paused Pol II serves to keep promoters ‘‘open’’ by excluding

or diminishing the occurrence of positioned nucleosomes that

occlude the transcription start site in cultured cells (Gilchrist

et al., 2010). Recent quantitative imaging methods suggest

that paused Poll II influences synchronous induction of gene

expression across the different cells of presumptive tissues in

the early Drosophila embryo (Boettiger and Levine, 2009).

In the latter study, quantitative in situ hybridization assays

were used to detect the first nascent transcripts encoded

by different developmental control genes, within the first

10–20 min after the onset of expression in precellular embryos,
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�2 hr after fertilization. Genes were classified as synchronous if

nascent transcripts were detected in over 50% of the nuclei that

will eventually express a given gene or stochastic if expressed in

fewer than 50%.Most paused genes exhibited synchronous pat-

terns of activation, whereas most nonpaused genes displayed

stochastic expression. The evidence linking paused polymerase

and synchrony was strictly correlative, and there is no evidence

that these modes of activation are significant in development.

Here, we employ quantitative imaging (Bothma et al., 2011;

Perry et al., 2010), whole-genome Pol II-binding assays (Zeitlin-

ger et al., 2007), and BAC transgenesis (Venken et al., 2006) to

examine the function of paused Pol II in the early Drosophila em-

bryo. Evidence is presented that minimal promoter sequences,

�100–200 bp centered around the +1 transcription start site,

are sufficient for establishing paused Pol II and mediating rapid,

synchronous activation of gene expression in transgenic

embryos. Those genes containing high levels of paused Pol II

achieve coordinate expression more rapidly than those contain-

ing low levels.

To determine whether the ‘‘time to synchrony’’ is important in

development, wemanipulated the coordinate expression of snail

(sna) (Slug/Sna2 in vertebrates), a major determinant of epithe-

lial-mesenchyme transitions (EMTs) in animal development. In

Drosophila, sna is expressed in �1,000 cells comprising the

presumptive mesoderm (Kosman et al., 1991; Leptin and Grune-

wald, 1990). These cells undergo coordinated invagination dur-

ing gastrulation, within 90 min of the onset of sna expression

(Leptin, 2005; Sweeton et al., 1991). To determine whether

synchronous activation of sna expression is essential for coordi-

nated invagination of the mesoderm, we replaced the native sna

promoter with those frommoderately paused (short gastrulation;

Chordin) or nonpaused (thisbe; Fgf8) genes. These heterologous

promoters result in less synchronous patterns of sna activation

and a progressive reduction in mesoderm invagination during

gastrulation. We therefore conclude that paused Pol II and tran-

scriptional synchrony are essential for coordinating cell behavior

during morphogenesis.

RESULTS

Previous studies suggested a correlation between paused Pol II

and synchronous patterns of gene activation in the Drosophila

embryo. Moreover, computational analyses identified sequence

elements that are associated with promoters containing paused

Pol II, including GAGA and pause button (PB) motifs (e.g., Gil-

christ et al., 2010; Hendrix et al., 2008; Lee et al., 2008; Shopland

et al., 1995). These observations raise the possibility that the

core promoter might be sufficient to determine whether a gene

is paused or not paused and activated in a synchronous or sto-

chastic fashion.

As a first step toward testing this possibility, we examined the

regulation of two Dpp (BMP) target genes, pannier (pnr; GATA4)

and tailup (tup; Islet-1), transcription factors essential for the

specification of a variety of dorsal tissues, including the heart

(Vincent and Buckingham, 2010). These genes are coactivated

in the dorsal ectoderm of 2 hr embryos (e.g., Ashe et al., 2000)

but, nonetheless, display opposite Pol II-binding profiles. tup is

strongly paused, whereas pnr lacks Pol II (Zeitlinger et al.,
2007). The use of quantitative imaging methods revealed differ-

ences in their activation profiles that were missed in previous

studies, as discussed below (Figure 1).

Temporal Coordination of Dpp Target Genes
tup is activated by high levels of the Dpp gradient, whereas pnr is

triggered by low levels (Figures 1A–1H) (Ashe et al., 2000). These

distinctive spatial expression patterns depend on previously

identified tup and pnr enhancers. Quantitative imaging methods

reveal that they also exhibit dissimilar temporal profiles (Figures

1E–1I).

It was previously shown that tup contains paused Pol II and is

activated in a synchronous fashion, whereas pnr lacks Pol II and

exhibits stochastic expression (Boettiger and Levine, 2009). We

developed high-resolution confocal visualization and image seg-

mentation methods to measure the time to synchrony, i.e., the

degree of temporal coordination in gene activation during

nuclear cleavage cycle (cc) 14, the 1 hr interval preceding gastru-

lation (Figures 1A–1H). The �6,000 cells comprising the pregas-

trula embryo are synchronized within the cell cycle, thereby

permitting direct comparisons of transcriptional coordination.

Quantitative FISH assays permit detection of nascent transcripts

shortly after the onset of gene expression (e.g., Bothma et al.,

2011). In this assay, activation is defined as the time it takes

for 50% of the nuclei to express nascent transcripts (t50). Using

a cumulative gamma distribution, we fit a curve to each experi-

mental data set (see Figure S1 available online; Supplemental

Information). t50 values are calculated by measuring the fraction

of nuclei that express a given gene for each fitted activation pro-

file. Pregastrula cc14 embryos are selected based on nuclear

density and embryo morphology and then ordered relative to

one another based on the fraction of the expression pattern con-

taining nascent transcripts. The collections are designed to

ensure that embryos are distributed in an unbiased way across

the entirety of cc14. This approach allows us to measure the

t50 values with an accuracy of ±5 min (see Table 1; Figure S1;

Table S1; Supplemental Information).

The endogenous tup and pnr genes exhibit distinct t50 activa-

tion profiles: tup achieves t50 expression�26min after the onset

of cc14, whereas pnr does not exhibit comparable expression for

another 15 min (Table 1). This represents a significant delay

because the entire cc14 interphase extends for just 55 min

(see below). To determine whether these divergent temporal

expression profiles are due to enhancer or promoter sequences,

we created a BAC transgene encompassing the entire tup tran-

scription unit and flanking regulatory DNAs that recapitulates the

rapid and synchronous activation profile of the endogenous tup

locus (Figures 1J and S2). In these experiments, the tup tran-

scription unit was replaced with the yellow reporter gene to facil-

itate detection of nascent transcripts (Perry et al., 2010). There is

a slight delay in the t50 value of the BAC transgene (�32 min) as

compared with the endogenous tup locus (�26 min) (Table 1),

which is likely due to the heterologous site of transgene insertion,

a slower rate of yellow transcription, or the use of heterozygous

embryos to measure expression of BAC transgenes (see Figures

1I and 1J).

We next examined the activation profile obtained upon

replacement of the paused tup promoter (tupPr) with the
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Figure 1. BMP/Dpp Target Genes Exhibit

Distinct Coordination Profiles

(A–H) cc14 embryos hybridized with tup and pnr

fluorescent (magenta) intronic probes for detect-

ing nascent transcripts (nuclei stained with DAPI

[blue]). Raw images for tup and pnr transcripts are

shown in (B) and (D), and the corresponding pro-

cessed images are shown in (B0) and (D0). Images

shown in (B) and (D) are magnifications of brack-

eted regions in (A) and (C). (E–H) tup (E and G) and

pnr (F and H) expression during mid (E and F) and

late (G and H) cc14.

(I and J) Dynamics of gene expression during cc14

based on the fraction of nuclei containing nascent

transcripts. (I) Endogenous tup expression (blue)

reaches 50% of the complete pattern (t50, 26)

15 min earlier than does pnr (black) (t50, 41).

(J) There is a delay in tup dynamics when the

minimal promoter of a tup BAC transgene (tupY) is

replaced by that of pnr (tupY-PnrPr) (see also

Figure S2). The red curves represent the fitted

curves (using a cumulative gamma distribution) to

the data depicted in (I) and (J) (see Supplemental

Information; Figure S1; Table S1). t50 values are

determined from these fitted curves.
nonpaused pnr promoter (Figures 1J and S2). The modified BAC

transgene is identical to the control, except for the substitution of

just 200 bp centered around the +1 transcription start site of the

pnr promoter (Figure S3). The modified transgene was inserted

into the same chromosomal location as the control transgene,

thereby permitting direct quantitative comparisons of their acti-

vation dynamics. Surprisingly, this 200 bp substitution within

the large 60 kb BAC transgene is sufficient to convert the rapid

and synchronous tup-yellow expression pattern into a slow

and stochastic mode of activation (Figure 1J).

Themodified transgene exhibits a t50 value of 53min, which is

considerably slower than the t50 values seen for the endogenous

tup locus (26min) or unmodified tupBAC transgene (32min). It is

somewhat slower than the t50 value seen for the endogenous

pnr locus (41 min), although the differential timing of the tup

versus pnr promoters (Dt50) is similar for the endogenous loci

and BAC transgenes, at 15 and 21 min, respectively (Table 1).

These findings suggest that the pnr promoter, not enhancers,

is the prime determinant of its slow and stochastic activation

profile during development.
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Minimal Promoter Sequences Are
Sufficient to Establish Paused Pol II
The preceding results suggest that mini-

mal promoter sequences might be suffi-

cient to determine whether a gene is

activated in a synchronous or stochastic

fashion. To establish whether they are

also sufficient for determining the pres-

ence or absence of paused Pol II, we

analyzed minigenes containing the pnr in-

tronic enhancer (pnrE), tupPr, and yellow

reporter gene (pnrE > tupPr/yellow). This

minigene exhibits synchronous expres-
sion in the dorsal ectoderm of wild-type embryos (see below)

but is inactive in Toll10b mutants due to the absence of Dpp

signaling (Schneider et al., 1991). Both the endogenous tup locus

and the minigene nonetheless contain paused Pol II in these

‘‘silent’’ Toll10b embryos (Figures 2A and 2B); as expected, the

endogenous pnr locus lacks paused Pol II (Zeitlinger et al.,

2007) (Table S2). Permanganate footprint assays identified

hypersensitive thymidine residues at positions +48 and +51

nucleotides downstream of the tup transcription start site in

transgenic embryos (Figure 2C), strengthening the evidence

that the stalled Pol II identified at the tupPr represents pro-

moter-proximal paused Pol II.

Thus, the 200 bp tupPr region is sufficient for the establish-

ment of paused Pol II (and synchronous expression, as shown

below). It contains key signatures of paused promoters (Gilchrist

et al., 2010; Hendrix et al., 2008; Lee et al., 2008; Shopland et al.,

1995), including 50 GAGA elements located�100 bp upstream of

the transcription start site, and PB motifs positioned +54

to +64 bp downstreamof the start site, in the vicinity of the hyper-

sensitive thymidine residues identified by permanganate



Table 1. Summary of the t50 Values for All of theConstructs Used

in This Study

Promoter t50 Time (min)

Uncertainty from

Simulations (min)

PnrPr Endo 41 3

TupPr Endo 26 3

Tup-Y BAC 32 3

Tup-Y-PnrPr BAC 53 2

PnrE-TupPr NelfE/Spt5 39 4

PnrE-TupPrShort 31 3

PnrE-TupPr Trl 30 4

PnrE-TupPr 15 3

PnrE-SnaPr 24 3

PnrE-Hsp70Pr 28 4

PnrE-SogPr 38 4

PnrE-ThsPr 55 2

PnrE-PnrPr 74 4

SnaE-SnaPr 3 2

SnaE-SogPr 22 4

SnaE-ThsPr 40 3

SnaE-PnrPr 42 3

SogE-TupPr 1 0.6

SogE-SnaPr 1 0.6

SogE-PnrPr 35 7

t50 corresponds to the time it takes for an embryo to show nascent tran-

scription in 50% of the pattern. t50 is an estimated time based on the

measured activated kinetics of many embryos (see also Figure S1 and

Table S1).
protection assays (Figures 2C and S3). We therefore conclude

that minimal promoter sequences are sufficient to establish

paused Pol II in vivo, in the Drosophila embryo. In principle,

any gene can be artificially ‘‘paused’’ or ‘‘depaused’’ by

exchanging minimal promoter sequences. Such an approach

may be relevant to the stem cell field because some of the key

determinants of pluripotency (e.g., Nanog) exhibit stochastic

expression among the different ICM cells of mouse embryos

(Kalmar et al., 2009; Nichols and Smith, 2011).

Promoter-Associated Elements Influence
Transcriptional Synchrony
To establish a sharper connection between ‘‘pausing elements’’

in the tupPr and transcriptional synchrony, we expressed the

pnrE > tupPr/yellow transgene in embryos containing dimin-

ished levels of the GAGA-binding protein, GAF (or Trl). Previous

studies implicated GAGA and Trl in the stable association of

paused Pol II within the proximal promoter of Hsp70 (Fay

et al., 2011; Lee et al., 1992; Shopland et al., 1995). The tupPr

region contains GAGA elements located �100 bp upstream of

the transcription start site (Figure S3), and whole-genome as-

says confirm GAF/Trl binding to this region in the Drosophila

embryo (Schuettengruber et al., 2009). Reduced levels of Trl

caused an �20 min delay in the activation of the pnrE >

tupPr/yellow transgene, as compared with wild-type embryos
(Figure 2D; Table1), similar to the activation profile mediated

by the nonpaused thisbe promoter (see below). An equivalent

delay is observed with a truncated tupPr lacking upstream

GAGA elements but retaining all core elements such as the

INR (Figure 2D; Table1). These studies suggest a close correla-

tion between Trl/GAGA and the temporal coordination of gene

activation.

The stability of paused Pol II also depends on negative elonga-

tion factors, such as NELF and Spt5, which bind nascent tran-

scripts shortly after the onset of transcription (Gilchrist et al.,

2010; Li and Gilmour, 2011). There is an �30 min delay in the

activation profile of the pnrE > tupPr/yellow transgene in em-

bryos containing reduced levels of NelfE and Spt5 (Figure 2D;

Table1). Thus, the preceding findings suggest a close correlation

amongminimal promoter sequences, paused Pol II, and the time

to synchrony in the Drosophila embryo.

A Spectrum of Synchrony
Whole-genome Pol II chromatin immunoprecipitation sequenc-

ing (ChIP-seq) assays suggest that genes might not be simply

paused or nonpaused, and activated in a strictly synchronous

or stochastic fashion. Instead, there are different levels of

Pol II in the promoter regions of genes previously identified

as stalled or not stalled (Figure 3F; see Zeitlinger et al.,

2007). Normalized levels of paused Pol II were measured in vivo

in dorsal-ventral patterning mutants containing a single embry-

onic tissue, in which the gene in question is silent (Figure 3F).

For example, tup is not expressed in Toll10b mutant embryos

because they contain only mesoderm due to the transformation

of ectoderm into mesoderm. Conversely, sna is not expressed

in gd7 mutant embryos, which display the reciprocal transfor-

mation of mesoderm into ectoderm. The tup and sna pro-

moters contain significantly more Pol II sequence reads than

sog in silent mutant embryos, even though all three genes

were classified as stalled or paused in previous studies (Zeitlin-

ger et al., 2007). Similarly, thisbe contains more Pol II than pnr,

even though both genes were classified as nonstalled. tup is

consistently seen to contain the highest levels of promoter-

proximal Pol II read counts in a variety of tissues (Gaertner

et al., 2012).

To investigate the significance of these different levels of Pol II,

we analyzed the expression of a series of minigenes containing

the pnr enhancer (pnrE) and six different promoter sequences

encompassing a spectrum of paused Pol II (Figure S3). Remark-

ably, the activation profiles of these minigenes mirror the levels

of Pol II binding (Figure 3E; Table 1). The tupPr contains the high-

est levels of Pol II and exhibits a t50 value of just�15 min. This is

followed by progressively slower profiles for sna (t50, 24 min),

hsp70 (28 min), and sog (38 min), which contain successively

lower levels of Pol II.

Finally, the promoter regions of the nonpaused genes ths and

pnr exhibit the slowest activation dynamics, although ths is

somewhat faster (t50, 55 min) than pnr (t50, 74 min). A similar

correlation between the levels of paused Pol II and the time to

synchrony was seen for minigenes containing the sog intronic

enhancer, whichmediates activation in the neurogenic ectoderm

(Figures S4A–S4D; Table1), and for the distal sna enhancer

(snaE) in the mesoderm (see below).
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Figure 2. The Minimal Promoter Mediates

Paused Pol II

(A) Pol II Chip-seq reads of the pnr/tup transgene in

a tissue where it is silent.

(B) Pol II ChIP followed by qPCR showing enrich-

ment at the tupPr/yellow junction. y ORF, yellow

open reading frame. Error bars represent SD.

(C) Permanganate footprinting reveals a promoter-

proximal ‘‘transcription bubble’’ inmutant embryos

where the tupPr/yellow transgene is silent.

(D) Reduced levels of maternal Trl (turquoise) or

NelfE/Spt5 (pink) cause a delay in the expression

profile of the pnrE > tupPr transgene. A similar

effect is observed with a truncated version of the

tupPr lacking the upstream GAGA sites.

See also Figure S3 for relevant promoter

sequences.
Transcriptional Synchrony and Rates of RNA Synthesis
The preceding findings demonstrate that the same enhancer

can produce a spectrum of activation profiles in the ectoderm

of early embryos. To determine the feasibility of manipulating

the timing of gene expression in the presumptive mesoderm,

we placed the distal (shadow) snaE (Dunipace et al., 2011;

Perry et al., 2010) upstream of the sna, sog, ths, and pnr

promoters and yellow reporter gene (Figures 4A–4C). We

observed similar relative t50 values as those obtained with

the pnrE (Figure 3; Table 1). The sna promoter mediates a t50

value of 3 min, whereas the more weakly paused sog promoter
980 Cell 153, 976–987, May 23, 2013 ª2013 Elsevier Inc.
exhibits a 19 min delay in the t50 profile

(Figure 4D; Table 1). As expected, the

nonpaused ths and pnr promoters

mediate even slower activation profiles

(t50, 40 and 42 min, respectively). The

snaE mediates more rapid onset of

expression in cc14 than the pnrE, prob-

ably due to the earlier availability of acti-

vators (e.g., Dorsal and Twist) in the

mesoderm as compared with the dorsal

ectoderm (e.g., pSmad). Nonetheless,

after upstream activators initiate expres-

sion, the detailed temporal dynamics

(t50 activation) are determined by the

different promoter sequences.

The sna, sog, and ths promoters pro-

vide a nice spectrum of activation during

cc14 (t50 values of 3, 22, and 40 min,

respectively) and seem ideally suited

for manipulating the synchrony of sna

expression in the presumptive meso-

derm. Our choice of sna stems from

the short lag time, less than 90 min,

between the onset of transcription and

morphogenesis—the coordinate invagi-

nation of the ventral mesoderm during

gastrulation (see below). However, the

accurate interpretation of any changes

in gastrulation arising from the use of
heterologous promoters requires an understanding of the rela-

tionship between t50 activation profiles and the levels of gene

expression.

We expected promoters mediating slow synchrony profiles

(e.g., ths) to produce weaker expression than those mediating

rapid synchrony (e.g., sna promoter). Single-molecule in situ hy-

bridization (smFISH) assays (Boettiger and Levine, 2013) were

employed to measure the number of yellow mRNAs produced

by different yellow minigenes: snaE > pnrPr/yellow, snaE >

thsPr/yellow, and snaE > snaPr/yellow (Figure 4E). As expected,

the ‘‘slow’’ minigenes produce lower levels of yellow mRNAs
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Figure 3. A Spectrum of Synchrony

The pnrE was placed upstream of the tup, sna, Hsp70, sog, ths, and pnr promoters (Pr) (see diagram in upper left).

(A–D) Examples of transgenic embryos stained with a yellow intronic probe at the midpoint of cc14. The tupPr mediates synchronous expression in the dorsal

ectoderm (A), whereas the pnrPr mediates stochastic expression (D).

(E) Temporal coordination profiles during cc14. The tupPr provides the rapid coordination profile, whereas the pnr promoter exhibits the slowest coordination.

Sog and ths give intermediate.

(F) Relative amounts of Pol II at the promoter regions of inactive genes. For actively expressed genes, we denote them as ‘‘expressed’’; the normalized Pol II reads

are provided in Table S2.
than the ‘‘fast’’ genes. The pnr, ths, and sna promoters produce

30 ± 10, 60 ± 20, and 100 ± 30 mRNAs per cell, respectively, in

the mesoderm prior to invagination.

Modeling methods were used to estimate promoter strength

based on activation kinetics (see Supplemental Information;

Figures S4E–S4I). The different levels of yellow mRNAs pro-

duced by the ths and sna promoters can be attributed to their

respective t50 activation profiles. The snaE > thsPr/yellow mini-

gene is expressed at lower levels than snaE > snaPr/yellow due

to its slower synchrony profile. However, once activated in a

given cell, the ths promoter appears to mediate a similar rate

of RNA synthesis as the sna promoter (see Supplemental Infor-

mation; Figures S4E–S4I). Similarly, quantitative measurements

suggest that the sog promoter mediates a similar rate of

expression as the sna and ths promoters once activated (see

below). In contrast, the low levels of yellow mRNAs produced

by the pnr promoter probably result from the combination of

a slow synchrony profile and a lower rate of RNA synthesis.

Thus, we focused on the use of the ths and sog promoters to
examine the consequences of ‘‘desynchronizing’’ the onset of

sna expression.

Transcriptional Synchrony Is Essential for Coordinate
Invagination
A 25 kb sna BAC transgene encompassing the sna transcription

unit, proximal enhancer, and neighboring Tim17B2 locus (which

harbors the distal sna shadow enhancer) was shown to be suffi-

cient to rescue the gastrulation defects of sna�/sna� mutant

embryos (Dunipace et al., 2011; Perry et al., 2010). However,

there is evidence that the proximal enhancer might attenuate

sna expression by impeding access of the distal enhancer to

the sna promoter (Dunipace et al., 2011) (data not shown).

Consequently, we removed this enhancer in order to obtain a

more direct assessment of the contributions of the different pro-

moters in coordinating mesoderm invagination. It is important to

note that the distal enhancer is sufficient for complete rescue of

the gastrulation defects of sna�/sna� mutant embryos and the

development of fully viable adult flies (Dunipace et al., 2011).
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D

C

A

cc14

cc14

B

cc14

sn
aP

r
th

sP
r

so
gP

r

yellow

yellow

yellow

sn
a 

    
 D

A
PI

sna-/-, snaBAC-promoter X

thsPr

G H

E

I

early cc14early cc14

m
esoderm

al   region

sna enhancer-promoter-yellow

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fraction of cc14

Fr
ac

tio
n 

co
re

 p
at

te
rn

 o
n

sna (n=42)
sog (n=35)
ths (n=54)
pnr (n=54)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

P
ro

m
ot

er
 s

tre
ng

th
 (a

rb
)

F

sn
aP

r

yellow full length

Nascent transcripts

Single mRNAs

cc14
PnrPr ThsPr SnaPr

sogPr snaPr
early cc14

sna enhancer yellowpromoter

Figure 4. Minimal Promoters Are Sufficient

to Perturb sna Temporal Coordination

The distal snaE was placed upstream of the snaPr

(A), sogPr (B), and thsPr (C) promoters attached to

the yellow reporter gene (see diagram in upper

left).

(A–C) Processed images after FISH using a yellow

intronic probe.

(D) Temporal coordination profiles during cc14.

(E) High-resolution confocal image of yellow

mRNAs encoded by the snaE > snaPr/yellow

minigene. Arrowheads point to individual cyto-

plasmic mRNAs; arrow indicates nascent tran-

scripts.

(F) Bar graph showing the estimated promoter

strength from the pnr, ths, and sna promoters just

prior to gastrulation (see Experimental Procedures

and Figure S4). Error bars represent SD. a.u.,

arbitrary units.

(G–I) False-colored nuclei showing the presence of

nascent transcripts for sna in the rescue BAC

constructs containing the ths (G), sog (H), and sna

(I) promoter.
We employed recombineering methods to create a series of

sna BAC transgenes that contain either sog or ths promoter

sequences in place of the native sna promoter (replacement

of �100–110 bp; see Figure S3). The three BAC transgenes

(native sna promoter, sog promoter, or ths promoter) exhibit

distinctive patterns of activation during the onset of cc14 (Fig-

ures 4G–4I), concomitant with the levels of paused Pol II and

the t50 synchrony values seen for the sna minigenes (Figures

4A–4D).

There is a tight correlation between these activation profiles

and the extent to which mesoderm invagination is rescued in

sna�/sna� embryos (Figure 5). Thus, the ‘‘native’’ transgene con-

taining the strongly paused sna promoter mediates a coordi-

nated ventral furrow and robust invagination of the mesoderm
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(Figures 5A–5D). In contrast, the trans-

gene containing the moderately paused

sog promoter produces truncated fur-

rows (Figures 5E, 5F, and 5H) (18 out of

22) but occasionally induces nearly com-

plete furrows approaching those seen in

wild-type embryos (Figures 5G and 5G0)
(4 out of 22). Finally, the nonpaused ths

promoter produces highly variable phe-

notypes, ranging from the complete

absence of invagination (11 out of 16), to

erratic pockets of ingressing cells (3 out

of 16) (Figures 5I and 5J), and rarely,

extended grooves of invaginating cells

(2 out of 16) (Figures 5K and 5K0). Snail
mRNAs and protein are detected only in

the invaginating cells of partially rescued

embryos exhibiting truncated furrows or

isolated pockets of ingression (Figures

5D, 5H, 5L, and S5A–S5F). These studies

suggest that the time to synchrony is a
critical determinant of coordinate cell behavior in development

(see below).

Computational Models of Gastrulation Variability
We constructed a mathematical model (Figures 6A–6C) to

explain the highly variable gastrulation phenotypes seen for the

sna BAC transgenes containing the sog and ths promoters. Bist-

ability of sna expression is often observed in the anterior third of

the embryo encompassing �300 of the �1,000 cells comprising

the ventral furrow (e.g., Figures 5E0, 5F0, and 5K0). This model

makes use of the wealth of knowledge about the transcrip-

tion networks governing the dorsal-ventral patterning of the

Drosophila embryo (reviewed by Rushlow and Shvartsman,

2012). It also draws on recent dynamic imaging of the Dorsal
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Figure 5. Stochastic Expression of sna

Results in Gastrulation Defects

(A–L) Transgenic rescue embryos stained with a

sna probe (in red) at gastrulation stages (A–C, E–G,

and I–K) and correspondent invaginating cells

false colored in green (A0–C0, E0–G0, and I0–K0 ).
(A–C)When sna expression is driven by a snaBAC-

sna promoter lacking the primary enhancer, all

embryos gastrulate normally.

(E–G) Variable gastrulation defects are obtained

when the sna promoter is replaced by the

moderately paused sog promoter. Most embryos

show pockets of ingressing cells (E and E0), and
‘‘half furrow’’ (F and F0 ) and occasional embryos

show a normal furrow (G and G0 ).
(I–K) When sna is artificially depaused by re-

placing its promoter by the ths promoter

sequence, most embryos fail to gastrulate (I–J0),
but rare embryos exhibit an extended groove of

invaginating cells (K and K0).
(D, H, and L) Transgenic embryos stained with sna

(red) and twist (Twi; green) antibodies at gastru-

lation when the ventral furrow is invaginating.

See also Figure S5.
nuclear gradient (Kanodia et al., 2009, 2011; Liberman et al.,

2009; Reeves et al., 2012), which revealed a slight narrowing of

the gradient in anterior regions. Our model also invokes sna

autoregulation, which is suggested by the rapid loss of sna tran-

scripts (Hemavathy et al., 1997) and yellow transcripts from a sna

BAC transgene (Figures S5G–S5J) in sna�/sna� null embryos.

We explored different mechanisms of autoregulation and

obtained the most faithful results with an indirect model,

whereby Snail represses a localized ectodermal repressor via a

double-negative feedback loop (see Supplemental Information;

Figure S6).

Computational simulations consistently produce uniform

ventral furrows when the onset of sna expression is rapid and

uniform (t50, 0–4 min after the onset of cc14) (Figures 6C and
Cell 153, 976–
6D), as seen for the native sna promoter

(Figure 4I). However, slightly less co-

ordinated patterns of activation (t50,

4–7 min), e.g., sog promoter (Figure 4H),

produce highly variable ventral furrows

(Figure 6E). As the coordination is further

reduced (t50, 7–12 min) (Figure 6F), most

simulations show a complete loss of the

furrow, although a small fraction of simu-

lations produce half furrows in the poste-

rior half of the embryo, as seen for the ths

promoter (Figures 4G and 5K).

The bistable, all or none invagination of

the anterior mesoderm can be explained

by the combination of reduced levels of

the Dorsal gradient, variable activation

of Snail expression, and delayed synthe-

sis of critical threshold levels of the Snail

repressor (Figures 6E and 6F). The key

insight from these simulations is that
short-range diffusion among neighboring nuclei can produce

sufficient levels of Snail repressor to rescue small but not large

patches of sna-expressing nuclei. The decision to maintain or

repress sna expression occurs during a very tight time window,

�10–20 min after the onset of gastrulation. The key parameter

underlying bistability is the time to synchrony because similar

results are obtained when computer simulations are performed

with a range of Hill coefficients for sna regulation and different

diffusion rates for the Snail protein (see Figure S7).

DISCUSSION

Through a combination of BAC transgenesis, whole-genome

ChIP assays, quantitative imaging, and computational modeling,
987, May 23, 2013 ª2013 Elsevier Inc. 983
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Figure 6. Modeling Gastrulation Variability:

The Importance of Coordination

(A)Mesodermal region of a DAPI-stained embryo to

show the segmentation process of the nuclei. The

panel below is a schematic illustrating the neigh-

bors (j) of a given mesodermal nucleus (i). We allow

for nearest neighbor diffusion, where the ‘‘i’’

nucleus is diffusively coupled to its nearest neigh-

bors that share a boundary (j, 1:6 in this case).

(B) Simplified mathematical model for Snail

dynamic expression in a given nucleus (i). The key

parameters are the timing of sna activation in the

particular nuclei, the concentration of the neuro-

genic repressor (Rep), and the concentration of

activators like Dorsal (k1), number of nearest

neighbors (NN), and the strength of the diffusive

coupling between nuclei (D).

(C) Activation curves computationally obtained for

three different promoters: sna, sog, and ths.

(D–F) Results of computational simulations when

sna temporal coordination is affected; t50 values

are indicated.

See also Figures S5, S6, and S7.
we obtained evidence that the time to synchrony is a critical

determinant of coordinate cell behavior in the Drosophila

embryo. Genes containing high levels of paused Pol II are acti-

vated in a more rapid and coordinated fashion than those con-

taining intermediate or low levels. It is conceivable that paused

Pol II will prove to be an essential feature of other patterning pro-

cesses requiring rapid coordination of gene expression and cell

behavior. For example, pausing of Notch signaling components

(e.g., Hes) might help coordinate expression of the ‘‘clock’’

genes underlying somitogenesis in vertebrate embryos (Saga,

2012), which occurs on a timescale similar to mesoderm speci-

fication and invagination in Drosophila (�90 min from the onset

of sna transcription to the formation of the ventral furrow).

Model for the Developmental Timing of Gene Activation
Recent studies in S2 cells suggest that developmentally regu-

lated genes tend to contain either paused Pol II or inhibitory

nucleosomes (Gilchrist et al., 2010). RNAi-mediated depletion

of NELF led to reduced levels of paused Pol II and a concomitant

increase in promoter-positioned nucleosomes. These studies

prompted the proposal that paused Pol II might render genes

poised for activation by excluding the formation of inhibitory

nucleosomes at the core promoter.

It is possible that nonpaused genes mediate slow activation

dynamics due to cell-cell variation in the eviction of inhibitory

nucleosomes at the core promoter. If occupied by an inhibitory

nucleosome, a distal enhancer will not be able to stimulate tran-

scription as it engages the promoter. Either the enhancer must

await repositioning or dynamic turnover of inhibitory nucleo-

somes to allow recruitment of Pol II. Either way, this process

might be inherently stochastic, resulting in cell-to-cell variations

in the onset of transcription.
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In principle, this model can account for the spectrum of activa-

tion profiles seen for genes containing different levels of paused

Pol II. A gene containing high levels, such as tup, is more likely to

contain Pol II than an inhibitory nucleosome in a given cell at a

given time as compared with genes containing little or no paused

Pol II (e.g., ths and pnr, respectively). Consequently, upon induc-

tion, strongly paused genes exhibit synchronous patterns of acti-

vation because most of the promoters in the different cells of a

tissue contain Pol II. In contrast, genes containing little or no

paused Pol II are more likely to contain an inhibitory nucleosome

in a given cell at a given time, resulting in variable delays in the

onset of gene expression. Thus, the ratio of poised and inhibited

states might determine the time to synchrony.

The sna gene contains lower levels of Pol II than the tupPr

(Gaertner et al., 2012). When attached to the pnrE, it mediates

a t50 activation profile of 24 min (Table 1), which is similar to

the prototypic paused hsp70 promoter but significantly slower

than the tupPr (15 min) (see Figure 3). Recent studies in cultured

cells suggest that transcription initiation can be dissociated from

subsequent rounds of Pol II recruitment for p53 target genes,

resulting in rapid rates of activation but low steady-state levels

of mRNAs (Morachis et al., 2010). It has been suggested that

strongly paused genes are not necessarily expressed at high

levels due to the dwelling of Pol II within the proximal promoter

at every round of transcription following activation (Gilchrist

et al., 2012; Lin et al., 2011). This could reduce the rate of RNA

synthesis by lowering the frequency of elongating Pol II com-

plexes. In contrast, promoters containing weaker pausing ele-

ments might achieve higher loading of Pol II complexes due to

shorter dwell times.

We propose that there is a ‘‘trade-off’’ between timing and

levels of gene expression at paused genes. Genes containing



moderate levels of paused Pol II, such as hsp70 and sna, might

achieve an optimal balance between excluding inhibitory nucle-

osomes for synchronous activation and efficient loading of Pol II

complexes. Evidence for this model is seen for the tupPr. It

mediates rapid and synchronous activation of a sna BAC trans-

gene but significantly weaker expression than the sna promoter

(see Figures S5K–S5M).

Dynamic Control of the Dorsal-Ventral Patterning
Network
The gene regulatory network underlying the spatial control of

dorsal-ventral patterning has been extensively studied (reviewed

by Rushlow and Shvartsman, 2012). Considerably less is known

about the temporal dynamics of this process. Indeed, develop-

mental timing has only recently become a critical focus of study,

even in well-defined systems such as the patterning of the verte-

brate neural tube (Balaskas et al., 2012). Here, we have shown

that perturbing coordinate activation of the sna expression

pattern leads to various invagination defects during gastrulation.

Computational modeling (Figure 6) highlights the importance of

timing in producing these defects. Delayed and asynchronous

patterns of activation uncouple Snail from the other components

of the dorsal-ventral patterning network, resulting in variable

gaps and bistability of the ventral furrow, particularly in the ante-

rior mesoderm. Indeed, this uncoupling results in the expression

of high levels of the Dorsal and Twist activators in regions that fail

to invaginate due to the delay in Snail expression (e.g., Figures

5H and 5L). This uncoupling of sna expression from its activators

provides a vivid illustration of the importance of temporal

dynamics in the control of complex developmental processes.

A static gene network based on a simple Dorsal gradient affinity

model does not appear to be sufficient to capture the intricacies

of mesoderm morphogenesis.

The dorsal-ventral patterning network amplifies small changes

in the levels of the dynamic Dorsal gradient to produce all or none

patterns of sna expression. We believe that the key agent of this

all or no bistable expression of Snail is the antirepression of

competitive ectodermal repressors (Hemavathy et al., 1997).

This indirect mechanism of Snail autoregulationmay be the basis

for producing the unusually sharp border of Snail expression at

the boundary between themesoderm and neurogenic ectoderm.

This border determines whether cells become fully committed to

EMT at gastrulation. Delays in coordinate sna expression are

amplified by the dorsal-ventral patterning network to produce

bistable gaps in the ventral furrow, particularly in anterior regions

where there are slightly diminished levels of Dorsal nuclear

transport.

Spectrum of Pausing and Cell Fate Decisions
Our results indicate that the continuum of Pol II pausing seen for

different promoters leads to a continuum of temporal coordina-

tion in gene activation, spanning from highly stochastic to syn-

chronous. As discussed above, synchronous activation of tran-

scription is essential for coordinating mesoderm invagination;

however, the stochastic regulation of gene expression is some-

times used to provide flexibility in cell fate specification within a

tissue (Eldar and Elowitz, 2010; Losick and Desplan, 2008). For

example, stochastic specification mechanisms underlie fate
decisions in the Drosophila eye and human immune system

(Duffy et al., 2012; Losick and Desplan, 2008), whereby cells

must adopt alternate fates to achieve a distribution of distinct

functions. For example, there is a 70:30 distribution of alternative

ommatidial identities in the eyes of higher Diptera that has been

conserved for �120 MYA (Losick and Desplan, 2008). Similarly,

flexibility in the behavior of B lymphocytes is important for

immune regulation (Duffy et al., 2012). Modulating the levels

of paused Pol II could help tune the proportion of cells that

adopt different fates through such stochastic specification

mechanisms.

In summary, we have presented evidence that the promoter is

a key agent for coordinating gene expression in the different cells

of an embryonic tissue. Minimal promoter sequences are suffi-

cient to establish paused Pol II and mediate synchronous pat-

terns of gene expression. There is a tight correlation among

the levels of paused Pol II, the time to synchrony, and the coor-

dination of mesoderm invagination. We therefore propose that

promoters ensure exquisite control of the complex cellular pro-

cesses underlying morphogenesis.

EXPERIMENTAL PROCEDURES

Fly Genetics

The following fly lines were used for this study: Sna (Bl3078), NelfE (Bl1569),

Spt5 (Bl8352), Trl (TrlR67), and landing site line ‘‘VK33’’ (Bl 24871). Toll10b is

a maternal dominant gain-of-function mutation (Schneider et al., 1991); trans-

genes were introduced through the males. The genetic procedure used for the

sna BAC rescue experiments was performed as described previously by Perry

et al. (2010). For more details, see information in the Extended Experimental

Procedures.

Recombineering, Cloning, and Transgenesis

BAC recombineering was performed as described previously by Venken et al.

(2006). The following CHORI BACs were used: tup BAC (84.8 kb, shortened to

60 kb) (CH321-68I16); and sna BAC (CH322-18I14-1). Sources of plasmid

used and fly transgenesis using targeted integration are described in the

Extended Experimental Procedures and Table S3.

FISH and Quantitative Imaging Methods

FISH experiments were performed as described in Bothma et al. (2011).

Embryos were imaged on a Carl Zeiss LSM 700 laser-scanning microscope,

equipped with a motorized stage. Images were computationally segmented

to localize nuclei and nascent transcripts of mRNA. More extensive details

on the image analysis are included in the Extended Experimental Procedures.

In order to measure the time to synchrony, activation curves were generated

by quantifying the number of nuclei exhibiting nascent transcripts for various

embryos at various time points during cc14. By fitting a cumulative gamma dis-

tribution, the t50 parameter was evaluated. Detailed description of this assay is

provided in the Extended Experimental Procedures.

Pol II ChIP-Seq

Pol II ChIP has been performed as described in Zeitlinger et al. (2007) using a

Pol II antibody (CTD4H8; Millipore). Methods employed for library generation

and ChIP-seq analysis are detailed in the Extended Experimental Procedures.

Modeling

A detailed description of the mathematical model used to predict the evolution

of the Snail protein is provided in the Extended Experimental Procedures.

Briefly, ordinary differential equations were used with the following key param-

eters: the timing of Snail activation, the concentration of a repressor and that of

an activator (Dorsal), the number of nearest neighbors, and the diffusion

between nuclei.
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Supplemental Information

EXTENDED EXPERIMENTAL PROCEDURES

Fly Genetics
The snail deficiency used in this study also removes some neighboring genes (Bl 3078). In addition to genotyping the embryos with a

lacZ from a labeled balancer (hb-lacZ), we use a probe for the escargo (esg) gene, which next to snail and is expressed during cc14 in

the ventral ectoderm. The snail deficiency we used also deletes this escargo gene, but the latter is not present in the 25kb snail BAC

used in this study.

Recombineering, Cloning, and Transgenesis
Plasmid constructs containing various enhancers (pannier enhancer, sog enhancer and snail shadow enhancer) and promoters (pnr,

tup, sna, sog, ths, Hsp70) were built using the pbPHi backbone vector (Venken et al., 2006). Primers used for construct building and

recombineering are listed in Table S3. All plasmids and BACs were integrated in the same landing site on chromosome 3 (VK33). The

50RACE PCR has been performed using the kit firstChoice RLM-RACE from Ambion. The reverse transcription has been performed

on RNA collected from 2-4h yw embryos.

Permanganate Genomic Footprinting
Permanganate footprinting on embryos was carried as described in (Ghosh et al., 2011), by adapting the volumes to small amount of

DNA. LM-PCR reactions were performed as preciously described (Gilmour and Fan, 2009). All reactions started with 100ng of

piperdine-cleaved DNA. The primers used are listed in Table S3. ‘‘Naked DNA’’ stands for genomic DNA. The time of permanganate

treatment is indicated in Figure 2.

Pol II ChIP
Chromatin immunoprecipitations (ChIP) from approximately 1g of Toll10b, Pnre-tupPr-Y; gd7, TwiBac-PnrPr-Y or gd7, TwiBac-Y

mutant embryoswere performed as described in (Zeitlinger et al., 2007). Amonoclonal antibody recognizing both the phosphorylated

and the nonphosphorylated form of Pol II was used (CTD4H8, Millipore). Sequencing libraries were prepared from 10ng of immuno-

precipitated DNA and 50ng input DNA following the Illumina’s instructions. The primers used for ChIP-qPCR are listed in Table S3.

ChIP-Seq Analysis
Paired-end sequenced reads for both the RNA Pol II ChIP and the whole-cell extract input control were aligned to the Drosophila

reference genome (UCSC version dm3) with the addition of a pseudo-chromosome containing the sequence of the synthetic

promoter and yellow gene from the BAC insert. Reads were uniquely aligned using Bowtie version 0.12.7 with the following param-

eters: -X 300 –k 1 –m 1 –l 51 –n 3. Successfully aligned paired reads were merged into single fragments and used to calculate read-

count-normalized coverage over the entire genome.

FISH and Immunostaining
Yellow white and transgenic embryos were developed at room temperature and were collected at 1-4 hr of development and were

fixed as described in (Kosman et al., 2004). We used the in situ hybridization protocol from (Kosman et al., 2004) with minor modi-

fications. No Proteinase K was used and signal was not amplified using Tyramide amplification. All probes were made with either

digoxigenin, biotin or dinitrophenyl conjugated haptens. The primary antibodies used to detect probes were sheep anti-digoxigenin,

mouse anti-biotin and rabbit anti-dinitrophenyl (Roche Applied Sciences, Invitrogen). Thesewere labeledwith Alexa dyes using Alexa

Fluor 555-donkey-anti-sheep, Alexa Fluor 488 donkey-anti-mouse and Alexa Fluor 647 donkey-anti-rabbit secondary antibodies

(Invitrogen, Molecular Probes). Nuclei were counter-stained with either DAPI (Invitrogen) or DRAQ5 (Biostatus). All the embryos

used for the initiation curves were co-stained with a probe labeling sog nascent transcripts. Sog has a distinctive expression pattern

that allows unambiguous identification of the dorso-ventral orientation of embryos during cc13 and 14. The primers that were used to

amplify the DNA fragments that were used to make the different RNA probes are listed in Table S3. We used a guinea-pig antibody

anti-snail, a rat antibody anti-twist and a rabbit anti-ß-galactosidase. The twi and sna antibodies were kindly provided by Dr. Wie-

schaus (Princeton).

Confocal Imaging
Embryos were imaged on a Carl Zeiss LSM 700 Laser Scanning microscope, equipped with a motorized stage. For embryos used to

examine activation kinetics 20-25 section z-stacks through the nuclear layer at 1/2micron intervals were taken using a Plan-Apochro-

mat 20x/0.8, WD = 0.55 mm lens. They were taken at 2048x2048 resolution with 8 bit color depth. Embryos were roughly staged by

quantitative analysis of nuclear density and by developmental morphology.We examined embryos from the beginning of cell cycle 13

through to the onset of cephalic furrow formation. For the initiation curves acquired during cc13 and cc14 all the embryos on a slide

that were in the appropriate orientation to see the expression pattern of the enhancer of interest were imaged (i.e., dorsal view for the

pnr enhancer constructs and ventral view for the snail enhancer constructs). The orientation was judged by examining the expression

pattern of sog nascent mRNA which was placed in a different channel to that of the transgene.
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For the images acquired for the mRNA counting 50 section z-stacks through the outer layer of cells at 1/3 micron intervals were

taken using a Plan-Apochromat 63x/1.40 oil lens. They were taken at 2048x2048 resolution at 16 bit color depth.

Image Analysis for Determining Fraction Active Nuclei
We wrote an automated image segmentation program in MatlabR2011 (MathWorks) to identify and count all stained nuclei and

detect foci of nascent transcription. This was then used to determine what fraction of nuclei in a region of gene expression was active

for many different embryos.

For the image stack containing the DNA counter stain, Z-stacks were projected into two-dimensional images by selecting the

maximum intensity pixel in each stack. For the channels that contained the signal from the in situ probes each image plane was

filtered by a Laplacian of Gaussian and then the stack was max projected to a two dimensional image. The core of each individual

nucleus was determined using the DNA counter-stain, processed with a Laplacian of Gaussian filter, which allows robust determi-

nation of nuclei using blob detection, size selection, and signal strength to inform classification. This was followed by an object dila-

tion algorithm to create a computational mask in which all pixels in an embryo are assigned to a uniquely identified nucleus.

The script then determines the transcriptional activity of nuclei by identifying which in situ signals from nascent mRNA are present

in the region assigned to different nuclei. True hybridization foci or dots are identified through a series of filtering steps and segmen-

tation. The 2D projection is filtered by a Laplacian of Gaussian filter which is then segmented using a combination of a watershed

algorithm (to split dots that are joined) and intensity based thresholding.

To address possible misclassification due to uncertainty in determining the nuclear boundary, transcripts localized to pixels adja-

cent to the nuclear boundary may be automatically reassigned to the neighboring nucleus if the original parent nucleus already con-

tains an interior localized probe. This exploits the fact that the hetero or homo allelic expression of the reporter should result in no

more than one or two foci per nucleus, respectively. An iterative extension of this algorithm also insured reliable classification

when several adjacent nuclei each had transcripts that localized to boundary pixels.

To determine the fraction of inducible nuclei that are actively expressing a particular gene/enhancer, the subset of cells that make

up the expression pattern needs to be defined. The enhancers used in this study are heavily studied and therefore the exact locations

where they drive expression are well characterized. This allows the software user to manually select the region of expression based

on the percentage of the embryo and spatial profile of other genes that serve as fiduciary markers. For our analysis we focus on a

subset of the expression pattern that we define as the ‘‘core’’ region of expression. The core region of expression satisfies the

following two criteria. First, nuclei are activated with no significant spatial bias in this region. Second, the expression pattern displays

no spatial dynamics across cc14. For example the expression of snail is refined at the poles of the embryo during cc14 and so nuclei

within 15%EL of the poles were not included in the core region for analysis of constructs with the snail enhancer. We specifically

focused on the core of the pattern to avoid convoluting the dynamics of changes in the expression pattern of the gene with that

of gene activation. The core region consists of many hundreds of nuclei and using this we can calculate the fraction of core pattern

‘’on’’. This is done for many embryos and forms the basis for determining the kinetics of activation described in later sections.

Quantifying Initiation Dynamics and Determining t50
To quantify the initiation dynamics, we combined the calculated fraction ‘’on’’ for all the�50-100 embryos for the different constructs

tested. The embryo collections were designed to ensure that embryos are distributed in an unbiased way across the entirety of the

one hour window of cc14. Under the assumption that the fraction of the core pattern active increases monotonically with time (which

was verified by examining the fraction of pattern ‘’on’’ at different stages of membrane invagination), we can order these embryos

from youngest to oldest based on the fraction of pattern that is active. This means that we know the relative age of each embryo

but don’t know the absolute age. To determine the kinetics, we can assume that the timing between embryos is uniform at the

cost of introducing uncertainty in the activation kinetics. We measure large numbers of embryos and so we sample the period of

interest densely and as a result, the uncertainty introduced with this method is relatively small. We can explicitly calculate the uncer-

tainty introduced using ourmodel to describe the timing of gene activation. The uncertainty in time introducedwith this method is less

than 5 min in most cases (see Table1, Figure S1, and Table S1), which is sufficient for our purposes and significantly better than what

can be obtained by monitoring membrane invagination.

In order to better understand the process of gene activation and be able to compare activation kinetics across different constructs

and promoters, we needed to develop a model to characterize the time to gene activation. From what we have measured, it is clear

that the time it takes for a particular nucleus to start transcribing a gene is a random variable. Exactly how pausing will affect the sto-

chastic molecular processes that set the timescale for the activation of gene expression are not understood. Hence, it would be very

difficult to derive a distribution with few free parameters from a minimal mechanistic model. Following the principle of maximum

entropy, we decided that the most appropriate distribution to use to model the time to activation would be the gamma distribution

(Hogg and Craig, 1978).

The gamma distribution is widely used to model stochastic waiting times in a range of other contexts and has only two free param-

eters (Friedman et al., 2006) (Hogg and Craig, 1978). If the time to activation in a given nucleus is described by a gamma distribution,

then the fraction of the pattern ‘’on’’ at a given time is given by the gamma cumulative distribution function (GCDF). We were encour-

aged to find that even with just 2 free parameters, the GCDF was able to fit the activation curves we measured for the myriad of

different promoter and enhancer combinations very well (see Figures S1A and S1B). Based on these fitted curves (which took the
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entire data set into account), we determined a parameter to characterize how quickly genes were activated. We calculated what we

refer to as the t50, which is the expected time at which half of the nuclei in the core of a pattern are activated (see Figures S1A and

S1B). With this model, we can computationally choose random embryos and then construct kinetic curves by ordering them (Fig-

ure S1C). Figure S1C shows that even with multiple different sampling, the generated activation curve is very similar to the original

data and the fitted curve. We can go through this process of simulating activation profiles many hundreds of times and fit a GCDF to

each of the computational curves generated this way (see Table S1 for fit parameters). By comparing the different curves to each

other, we can determine the uncertainty in the timing associated with a particular fraction of the pattern on and t50 specifically (Fig-

ure S1D). Since the simulations explicitly take into account the number of embryos used and the profile of the activation for each

different experiment, we can obtain an uncertainty value unique to each set of data. This analysis shows that for almost all of the

constructs this is less than 5 min (Table1).

Analysis for mRNA Counting
Single molecule FISH was performed as described in (Boettiger and Levine, 2013).

Determining Promoter Strength
We determine the relative strength of the pnr, ths and sna promoters by combining our data, i.e., measured levels of the yellow re-

porter mRNA and promoter activation kinetics with a model describing how the amount of mRNA in a cell changes with time. This

model has two parameters: the rate at which the promoter produces mRNA once activated, i.e., the promoter strength, and the

degradation rate of this mRNA. Our measurements alone do not allow us to independently specify both parameters. However by

combining the known sna promoter strength (Boettiger and Levine, 2013) with our data, we can determine the half-life of the yellow

reporter mRNA. Fortunately, the reporter mRNA is the same for all constructs. Using this method (detailed below; Figures S4E–S4I)

we determine the relative promoter strength of the different promoters is 1, 0.93 ± 0.15 and 0.47 ± 0.10 for sna, ths and pnr,

respectively.

Themodel we use assumes that once a locus starts transcribingmRNA it producesmRNAat a constant rate, which depends on the

intrinsic strength of the promoter, a. The fraction of loci in the core region that are transcribing at a given time is approximated by the

measured activation curve defined by A(t). The history of promoter activity, i.e., how recently the promoter entered an actively tran-

scribing state in a given nucleus can have a significant impact on the amount of mRNA present before steady state is reached. The

other parameter is the degradation rate of the mRNA, l. Under these assumptions it is possible to formulate an ordinary differential

equation (ode) that describes how the average number of mRNAs per cell, N(t), change as a function of time, t:

dNðtÞ
dt

=a3AðtÞ � l3NðtÞ:

This ode can then be solved numerically.

Early estimates of promoter strength in Drosophila vary from about 1 mRNA/minute per template for histone genes (Anderson and

Lengyel, 1980) to 10 mRNAs/minute per template in the case of the heat shock genes (O’Brien and Lis, 1991). The promoter strength

for the sna promoter has recently been measured to be 6 mRNAs/minute (Boettiger and Levine, 2013).

The half-life for mRNA in the Drosophila embryos has also been measured for ftz to be between 6-10 min (Edgar et al., 1986). The

half-life of snailmRNA has been measured to be �15 min (Boettiger and Levine, 2013). Many mRNAs expressed in the early embryo

are likely to have similarly half-lives around 5 �15 min since mRNA expression patterns change on this timescale and mRNA accu-

mulation has been shown to closely follow that of the transcription. Figure S4H shows the calculated number of yellowmRNAs at the

onset of gastrulation for the sna promoter construct and how this varies as a function of promoter strength and mRNA half-life. By

using the known sna promoter strength (6 mRNAs/minute), the measured number of yellow mRNAs (100 ± 30 mRNAs/cell) for this

construct and the calculated number of yellow mRNAs from the model we can back out an estimate for the yellow mRNA half-life

of 6 ± 1 min.

By using the promoter activation curve measured for the construct with the ths promoter, we can estimate the number of yellow

mRNAs at the onset of gastrulation and how this varies as a function of promoter strength and mRNA half-life (Figure S4I). Since the

mRNA half-life is 6 ± 1min and the number of yellowmRNAs is 60 ± 20, we can determine the strength of the ths promoter. This yields

a value for the ths promoter, which is 5.6 ± 1 mRNAs/min and so relative to the strength of the snail promoter 0.93 ± 0.15. This shows

that the ths and sna promoters have very similar promoter strengths in spite of showing different initiation kinetics.

We can similarly calculate the promoter strength for the pnr promoter construct (Figure S4I) (mRNA half-life of 6 ± 1 min; number of

yellowmRNAs which is 30 ± 10). This yields a value for the pnr promoter, which is 2.8 ± 0.6 and so relative to the strength of the snail

promoter 0.47 ± 0.10. This shows that the ths and pnr promoters have very different promoter strengths, in spite of showing very

similar initiation kinetics.

Modeling Evolution of Snail Protein
Overview

In order to understand the phenotypes we observed when we changed promoters we developed amodel to describe the evolution of

the Snail protein expression pattern in the early embryo. We sought to simplify the system as much as possible while keeping it
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realistic enough to incorporate the wealth of quantitative information available in the early Drosophila embryo (Fowlkes et al., 2008)

(Alon, 2006). For example, the spatial profile and dynamic behavior of the Dorsal gradient that specifies Snail has been well charac-

terized recently (Reeves et al., 2012);(Kanodia et al., 2009, 2011). Estimates are also available for the timescales of diffusion, protein

synthesis and protein half-lives and molecular binding constants (Gregor et al., 2007a; Gregor et al., 2007b; Jaeger et al., 2004; Leh-

mann and Nüsslein-Volhard, 1987); (Zhao et al., 2002); (Ma et al., 1996); (Daniels et al., 2012). Our goal was to see what would happen

when you perturb the timing and coordination of Snail transcriptional activation in the context of a model based on what is known

about the early embryo and some reasonable estimates for parameters that are not known. We do not claim that our model is

completely comprehensive; rather it serves as a tool to judge how differences in kinetics of coordination may lead to changes in

the Snail expression pattern and then coordination of morphogenesis.

We represent the embryo as a two dimensional grid of nuclei. The nuclear grid used for themodeling was obtained by segmenting a

fluorescent confocal stack of a cc14 embryo (Figure 6). This yields a pseudohexagonal grid consisting of about �2000 nuclei where

the location and connectivity of all the nuclei are known. In our model each of these nuclei are considered a unit. The evolution of the

concentration of Snail in an individual nucleus is described by a differential equation. This differential equation has terms that

describe synthesis rates that depend on the regulatory network, first order decay and diffusion between neighboring nuclei (see

below).

The different kinetics of activation for the different promoters is included in the evolution of the model as follows. We assume that

there is a delay between the start of cc14 and when each nucleus can starts producing protein. This delay is modeled as a random

variable that follows a gamma distribution and the parameters that define this distribution are different for different promoters. In the

model we assume that to a good approximation there exists a linear correlation between the amount of snail mRNA and protein. This

has been illustrated in the literature (McHale et al., 2011) and may be due to the short half-lives of both mRNA and protein in the early

Drosophila embryo (Jaeger et al., 2004). We use the t50 value defined earlier to characterize the different timing of activation for the

different constructs. All other parameters are kept the same. How the Snail concentration changes with time in each nucleus can then

be obtained by numerically solving the differential equation given some initial conditions. The next section describes the relevant

components of the regulatory network.

Regulatory Network
Dorsal

The keymorphogen that patterns the dorso-ventral axis of theDrosophila embryo is the transcription factor Dorsal (Stathopoulos and

Levine, 2004). The nuclear concentration of the Dorsal protein forms a gradient that is high in ventral nuclei and low in dorsal regions.

The spatial profile of this gradient has been well characterized by a number of groups and has been shown to follow a Gaussian func-

tion (Reeves et al., 2012);(Kanodia et al., 2009, 2011). Through a combination of modeling and experiments it has also been shown

that the Dorsal gradient is dynamic. At a given anterior-position position the shape andwidth of the gradient is static but the amplitude

increases with time (Reeves et al., 2012; Kanodia et al., 2009; Liberman et al., 2009). It has also been shown that the width of the

gradient changes significantly along the anterior posterior axis as shown in Figures S6A–S6C (Kanodia et al., 2009). There has

been some disagreement over the exact width of the gradient, but this is largely a result of different groups measuring the profile

of the gradient at different anterior-posterior positions along the embryo in earlier studies. Due to the careful characterization of

the spatial and temporal profile of the gradient we can build both of these features into our model to predict the evolution of the Snail

expression pattern.

Snail

Through a combination of classic enhancer mutagenesis experiments it was shown that Dorsal acts as an activator that specifies the

domain of Snail expression through a standard affinity threshold model (Ip et al., 1992). It activates transcription in concert with

another transcriptional activator Twist whose expression pattern is also defined by Dorsal. Twist plays a permissive role in the spec-

ification of Snail and because it follows Dorsal we have not explicitly included it in our model. Instead we assume that considering

Dorsal as themajor activator capturesmost of the important aspects of activation. Hence according towhat is known about the spec-

ification of Snail so long as the Dorsal and Twist gradients are intact the domain of Snail specification should remain unchanged.

There has however been circumstantial evidence that Snail may play a role in defining its own expression pattern (Hemavathy et al.,

1997). Embryos that are homozygous for the strongest snail loss of function allele show normal patterns of snail mRNA during cc13

but that mRNA is lost in the presumptive mesoderm during cc14. The Snail[18] allele produces mRNA and protein but the lesion was

not characterized (Hemavathy et al., 1997). To better understand the role that Snail is playing in shaping its ownmRNA expression we

looked at reporter expression driven by snail enhancers in embryos where there is no snail protein. We used a �25kb reporter BAC

which contains all of the known snail regulatory sequences relevant for early expression where the snail coding region has been

replaced with that of the yellow reporter (Perry et al., 2010). We looked at the expression of this reporter BAC in embryos that

were homozygous for a snail deficiency. Using this approach we saw clear evidence for snail auto regulation during the course of

cc14 (Figures S5G–S5J). At the onset of cc 14 the expression of yellow nascent dots looks to that of a control embryo where there

is snail present. However at the end of cc14 the reporter expression is severely compromised and absent through most of the pre-

sumptive mesoderm. This is despite the fact that both Dorsal and Twist expression are normal in these embryos.

The key role that Snail plays in specifying its own expression pattern is also clear from what we observe in the rescue constructs

(Figure 5). We observe the complete loss of snail protein and mRNA in variable regions of the presumptive mesoderm. In the rescue
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constructs the spatial pattern of snail expression is changed. This is quite different to what we observe for the pattern defined by the

reporter genes with the snail enhancer (Figure 4). Here nuclei across the whole presumptivemesoderm showed expression. The con-

structs with different promoters showed different kinetics of filling out the domain but we see no evidence for any spatial difference in

the expression pattern.

Mutual Repression
The previous experimental evidence indicates that Snail protein is either directly or indirectly involved in regulating its own expression

in a positive way. When snail protein expression is compromised the snail expression pattern is compromised. Snail has been shown

to be a potent transcriptional repressor and there is no evidence for it being able to act as a transcriptional activator. However we

attempted to model the feedback as direct by enabling snail to activate its own transcription but the simulations from this model

were unable to reproduce the phenotypes we observed. Hence it is most likely that snail’s positive regulation on itself is mediated

indirectly, by having it repress a transcriptional repressor that can repress snail. There is evidence for mutual repression between

snail homologs and other ectodermal repressors (Acloque et al., 2011). From the domain of snail expression and the timing of the

loss of snail it is most likely that the repressor is of an ectodermal origin and so would be activated by lower threshold concentrations

of the Dorsal protein. By invoking such amutually repressive interaction wewere able to explain the dependence of snail transcription

on its own expression and by building it into the model we could reproduce the observed patches of snail expression.

Equations and Parameters
In the following section we list all the equations that were used in building themodel of the DV gene network to look at the evolution of

snail protein. This formalizes the concepts that were discussed in the earlier sections. Not all the parameters that the equations

depend on have beenmeasured and so some needed to be estimated from values that are available for similar processes. Moreover

the approachwith themodeling was not to fully constrain themodel based on our observations but rather to see how themodel would

respond to difference in the coordination of transcription with some reasonable estimates of parameters that are not known. Equa-

tions 1 and 2 describe the temporal evolution of the snail (Sna) and repressor (Rep) concentration in the i’th nucleus which has a

particular position along the anterior-posterior axis (yi) and dorso-ventral axis (xi). All simulations were evolved forward for a period

of 60 min representing the time from the onset of cc14 to when the snail pattern stabilizes and the first signs of gastrulation appear.

d½Snai�
dt

=
k1iðxi; yi; tÞ�
Repi

KR

�n1
+ 1

� l1½Snai�+DðtÞ
XNN
j = 1

½Snaj � Snai�
NN

(Equation 1)

d½Repi�
dt

=
k2iðxi; yi; tÞ�
Snai
KS

�n2
+ 1

� l2½Repi�+DðtÞ
XNN
j = 1

�
Repj � Repi

�
NN

(Equation 2)

DðtÞ=

8>><
>>:

D0

�
1� t

90

�
; t%30

2D0

3

�
1� t � 30

30

�
; 30<t%60

; (Equation 3)

where NN is the number of nearest neighbor nuclei. D0 is the diffusion constant between nuclei and was set to be equal to 3/min

(unitless because it’s diffusion between nuclei) this number was based on the geometry of nuclei and the value of �1 mm2 /s which

is measured for the Bcd protein in the early embryo (Gregor et al., 2007a; Gregor et al., 2007b). The strength of diffusion between

nuclei was decreased with time during cc14 according to the dynamics of the slow and fast phases of membrane invagination

according to Equation 3. The half-lives of transcription factors in the Drosophila embryo have been estimated to be between 5 to

30min (Jaeger et al., 2004). The snail protein domain refines rapidly at the poles when it is repressed during cc 14 and sowe reasoned

that the half-life would be close to the lower end of this range. A half-life of 7 min was used in our simulations for the half-life of both

snail and the repressor. We assumed binding affinities (KR and KS) on the order of �10 nM based on the typical range seen for tran-

scription factors in the early embryo (Jaeger et al., 2004, and references therein). We speculate that there is likely to be some degree

of cooperativity in binding and so chose values for n1 and n2 to be equal to 5. The role of Dorsal and differing initiation kinetics comes

in through the synthesis terms and so these are explicitly defined and explained in the next section.

Equation 4describes the snail protein synthesis term in the i’th nucleus andhow it implicitly depends on space and time.Muchof the

implicit dependenceonspaceand timecomes through the spatial and temporal dependenceof theDorsal gradient itself. Theabsolute

concentration of Dorsal has not been measured but because we know the relative value where the snail boundary occurs when the

gradient stabilizes we can estimate the relative KDs value to be equal to 0.5 (Kanodia et al., 2009). The dependence of the dorsal

gradient on space and time will be discussed below. Some degree of cooperativity was assumed and so n3 was chosen to be 5.
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k1iðxi; yi; tÞ =
rs�

KDS

Dorsalðxi; yi; tÞ
�n3

+ 1

3Hðt � TAiÞ (Equation 4)

TAi � Gða;bÞhGammaða;bÞ (Equation 5)

The different promoter kinetics is included in the second half of the term and through Equation 5. The term representing dorsal

mediated activation is multiplied by a Heaviside step function that effectively allows protein only to be produced after a given

time TAi. This time is a random variable that follows a gamma distribution characterized by the variables a and b and is the source

of the variability seen in our simulations. This is how we incorporate the delay in the onset of transcription into the model that looks at

the evolution of the snail protein. For our analysis we fixed a to be equal to one and examined how the behavior of the systemchanged

as b was increased which caused a corresponding increase in the value of t50. We assumed a synthesis rate (rs) of�1 nM/min which

is well within the realms of what has been estimated for the early embryo (Jaeger et al., 2004, and references therein).

The synthesis term for the repressor is similarly defined except it doesn’t have timing of activation component (we assume is comes

on quickly). Due to the fact that we consider it to be a neurogenic repressor the sensitivity to dorsal must be significantly higher than

snail and sowe set the relative KDs value to be equal to 0.1. The synthesis ratewas set to (rr) 0.3 nM/min. Somedegree of cooperativity

was assumed and so n4 was chosen to be 5.

k2iðxi; yi; tÞ =
rr�

KDr

Dorsalðxi; yi; tÞ
�n4

+ 1

(Equation 6)

The final part of the model takes the spatial and temporal profile of the dorsal gradient into account and is shown in Equation 7. The

dynamics of the gradient were imaged live recently (Reeves et al., 2012) and this revealed that the values for the parameters B, A and tD
are0.2,0.8and�5min, respectively.Howtheprofileof theDorsalgradient changesasa functionofanterior-posteriorpositionwas taken

frommeasured data Figure S6, (Kanodia et al., 2009). Nuclei in the core snail domainwere initializedwith�1nMof snail protein that was

normally distributedwith a variance of 0.1 nM. Reducing this variance did not lead to significant differences in the simulation outcomes.

Dorsalðxi; yi; tÞ=
h
B+A

�
1� e

�t=tD

�i
3 e

� x2
i

2sðyiÞ2 (Equation 7)

Model Behavior
When we examined the behavior of the model with the parameter values listed above, we observed four qualitatively distinct classes

of behavior as the t50 or time to synchrony was varied. One of the main features that distinguish the four classes is the degree of

variability across simulations. This variability is a consequence of the inbuilt random nature of the activation time of individual cells,

which depending on the degree of coordination is either suppressed or enhanced as the system evolves.

Class 1 occurs for rapid t50s from 0 to 4 min, class 2 for moderate t50s from 4 to 7 min, class 3 for slow t50s from 7 to 12 min and

class 4 for t50s greater than 12 min. When the time to activation is rapid, the behavior of the Snail expression pattern was consistent

for many different simulation runs which represent individual embryos. All the simulation runs finished with embryos where the Snail

domain specifiedwas completely intact and encompassing the entire presumptivemesoderm (see Figure S6). Class 1which includes

t50 values from 0 to 4 min most closely resembles what we observe for rescues with the snail promoter where the domain of Snail

expression consistently encompassed the entire mesoderm.

Class 2 is characterized by the onset of variability in the spatial distribution of Snail expression. As t50 is increased, a small pro-

portion of simulations start showing gaps in the snail expression pattern in the anterior region of the embryo (see Figure S6). As t50 is

further increased the fraction of embryos showing these gaps grows and simulation runs start to appear where Snail is completely lost

in the anterior third of the Drosophila embryo (see Figure S6). The variability seen is also sufficiently large that rarely there are sim-

ulations that converge to a complete loss of snail expression. Class 2 encompasses t50 values from 4 to 7 min and is most similar to

what we observe for rescues with the sog promoter.

Class 3 is characterized by the consistent absence of Snail expression in the anterior third of the embryo. In this class simulations

that show absolutely no snail expression becomemuchmore common and when there the Snail domain is restricted to the posterior

regions of the embryo (see Figure S6). Class 3 encompasses t50 values from7 to 12min and ismost similar to whatwe observe for the

rescue constructs with the ths promoter.

Class 4 is characterized by the complete absence of a stable region of snail expression. As t50 is increased beyond 12 min out of

hundreds of simulation runs none produce stable regions of snail expression.

Sensitivity Analysis of Key Parameters
The behavior of the model depends on a number of parameters but for simplicity we focus on describing the sensitivity to several of

the key parameters, namely the diffusion strength, degree of cooperativity and protein half-life. In examining the behavior of the
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model as these parameters were varied, we saw a similar trend: as the parameters are changed the quantitative behavior of themodel

changes as a function of different activation kinetics, but the qualitative behavior of the model is robust, i.e., the 4 regimes described

previously occur for different ranges of t50 values but they nonetheless persist (Figures S6D–S6G and S7).

One of the key parameters in the model is the degree of cooperativity (n). In the simulations we chose a value for the strength of

cooperativity of 5 (Figure S7). The qualitative behavior of themodel is robust when the degree of cooperativity falls within the range of

3 to 7. When the degree of cooperativity is reduced, the onset in variable Snail expression patterns is shifted to larger values of t50.

Specifically when the degree of cooperativity is set to 3, the onset of variable Snail expression patterns occurs at a t50 value of 9 min

as compared to 4 min for a degree of cooperativity of 5. This shift is illustrated by comparing Figure S7A, which shows an embryo

histogram when t50 is 5.4 min and n = 3, and Figure S6E, which shows an embryo histogram when t50 is 5.4 min and n = 5. For the

simulation with the higher cooperativity and equivalent t50, the Snail expression is variable while for the simulation with lower coop-

erativity there is no significant variability in Snail expression. Figure S7B shows that as the cooperativity is increased, the onset of

variable expression occurs for smaller values of t50. When comparing Figure S7B with Figure S6E, one can see that the Snail pattern

is far more variable at the same t50 value when the degree of cooperativity is increased from 5 to 7.

The strength of diffusion plays a key role in the model of Snail evolution. As the strength of diffusion is varied the t50 value at which

variability in Snail expression starts to occur shifts, but the qualitative behavior remains the same. Figures S6E, S7C, and S7D show

that when the strength of diffusion (D) is reduced from 3 to 1, the essentially invariant Snail expression profiles persist for larger values

of t50 but Snail expression becomes variable as t50 is further increased. Figures S6E, S7E, and S7F show that when the strength of

diffusion is increased from 3 to 6 the Snail expression profiles become variable at smaller values of t50. While the Snail profiles are

essentially invariant for a t50 value of 1.7 min when this is increased to 5.4 min, the profiles become highly variable with most sim-

ulations failing to have stable Snail expression which is quite different to what is observedwhen the diffusion strength is 3 for the same

t50 value as shown in Figure S6E.

The degradation rate of the Snail protein, which is inversely related to the protein half-life, plays an important role in setting the

timescale of model evolution. In the main modeling section we chose a degradation rate of ls of 0.1/min. Figures S6D, S7G, and

S7H show that as one increases the degradation rate of ls to 0.15/min the range of t50 values for which stable snail expression is

obtained shifts to smaller t50 values. Specifically, even though the Snail expression domain is essentially invariant for a t50 value

of 1.4 min, it becomes significantly more variable as t50 is increased to 2.8 min. Figure S6D shows that when ls is equal to

0.1/min, the Snail expression pattern is invariant even when t50 is equal to 3.4 min. Figures S7I and S7J show that as one decreases

the degradation rate of ls to 0.05/min, the range of t50 values for which stable Snail expression is obtained shifts to larger t50 values.

To have a comparable degree of variability in the Snail expression pattern for a ls value of 0.15/min at a t50 value of 2.8 min the t50

value needs to be increased to 13.9 min for a ls value of 0.05/min.
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Figure S1. Determining t50 for the Activation Curves, Related to Figure 1 and Table1

(A) Graph showing the ordered fraction of the core pattern that exhibits nascent transcripts for different embryos. The total time of the relevant part of cc 14 is

60 min and so the axis represents this. Three different transgenic lines are represented: pnrE < snaPr (red), pnrE < sogPr (green) and pnrE < thsPr (blue). For each

measured curve, we fit a cumulative gamma distribution (see supplementarymethods for details), shown in black. From the fitted cumulative gamma function, we

determine the t50 value, defined by the time it takes for an embryo to show nascent transcripts in 50% of the core pattern.

(B) Similarly to (A), this graph shows the measured and fitted activation curves to determine the t50 values for transgenic embryos with the snail enhancer.

(C) Simulated activation curves plotted with actual curve to illustrate that for large numbers of embryos they compare favorably (see supplementary methods for

details).

(D) Graph illustrating how the t50 uncertainties are obtained. The uncertainty is the standard deviation in the difference between the measured t50 and the

estimated t50 for hundreds of simulations. All t50s and their estimated uncertainties are summarized in Table1 (see also Table S1).
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Figure S2. The pnr Promoter Is Sufficient to Delay tup Expression, Related to Figure 1

Processed images after in situ hybridization of transgenic embryos with intronic probes for the yellow reporter gene (BAC transgenes) (shown in yellow) or

endogenous tup (shown in magenta) in the same embryo.

(A and A0 ) Reporter (A) and endogenous tup expression (A0) in a mid cc14 embryo containing one copy of the tup-Y BAC.

(B and B0) Reporter (B) and endogenous tup expression (B0) in an embryo just prior to the onset of gastrulation which contains one copy of the tup-Y control BAC.

(C and C0) Reporter (C) and endogenous tup expression (C0 ) in a mid cc14 embryo that contains one copy of the tup-Y BAC where the tup promoter region has

been replaced by an equivalent sequence from the pnr promoter. Note that expression is significantly perturbed.

(D and D0) Same as in (C) and (C0 ) except the embryo is older being at the onset of gastrulation.
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Figure S3. Minimal Promoters Examined in This Study, Related to Figures 1, 2, 3, and 4

The sequences of the promoters used in this study are provided in this Figure. Some core promoter motifs (Juven-Gershon and Kadonaga, 2010), like the INR,

DPE, GAGA, TATA have been highlighted. When the sequence of the documented consensus is not perfectly respected, a ‘’?’’ has been added. For tup, a larger

promoter sequence has been designed to include the distal GAGA element (200bp). For consistency, two transgenic lines where created for pnr: one with a long

pnr promoter sequence (188bp) and a second one with a short pnr promoter (100bp). The TSS is positioned at +1, according to the annotation in Flybase. In the

case of snail, in the course of this study, we realized that the available sna TSS has been misannotated, and we therefore represent it with an asterisk (*). The real

TSS that we determined by 50RACE PCR, is shown as well.
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Figure S4. Temporal Coordination Profiles with the sog Enhancer and Measuring and Modeling mRNA Levels, Related to Figure 4

(A–C) Processed images showing ventral views of embryos after fluorescent in situ hybridization using a yellow intronic probe showing nascent transcripts from a

sog enhancer-tup promoter (A) transgenic embryo or from a sog enhancer-sna promoter embryo (B) and a sog enhancer-pnr promoter (C) examined at cc13 (the

activity of the sog intronic enhancer starts at the onset of cc13 and during this time period the gene is not repressed by Snail).

(D) Quantification of the dynamics of de novo transcription in these sog enhancer transgenic lines.

(E) Graph illustrating the activation curves measured for a given construct.

(F) Ordinary Differential Equation (ODE) used to estimate the average number of mRNA molecules per cell as a function of time.

(G) Curves for different means of mRNA counts obtained for the snaE-snaPromoter-yellow minigene. These curves are obtained by using (E) and (F).

(H) Knowing that the promoter strength for snail is about 6mRNA/min (Boettiger and Levine, 2013) and that themean number of yellow full-lengthmRNA at the end

of cc14 is about 100 molecules per nuclei, we determine the half-life of our reporter.

(I) Knowing the number of mRNA molecules and the half-life of the yellow reporter, we determine the promoter strength for pnr and ths.
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Figure S5. Stochastic Expression of snail Results in Gastrulation Defects; Evidence for Snail Autoregulation and Manipulation of snail

Expression Using a Highly Paused Promoter, Related to Figures 5 and 6

(A–F) Twist (green) and Snail (red) (A0–F0) protein immunostainings for various transgenic embryos at gastrulation stage when snail expression is driven by the ths

promoter (A and B), the moderately paused sog promoter (C and D) or the native sna promoter (E and F).

(G–J) Transgenic embryos carrying a snail-yellow BAC transgene, hybridized with a yellow intronic probe to detect nascent transcripts. (G and I) Reporter

expression in control embryos at early cc14 (G) or gastrulation stage (I) when the ventral furrow is invaginating. (H and J) Reporter expression in snail deficient

embryos (sna�/�). While yellowmRNA are normally detected early (H), reporter expression is perturbed in the absence of snail (J) at the time of invagination even

if snail’s major activators (Dorsal, Twist) are normally expressed.

At the onset of cc14, snail transcription driven by a sna-tup BAC transgene is very coordinated (K and L). Quantification of snailmRNA�15 min into cc 14 reveals

that the tup promoter produces 5 times less mRNA than the native sna promoter (M). Error bars represent SD.
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Figure S6. Spatial Profile of the Dorsal Gradient and Statistics on Model Behavior, Related to Figure 6

(A) Relative width of the Dorsal gradient as measured at different positions along the embryo (taken directly from Kanodia et al., 2011).

(B) Mean number of nuclei in a 1.5% EL slice of the embryo running from anterior to posterior for 42 embryos downloaded from the Berkeley Drosophila Group

Database (Fowlkes et al., 2008).

(C) By combining the data shown in (A) with that in (B) one can determine the width the Dorsal gradient in terms of number of cells shown in which is used in the

simulations.

For each shown t50 value, 200 independent simulations were conducted and the model behavior analyzed. The false colored embryos show how frequently a

particular nucleus had snail expression at the end of the simulation (Dark red to dark blue, more frequent to less frequent). These histograms show how many

embryos had a particular number of nuclei expressing Snail.

(D and D0) When t50 is only 3.4min all the simulations converge to the same point, where both the number and spatial domain of Snail expression is the same for all

runs.

(E and E0) As the t50 is increased to 5.4 min, one starts to see significant variability in the spatial profile and number of nuclei expressing Snail.

(F and F0 ) For a t50 value of 6.9 min, the variability is so large that some embryos show a full domain of Snail expression while others loose it completely.

(G and G0) As t50 is increased even further, the Snail pattern starts to break up significantly and often disappears entirely.

S14 Cell 153, 976–987, May 23, 2013 ª2013 Elsevier Inc.



t50 = 5.4 min; n = 7t50 = 5.4 min; n = 3

t50 = 11.1 min; D = 1t50 = 5.4 min; D = 1

t50 = 5.4 min; D = 6t50 = 1.7 min; D = 6
E

t50 = 1.4 min; λ = 0.15 /min t50 = 2.8 min; λ = 0.15 /min

t50 = 13.9 min; λ = 0.05 /min
J

A B

DC

F

G H

I

S

t50 = 2.8 min; λ = 0.05 /min

S

S

S

S

Figure S7. Model Sensitivity Analysis of Key Parameters, Related to Figure 6

As in Figure S6, 200 independent simulations were conducted and the model behavior analyzed. The false colored embryos show how frequently a particular

nucleus had Snail expression at the end of the simulation (Dark red to dark blue, more frequent to less frequent). The parameter values that are not given on each

panel were assigned values that were used in the default simulation as shown in Figure S6.

(A and B) Embryo histograms showing how changing the degree of cooperativity (n), affects model behavior for a given t50 value, (Figure 6E shows an equivalent

simulation for n = 5).

(C and D) Embryo histograms showing how reducing the diffusion constant (D) from 3 to 1 changes model behavior, (Figure S6E shows simulations for a diffusion

constant value of 3).

(E and F) Embryo histograms showing how increasing the diffusion constant from 3 to 6 affects model behavior (Figure S6E shows simulations for a diffusion

constant value of 3).

(G and H) Embryo histograms showing how increasing the degradation rate of the Snail protein (lS) from 0.1/min to 0.15/min changes model behavior (Figure S6E

shows simulations for a degradation rate of 0.1/min).

(I and J) Embryo histograms showing how decreasing the degradation rate of the Snail protein from 0.1/min to 0.05/min changes model behavior, (Figure S6E

shows simulations for a degradation rate of 0.1/min).
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