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FANCJ promotes DNA synthesis through
G-quadruplex structures
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Abstract

Our genome contains many G-rich sequences, which have the
propensity to fold into stable secondary DNA structures called G4
or G-quadruplex structures. These structures have been implicated
in cellular processes such as gene regulation and telomere mainte-
nance. However, G4 sequences are prone to mutations particularly
upon replication stress or in the absence of specific helicases. To
investigate how G-quadruplex structures are resolved during DNA
replication, we developed a model system using ssDNA templates
and Xenopus egg extracts that recapitulates eukaryotic G4 replica-
tion. Here, we show that G-quadruplex structures form a barrier
for DNA replication. Nascent strand synthesis is blocked at one or
two nucleotides from the G4. After transient stalling, G-quadru-
plexes are efficiently unwound and replicated. In contrast, deple-
tion of the FANCJ/BRIP1 helicase causes persistent replication
stalling at G-quadruplex structures, demonstrating a vital role for
this helicase in resolving these structures. FANCJ performs this
function independently of the classical Fanconi anemia pathway.
These data provide evidence that the G4 sequence instability in
FANCJ�/� cells and Fancj/dog1 deficient C. elegans is caused by
replication stalling at G-quadruplexes.
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Introduction

Genome stability is ensured by a large variety of specialized DNA

surveillance and repair pathways. These mechanisms efficiently deal

with DNA damage from exogenous sources as well as damage

generated intracellularly. One of the cellular processes that can be a

source of genome instability is DNA replication. Although the intrinsic

error rate of this process is extremely low, its fidelity is continuously

threatened, including by stable secondary structures in the DNA

(Aguilera & Garcia-Muse, 2013). One particularly stable DNA structure

is a G4 or G-quadruplex structure (hereafter referred to as G-quadru-

plex structure) (Bochman et al, 2012; Tarsounas & Tijsterman, 2013).

This structure can form in DNA sequences that contain four stretches

of three or more guanines (Gs) interspaced by at least one random

nucleotide (Fig 1A, hereafter referred to as G4 sequence). Four Gs,

one from each G-stretch, can form a planar structure stabilized by

non-canonical Hoogsteen hydrogen bonds in the presence of monova-

lent cations, such as sodium or potassium. In vitro, G4 sequences can

adopt a variety of structural conformations, depending on the length

and orientation of the G-stretches and intervening loops (Fig 1B)

(Burge et al, 2006; Phan et al, 2007). Because Watson and Crick base

pairing in double-stranded DNA is more favorable than G4 Hoogsteen

base pairing, G-quadruplex structures are preferentially formed in

single-stranded DNA (Phan & Mergny, 2002). Therefore, it has been

suggested that in vivo these structures form during processes that

allow for temporal dissociation of duplex DNA, that is DNA replica-

tion, transcription and/or recombination (Maizels & Gray, 2013).

Our genome contains over 300,000 evolutionary conserved

sequences that conform to the G4 consensus sequence (Fig 1A)

(Huppert & Balasubramanian, 2005; Todd et al, 2005). G-quadru-

plex structures have been suggested to play a role in several biologi-

cal processes such as telomere maintenance (Maiti, 2010), gene

regulation (Siddiqui-Jain et al, 2002), DNA replication initiation

(Besnard et al, 2012; Cayrou et al, 2012; Valton et al, 2014), epige-

netic regulation (Sarkies et al, 2010), and gene conversion (Cahoon

& Seifert, 2009). However, which and how many of the G4

sequences present in the genome form a G-quadruplex structure at a

given time in a human cell is not known. Nevertheless, a number of

recent studies using fluorescently tagged G4 ligands (Rodriguez

et al, 2012) and highly specific G4 antibodies (Biffi et al, 2013;

Henderson et al, 2013) provide evidence that these structures are

abundantly present in proliferating human cells. The assembly and

disassembly of G-quadruplex structures is dynamic during the cell

cycle and their number is significantly increased during DNA repli-

cation in S-phase (Biffi et al, 2013). Furthermore, DNA damage
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induced by a strong G4 stabilizing ligand depends on active DNA

replication (Rodriguez et al, 2012), suggesting that the formation of

G-quadruplex structures occurs mainly during DNA replication.

Several lines of evidence suggest that G-quadruplex structures

need to be actively resolved during DNA replication. First, G-quadru-

plex structures form a block for DNA synthesis in primer extension

assays using both prokaryotic and eukaryotic DNA polymerases in

vitro (Kaguni & Clayton, 1982; Woodford et al, 1994; Weitzmann

et al, 1996; Kamath-Loeb et al, 2001), indicating that polymerases

cannot unwind G-quadruplex structures. Although several DNA heli-

cases, such as BLM (Sun et al, 1998), WRN (Fry & Loeb, 1999;

Kamath-Loeb et al, 2001), Pif1 (Ribeyre et al, 2009; Sanders, 2010),

DOG-1/FANCJ (London et al, 2008; Wu et al, 2008), and Dna2

(Masuda-Sasa et al, 2008) can unwind G-quadruplex structures in vitro,

the role of these proteins in vivo is unclear. Second, G4 sequences

are found specifically enriched at chromosomal breakpoints in

human cancers (De & Michor, 2011; Nambiar et al, 2011; Bose et al,

2014). This observed genome instability is thought to be a conse-

quence of replicative stress. Third, genetic data show that dog-1

mutant animals (C. elegans) accumulate deletions that map to G4

sequences and are characterized by a specific signature that implies

the collision of the replication machinery as an initiating event

(Cheung et al, 2002; Youds et al, 2006; Kruisselbrink et al, 2008).

Likewise, in yeast, the absence of a G4 unwinding helicase, Pif1,

induces mutations that disrupt G4 sequences and this is enhanced

by the addition of chemicals that stabilize G-quadruplex structures

(Ribeyre et al, 2009; Paeschke et al, 2011). In addition, Pif1 defi-

ciency induces slower movement of replication forks through geno-

mic regions that contain G4 sequences (Paeschke et al, 2011).

Altogether, these data suggest that G-quadruplex structures cause

problems for the progression of the DNA replication machinery and

that these problems are enhanced during replicative stress or in the

absence of helicases such as Pif1 or DOG-1.

The vertebrate homologue of DOG-1 is FANCJ, also named

BACH1 or BRIP1, which performs several roles in genome mainte-

nance. FANCJ is one of the 16 genes that, when mutated, cause

Fanconi anemia (FA); a human cancer-predisposition disorder char-

acterized by cellular sensitivity to DNA interstrand crosslinking

agents (Levitus et al, 2005; Levran et al, 2005; Muniandy et al,

2010). In addition to its function in interstrand crosslink repair,

FANCJ has also been suggested to play a role in the processing of

G-quadruplex structures, primarily based on the G4 sequence insta-

bility phenotype of DOG-1/FANCJ deficient C. elegans strains. Like-

wise, cells derived from human FANCJ patients accumulate gross

chromosomal rearrangement more frequently near G4 sequences

(London et al, 2008). In addition, FANCJ deficient human and

chicken cells are sensitive to treatment with G4 stabilizing ligands

and, as a consequence of this treatment, exhibit enhanced DNA

damage responses (Wu et al, 2008; Schwab et al, 2013). However,

direct evidence that FANCJ resolves G-quadruplex structures in cells

is missing. Because cells deficient for the central FA protein

FANCD2 are not sensitive to G4 ligands, it has been suggested that

the function of FANCJ in maintaining G4 sequence stability is FA

pathway independent. Yet, C. elegans deficient in both FANCJ and

FANCD2 show a higher mutation rate at G4 sequences compared to

the single FANCJ mutant (Youds et al, 2008), suggesting there might

be a functional relationship between FANCJ and FANCD2.

To investigate the molecular events that take place when the

replication machinery encounters a G-quadruplex structure, we

employed Xenopus egg extracts to replicate exogenous G4 sequence

on single-stranded DNA plasmids under physiological conditions.

Using this unique model system, we show for the first time that

replication stalls at a defined G-quadruplex structure. Mapping of

the nascent strands at nucleotide resolution demonstrates that repli-

cation proceeds to within a few nucleotides from the G-quadruplex.

After transient stalling, we observe efficient bypass and faithful

replication of the G4 sequence. In addition, we show that replication

stalling at G-quadruplex structures is enhanced in the absence of

FANCJ. Further stabilization of the G-quadruplex by addition of a

G4 stabilizing ligand increases the requirement for FANCJ. In addi-

tion to providing a framework for future studies on the mechanism

of G-quadruplex structure unwinding, our data also explain the

genetic instability at G4 sequences in FANCJ mutants.

Results

G-quadruplex structures form a block for DNA polymerases

To study G4 DNA replication, we generated a series of single-

stranded DNA plasmids, each containing a different G4 sequence at
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Figure 1. G-quadruplex structures and sequences.

A G4 consensus sequence consisting of four stretches of at least three
guanines (G) separated by 1–7 random nucleotides (N).

B Schematic representation of an antiparallel (left) and a parallel (right)
G-quadruplex structure. G-planes stabilized by non-canonical Hoogsteen
hydrogen bonds are shown in blue.

C G4 sequences and non-G4 control sequences used in this study.
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a defined position (G4 plasmids). In addition, we generated control

plasmids carrying G-rich sequences that do not conform to the G4

consensus sequence (non-G4 plasmids) (Fig 1C). The G4 sequences

either consisted of 4 stretches of several guanines separated by single

adenines or of a consecutive stretch of Gs. G4G3N and G4G15 are ‘mini-

mal’ G4 sequences and can only form one G-quadruplex configuration

with 3 G-planes, while G4G5N and G4G23 contain additional Gs and

can form many structurally different G-quadruplex structures with up

to five stacked G-planes. G-quadruplex structures were induced in the

G4 plasmids by brief incubation at 80°C in the presence of physio-

logical concentrations of potassium (Matsugami et al, 2003).

It has previously been demonstrated that G-quadruplex struc-

tures on short linear DNA templates block extension by purified

polymerases (Woodford et al, 1994; Weitzmann et al, 1996;

Kamath-Loeb et al, 2001). To examine whether this is also the case

in our G4 sequence containing plasmids, we performed primer

extension assays using these plasmid templates and the modified T7

DNA polymerase (Sequenase) (Tabor & Richardson, 1989). To this

end, 50 32P-labeled primer B was annealed to the ssDNA plasmids

approximately 200 nt 30 of the G4 sequence and this template was

incubated in Sequenase reaction mix (Fig 2A and Supplementary

Fig S1A). Extension products were separated on denaturing urea-

PAGE gels and visualized by autoradiography (Fig 2B). When using

a non-G4 control plasmid, multiple extension products accumulated

over time, but there was no specific stalling observed at the G-rich

sequence (Fig 2B, left panel, and Supplementary Fig S1B). In

contrast, when G4 plasmids were examined, a ~200-nt product

rapidly accumulated and persisted, indicating extension was effec-

tively blocked close to the G4 sequence (Fig 2B, right panels, and C,

and Supplementary Fig S1C and D for duplicates). The observed T7

polymerase extension stalling indicates that G-quadruplex structures

are formed efficiently in all our G4 plasmid templates. This conclu-

sion is further strengthened by the observation that stalling at a

G-quadruplex is fully dependent on the presence of potassium

(Supplementary Fig S1E and F). Based on the low DNA concentra-

tion used and the observation that G-rich control sequences that

could theoretically form intermolecular G-quadruplexes do not stall

primer extension, we assume that the majority of the G-quadruplexes

are intramolecular. Importantly, these results show that G-quadruplex

structures in ssDNA plasmids cannot be bypassed by T7 polymerase

alone.

G-quadruplex structures are efficiently bypassed in Xenopus
egg extract

G-quadruplex structures are thought to form in ssDNA. During DNA

replication, ssDNA is present at the lagging strand template but also

on the leading strand template in cases of transient uncoupling of

the MCM helicase from the polymerase (Pacek & Walter, 2004). In

both cases, the approach of the growing 30 end of the nascent strand

to the G-quadruplex does not require unwinding of the DNA double

helix. To investigate how G-quadruplex structures are resolved

during eukaryotic DNA replication, we mimicked this situation by

replicating primed ssDNA templates in Xenopus egg extract. A high-

speed supernatant of egg cytoplasm (HSS) supports one round of

efficient DNA replication of ssDNA plasmids initiated by sequence-

independent priming (Mechali & Harland, 1982). The replicated

plasmids are also ligated and supercoiled in this extract. At low

DNA concentrations, the inherent random priming activity of the

extract is inhibited (Lebofsky et al, 2011); therefore, replication can

be initiated from an exogenous primer. For this, primer A, located

~760 nt 30 of the G4 or G-rich control sequence, was annealed to the
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Figure 2. G-quadruplex structures block DNA synthesis by T7 DNA polymerase.

A Schematic representation of the primer extension assay. Extension is initiated from 32P-labeled (asterisk) primer B annealed to single-stranded pBluescript DNA
containing a G4 sequence (left). If extension is blocked by the G-quadruplex structure, accumulation of a ~200-nt product is expected (middle) while full extension
generates a ~3,000-nt product (right).

B G4 and non-G4 plasmid templates were subjected to primer extension by a modified T7 DNA polymerase (Sequenase). Extension was stopped after the indicated
times, and reaction products were separated on 6% urea-PAGE gels and visualized by autoradiography.

C The extension stalling products after 1 min (from B) were quantified using ImageQuant software, and the percentage of this product versus the total of products that
have arrived or bypassed the G4 sequence is depicted for the various sequences used.

ª 2014 The Authors The EMBO Journal Vol 33 | No 21 | 2014

Pau Castillo Bosch et al FANCJ promotes replication of G4 DNA The EMBO Journal

2523

Published online: September 5, 2014 



ssDNA plasmids and these templates were incubated in HSS in the

presence of 32P-a-dCTP (Fig 3A and Supplementary Fig S1A). Repli-

cation products were separated on a native agarose gel, which was

subsequently stained with SybrGold (Fig 3B, top panels). In both

conditions, the ssDNA plasmid template was observed at t = 0 and

replication intermediates appeared within the first 5 min. Ten

minutes after the start of the reaction fully replicated nicked mole-

cules accumulated, and after 20 min, the majority of the plasmids

were supercoiled. At this point, all ssDNA was converted to dsDNA

indicating complete and efficient replication of the template DNA

(Fig 3B, top panels). Gels were subsequently dried and autoradio-

graphy showed a very similar pattern for the nascent 32P-labeled

products confirming that these are replication products (Fig 3B,

bottom panels). The banding pattern for the G4 versus the non-G4

plasmid template was highly similar, suggesting that the G-quadru-

plex structure does not have a major effect on the replication

kinetics and efficiency in HSS. Importantly, no replication was

observed after depletion of PCNA, indicating the involvement of the

replicative polymerases pol d or pol e (Supplementary Fig S2 and

Mattock et al, 2001). These data show that, in contrast to the primer

extension reaction with a purified polymerase, G-quadruplex

structures are efficiently replicated in Xenopus egg extract.

To investigate whether there is a subtle effect of the G-quadru-

plex on nascent strand progression, replication products were

analyzed on urea-PAGE gels. Using a control non-G4 plasmid

template, we observed the accumulation of ~3,000-nt linear mole-

cules, corresponding to fully replicated nicked molecules, and

slower migrating supercoiled molecules from 10 min onwards
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Figure 3. G-quadruplex structures are efficiently replicated in Xenopus egg extracts.

A Schematic representation of the G4 plasmid replication assay in HSS. Replication is started from primer A located 760 nucleotides (nt) from the G-quadruplex. Stalling
of replication at the G-quadruplex structure will result in the accumulation of a 760-nt product, while G4 bypass first generates a 3,000-nt product that over time is
ligated and supercoiled.

B G4G3N and non-G4C3p plasmid templates were replicated in HSS. Samples collected at the indicated times were separated on agarose gels and visualized with
SybrGold (top panels). Gels were subsequently dried and visualized by autoradiography (bottom panels). The bands corresponding to the ssDNA, fully replicated but
still nicked, and supercoiled dsDNA are indicated.

C Non-G4C3p, G4G3N, G4G5N, G4G15, and G4G23 plasmids were replicated in HSS, samples were taken at the indicated times, separated on 6% urea-PAGE gels and
visualized by autoradiography. Products stalled at the G4 sequence (‘stalled’), linear molecules resulting from denatured nicked products (‘linear’), and closed
supercoiled products (‘supercoiled’) are indicated.

D Non-G4C3p, G4G3N, G4G5N, G4G15, and G4G23 plasmid templates were replicated in HSS in the presence of 5 lM of Phen-DC3. Samples collected at the indicated times
were separated on urea-PAGE gels and visualized by autoradiography.
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(Fig 3C, left panel). Strikingly, when replicating various G4 plasmid

templates, an additional band of around 750 nt, corresponding to a

product stalled close to the G4 site, was visible from 2.5 up to

20 min depending on the replicated G4 sequence (Fig 3C, right

panels, and Supplementary Fig S3). These results demonstrate that,

even though G4 sequence containing plasmids are efficiently repli-

cated, this is associated with transient stalling in close proximity of

a G-quadruplex structure. In summary, Xenopus egg extract

contains all factors required to resolve and bypass G-quadruplex

structures, making this a suitable and powerful system to study

eukaryotic G4 unwinding and replication.

G-quadruplex stabilizing agent Phen-DC3 blocks G4 replication in
Xenopus egg extract

Previous reports have shown that G4 stabilizing ligands inhibit the

unwinding activity of several G4 helicases in vitro and that cells are

sensitive to treatment with these ligands (Piazza et al, 2010; Bharti

et al, 2013). To investigate this, we assessed the capacity of the

extract to bypass stabilized G-quadruplex structures by employing

the G4 ligand Phen-DC3 (Piazza et al, 2010). While replication of

control non-G4 plasmids showed no accumulation of products

stalled at the G-rich site (Fig 3D, left panel), accumulation of stalled

products was dramatically enhanced when G4 plasmids were repli-

cated in the presence of Phen-DC3 (Fig 3D, right panels, compare

with Fig 3C). Furthermore, fully replicated molecules were less

abundant at later times, which indicates that replication past

G-quadruplex structures was severely inhibited. This shows that

increasing G4 structure stability enhances replication stalling. In

contrast to this G4-specific replication stalling in extract, adding

Phen-DC3 to the T7 primer extension assay in the absence of extract,

induced replication stalling at several sites independent of the G4

sequence (Supplementary Fig S4A). We conclude that the plasmid

contains other Phen-DC3-sensitive secondary structures that are

readily resolved in Xenopus egg extract. In addition to Phen-DC3, we

tested the widely used telomeric G4 stabilizer TMPyP4 and

compared it to a control compound TMPyP2 (Mergny & Helene,

1998; Han et al, 2001). Although TMPyP4 slightly enhanced replica-

tion stalling at a G4 sequence in Xenopus egg extract, it induced

extensive unspecific inhibition of replication, especially at high

dose, which was also observed with TMPyP2 (Supplementary Fig

S4B–D). This unspecific effect of TMPyP4 could be caused by the

absence of telomeric context in our system. Nevertheless, we

conclude that the specific enhancement of stalling at G-quadru-

plexes, as we have seen with Phen-DC3, could explain the hypersen-

sitivity of cells to G4 stabilizing agents.

G4 sequences are not mutated after replication in Xenopus
egg extract

It has been shown that G4 sequences give rise to genome altera-

tions in a variety of species, including bacteria, yeast, and

C. elegans (Kruisselbrink et al, 2008; Cahoon & Seifert, 2009;

Ribeyre et al, 2009). To determine whether replication of G4

sequences in Xenopus egg extract induces mutations, G4 replication

products were sub-cloned and sequenced. None of the analyzed

replication products showed mutations or deletions at the G4

sequence (Supplementary Fig S5). The observation that replication

through G-quadruplex is non-mutagenic indicates that the mechanism

of bypass does not involve G4 skipping via template switching or any

other mechanism that would lead to deletion of the G4 sequence. This

supports a model in which, after initial replication stalling, the

G-quadruplex structure is unwound and faithfully replicated.

Replication in Xenopus egg extract stalls at the site of the G4

To investigate the mechanism by which G-quadruplex structures are

resolved and bypassed, we set out to determine where the replica-

tion machinery stalls with respect to the G-quadruplex. To this end,

ssDNA plasmids were replicated in egg extract starting from primer

A located 760 nt 30 of the G4 site. Replication products were digested

with AseI and separated on high-resolution sequencing gels (Fig 4A

and B). When a non-G4 plasmid was replicated, a band of ~465 nt

accumulated after 1 min, corresponding to a product that starts

from the primer and ends at the first AseI site (Fig 4A and B, lane 1).

Over time, two new bands appeared, one corresponding to a

digestion product from the second to the third AseI site (1,663 nt),

followed by a band corresponding to the digested product from the

third to the first AseI site after ligation (1,235 nt) (Fig 4A and B,

lanes 2–6). The order at which these bands appeared confirmed that

replication started at the primer and passed the three AseI sites

sequentially. When replicating the G4G5N template, the same 465-nt

band was visible after 1 min but, shortly thereafter, a cluster of

bands around 208 nt accumulated (Fig 4B, lane 7–9). The size of

these bands corresponds to products starting at the second AseI site

and ending at the G4 sequence (Fig 4A), indicating that these prod-

ucts are a result of replication stalling at the G-quadruplex structure.

Using a sequencing ladder starting from the second AseI site, we

mapped the 30 ends of the stalled nascent strands at nucleotide reso-

lution. Of note, we used wild-type pBluescript vector as a template

for the sequencing ladder because the Sequenase enzyme cannot

synthesize through a G-quadruplex structure. The 30 end of the major

stalled product was at the �1 position, 1 nucleotide before the G4

sequence, while minor stalling products appeared at the �3, �2, 0

and +1 positions, with respect to the G4 sequence (Fig 4B, bottom).

Next, we mapped stalling sites for two additional G4 plasmid

templates, G4G3N and G4G23, both under native conditions and in the

presence of Phen-DC3 (Fig 4C and D, and Supplementary Fig S6). In

the presence of Phen-DC3, replication stalls 1 nucleotide before, but

also at multiple positions within the G4 sequence (Fig 4C and D,

lanes 2–6, and Supplementary Fig S6A and B). This is most striking

for the G4G23 template and indicates that Phen-DC3 induces multiple

G4 conformations during replication. Importantly, a non-G4 control

plasmid did not result in replication stalling at the G-rich sequence in

the presence of Phen-DC3 (Supplementary Fig S6C). Under native

conditions, the major replication stalling product for both G4G3N and

G4G23 was at the �1 position while minor bands accumulated at the

�2, and 0 positions (Fig 4C, lanes 8 and 9, and Fig 4D, lanes 7–11)

similar to what we observed with G4G5N (Fig 4B, lanes 7–9). Interest-

ingly, the 30 positions of these stalling products are very similar to the

30 ends of deletions found at G4 sequences in dog-1 deficient

C. elegans (Kruisselbrink et al, 2008). Altogether, these data indicate

that, in this system, the replication machinery transiently stalls when

it is in close proximity to the G-quadruplex. After a brief period, the

stalled intermediate disappears indicating the block is relieved and

replication proceeds. We consider two possible options for this
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relieve: one, the gradual incorporation of flanking nucleotides desta-

bilizes the G-quadruplex structure leading to its unfolding, or two,

specialized enzymes are recruited to resolve the replication barrier.

Depletion of FANCJ causes persistent replication stalling at
G-quadruplex structures

The purified FANCJ helicase unwinds G-quadruplex in vitro, and

FANCJ deficiency leads to G4-associated deletions in vivo (Youds

et al, 2006; Kruisselbrink et al, 2008; London et al, 2008; Wu et al,

2008) suggesting this helicase plays a role in unwinding G-quadru-

plex. To examine the role of FANCJ in G4 processing during replica-

tion, we generated an antibody against xlFANCJ (Supplementary Fig

S7A). Immunodepletion with this antibody removed the vast major-

ity of FANCJ from HSS (Fig 5A). Importantly, FANCJ depletion had

no effect on replication of a non-G4 plasmid template (Supplemen-

tary Fig S7B). We then replicated the G4G3N template in mock-

depleted and FANCJ-depleted extracts. At early time points, the
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Figure 4. Mapping the sites of replication stalling at G-quadruplex structures.

A Schematic representation of a G4 template showing AseI restriction sites. Products formed after AseI digestion and/or replication stalling at the G-quadruplex
structure are depicted on the right. Of note, AseI will only cut in double-stranded DNA and thus replication past the site is required.

B G4G5N and non-G4C3P plasmids were replicated in HSS. Samples collected at the indicated times were extracted, AseI digested, separated on a high-resolution urea-
PAGE sequencing gel and visualized by autoradiography (top). Sequencing ladder generated by extension of primer A on pBluescript allows the mapping of the
replication products. Stalling positions are depicted on top of the G4G5N sequence (bottom) and are numbered such that the first nucleotide within the G4
sequence is numbered 0, the last nucleotide 30 to the G4 sequence is numbered -1 and so forth.

C, D G4G3N (C) and G4G23 (D) plasmids were replicated in HSS, in the presence or absence of Phen-DC3, and analyzed as in (B). The sections of the sequencing gels
containing the stalled replication products are depicted. Replication stalling sites were mapped and depicted on the relevant G4 sequences below the gels. Stalling
positions were numbered as in (B).
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replication stalling product at the G4 site accumulated with similar

kinetics in both extracts, which indicates that in the absence of

FANCJ, G-quadruplexes still form a similar replication barrier.

Consistent with this, the position of the stalled 30 end did not change

in the absence of FANCJ (Supplemental Fig S7C). However, while

the stalling band readily disappeared as the G4 was bypassed in

the mock-depleted extract, stalled products persisted in the

FANCJ-depleted extract (Fig 5B). This indicates that a significant

fraction of the G-quadruplex structures is not resolved in the

absence of FANCJ. Furthermore, addition of the full-length xlFANCJ

recombinant protein (Supplementary Fig S7D) to a FANCJ-depleted

extract fully reversed the persistent stalling at G-quadruplex struc-

tures (Fig 5A and B, right panel) showing that this effect is caused

specifically by the depletion of FANCJ. Replication of the G4G23 and
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Figure 5. Depletion of FANCJ results in persistent stalling at G-quadruplex structures.

A Mock-depleted, FANCJ-depleted, and FANCJ-depleted HSS supplemented with recombinant xlFANCJ were analyzed by Western blotting using xlFANCJ antibody. A
dilution series of undepleted extract was loaded on the same blot to determine the degree of depletion. A relative volume of 100 corresponds to 0.7 ll of HSS. A non-
specific band cross-reacting with FANCJ antibody is used as a loading control (‘Loading’).

B Mock-depleted, FANCJ-depleted, and FANCJ-depleted HSS supplemented with recombinant xlFANCJ were used to replicate the G4G3N plasmid template starting from
primer A. Replication products were extracted, separated on 6% urea-PAGE gels, and visualized by autoradiography. Products stalled at the G4 sequence (‘stalled’),
linear molecules resulting from denatured nicked products (‘linear’), and closed supercoiled products (‘supercoiled’) are indicated.

C G4G3N was replicated in FANCJ-depleted HSS starting from primer A. After 60 min, xlFANCJ or buffer was added followed by an additional 30-min incubation.
Replication products were extracted, separated on 6% urea-PAGE gels, and visualized by autoradiography.

D Mock-depleted and FANCJ-depleted HSS were used to replicate G4G3N starting from primer A in the absence or presence of a low concentration (0.75 lM) of Phen-
DC3. Replication products were extracted, separated on 6% urea-PAGE gels, and visualized by autoradiography.

E The G4 stalled and bypassed products of the 90-min time point in (D) were quantified using ImageQuant software, and the percentage of stalling versus bypassed
products was plotted for the various conditions. Black bars represent percentage of stalling in the mock-depleted samples, the sum of black and dashed bars
represent the percentage of stalling in the FANCJ-depleted samples. Therefore, dashed bars represent percentage of stalling as a result of FANCJ depletion only.
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G4G5N plasmid templates in FANCJ-depleted extracts also resulted in

persistent replication stalling (Supplementary Fig S7E). These

results strongly suggest that FANCJ plays a specific role in G4

unwinding and thereby facilitates eukaryotic G4 DNA replication.

The persistence of stalling products at the G4 site in the absence

of FANCJ could be a result of extended pausing of the replication

machinery, but could also result from disassembly of the replication

machinery or even breakage of the parental stand. To investigate

this, recombinant FANCJ was added to a replication reaction in

FANCJ-depleted extract after 60 min. While a stalled product was

present at this 60-min time point, this product disappeared after an

additional 30-min incubation in the presence of FANCJ (Fig 5C).

This indicates that the replication machinery is still present, or

rapidly reassembles after stalling, and that replication past these

G-quadruplex structures is critically dependent on FANCJ. This is in

agreement with a recent report that showed efficient replication

restart of hydroxyurea-stalled forks in FANCJ deficient cells

(Schwab et al, 2013). In addition, we did not observe any mutations

or deletions when sequencing G4 replication products after FANCJ

depletion arguing against a fork collapse and repair mechanism

(Supplementary Fig S5).

Finally, we showed that increasing the stability of G-quadruplex

structures by the addition of a low dose of Phen-DC3 enhanced the

requirement of FANCJ (Fig 5D and E). In summary, these findings

demonstrate that FANCJ plays a direct role in G4 unwinding during

DNA replication and that this helicase is likely required for the reso-

lution of particularly stable G-quadruplex structures.

Role of FANCJ in G4 unwinding is independent of the classical
FA pathway

To investigate the role of the Fanconi anemia (FA) pathway in

processing G-quadruplex (Youds et al, 2008; Kitao et al, 2011), we

examined the monoubiquitylation of FANCD2, a central event in the

FA pathway. No differences were observed in FANCD2 monoubiqui-

tylation levels when replicating G4 versus non-G4 sequences

(Fig 6A). To further study a potential role of FANCD2 in G4 replica-

tion, the protein was immunodepleted from HSS. FANCD2 depletion

did not co-deplete FANCJ and did not affect replication efficiency of

ssDNA control templates (Fig 6B and C). We then replicated a G4

template in a mock- and FANCD2-depleted extract and found that

FANCD2 depletion did not enhance replication stalling (Fig 6C).

These data argue against a direct function for FANCD2 in G4 DNA

processing and provide evidence that the role of FANCJ in G4

unwinding is independent of its role in the classical FA pathway.

Discussion

G-quadruplex structures are mutagenic in animal cells, and a

number of models have proposed a replication block as a cause for

this genetic instability. However, whether, and to what extent, these

structures block replication directly is not known. Moreover, how

these structures are resolved is poorly understood at the molecular

level. In this study, we use a cell-free system based on Xenopus egg

extracts to investigate G4 resolving and replication. We show that

G-quadruplex structures have the intrinsic capacity to transiently

block DNA replication even under non-compromised conditions

(Fig 7A). Our data demonstrate that FANCJ is strictly required for

the unwinding of stable G-quadruplexes (Fig 7B). Depletion of the

FANCJ helicase results in persistent replication stalling at G-quadru-

plex structures (Fig 7C), arguing that in the absence of FANCJ

temporal stalls become persistent. However, our data also suggest

that additional G-quadruplex structures are present and resolved

independently of FANCJ (Fig 7D). This could be mediated by other

specialized helicases such as BLM, WRN, RTEL1, or XPD, or by a

polymerase incorporating new nucleotides stepwise leading to

destabilization of the structure. We also demonstrate that DNA

synthesis is readily resumed after a short period to faithfully repli-

cate the G4 containing DNA (Fig 7B and D).

In yeast, Pif1 helicase deficiency causes DNA replication to slow

down in regions that contain sequences with G4 forming potential

(Lopes et al, 2011; Paeschke et al, 2011). In contrast to a general

replication slow-down, we here show that G-quadruplex causes

stalling of nascent strand progression right at the G4 site demon-

strating that G-quadruplex structures form a direct replication chal-

lenge. However, stalling is only transient, and replicated molecules

do not show a high incidence of mutations, indicating that there is a

mechanism in place that efficiently resolves G-quadruplex struc-

tures. This is consistent with G4 sequences being conserved in our

genome. However, we could envision that in conditions of replica-

tion stress, these structures are more problematic which could

explain the higher incidence of translocation junctions near G4

sequences observed in cancer cells (De & Michor, 2011; Bose et al,

2014). Furthermore, failure to properly resolve G-quadruplex struc-

tures could deregulate the propagation of epigenetic histone marks

during replication leading to a loss of epigenetic memory and mis-

regulation of gene expression (Sarkies et al, 2010).

During our study, we observed some differences in the degree in

which various G4 sequences stall DNA replication (Fig 3). It has

been shown extensively that the sequence is an important determi-

nant of G-quadruplex stability (Guedin et al, 2010; Bharti et al,

2013). Moreover, this notion is in accordance with previous genetic

data in C. elegans deficient for dog-1, showing that some G4

sequences are more mutagenic than others (Kruisselbrink et al,

2008). It would be interesting to perform a thorough investigation

into the effect of G-content, loop length and composition, and

G-quadruplex conformation on replication stalling in Xenopus egg

extract. Another aspect that is worth exploring is the influence of

chromatinization of DNA, which is currently not addressed in our

assay.

Purified FANCJ helicase can unwind G-quadruplexes in vitro

(Wu et al, 2008) but whether it also performs this function under

physiological conditions has been difficult to address. Also, many

proteins have been shown to have G-quadruplex unfolding ability

when tested with purified proteins and model substrates. We now

provide direct evidence that FANCJ is required to efficiently repli-

cate past G-quadruplex structures in a system that recapitulates

vertebrate G4 replication, which strongly suggests that FANCJ

resolves these structures. Of great interest, the 30 ends of the stalled

replication products in the absence of FANCJ are at a very similar

position compared to the 30 ends of the G4-induced deletions found

in dog-1 deficient C. elegans (Cheung et al, 2002; Kruisselbrink

et al, 2008). This almost exact overlap provides strong support for

the hypothesis that a stalled nascent strand is a determinant in dele-

tion induction in this genetic system. Genetic instability caused by
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persistent stalling at G4 sequences in the absence of FANCJ could,

at least in part, explain the identification of FANCJ as a cancer

susceptibility gene (Seal et al, 2006).

Although previous data and our results indicate that G-quadru-

plex are efficiently resolved during DNA replication, persistent

G-quadruplex structures have been shown to induce DNA damage and

mutations, both of which are linked to DNA replication (Kruissel-

brink et al, 2008; Rodriguez et al, 2012). Whether this DNA damage

is induced when replication is stalled at the G-quadruplex or

whether it is only generated in the following cell cycle as recently

suggested by Koole et al (2014) remains to be determined. In our

hands, persistent stalling after depletion of FANCJ does not lead to

breaks or extensive mutations. This is consistent with a recent

report that showed that the formation of DSBs is not enhanced upon

fork stalling after treatment of FANCJ deficient cells with hydroxy-

urea (Schwab et al, 2013).

G4 ligands have been suggested to act as anticancer drugs based

on their effect on specific gene promoters and telomeres (Salvati

et al, 2007; Balasubramanian et al, 2011). Alternatively, inducing

DNA damage by enhancing replication stalling at G-quadruplex

structures could also be a strategy to target rapidly dividing cancer

cells. Accordingly, it has been shown that G4 ligands induce

synthetic lethality in cells deficient for various DNA damage repair

pathways (Rodriguez et al, 2012). To optimize these synthetic lethal

strategies, it will be important to determine which G4 ligand most

potently stalls the progression of the replication machinery and

deficiency of which repair protein or helicase could enhance this

effect. Our system is highly suited to investigate these aspects.

The unique approach described here represents a powerful tool

to further unravel the mechanism of G-quadruplex structure resolu-

tion and to elucidate signaling events leading to this.

Materials and Methods

Preparation of ssDNA plasmids containing G4 and
non-G4 sequences

G4 sequences or control G-rich sequences were cloned into the pBS-

SK(�) phagemid vector using HindIII and BamHI restriction

enzymes. Subsequently, single-stranded DNA (ssDNA) templates

were generated by viral replication using a helper phage as

described previously (Jupin & Gronenborn, 1995; Trower, 1996).

Consequently, ssDNA plasmids used in this study were identical

except for a small region of 17–30 nucleotides (nt) containing the

control G-rich or G4 sequences (Fig 1C).

Primer A (GGGTTCGTGCACACA) and B (TAATGTGAGT-

TAGCT) were annealed to the ssDNA templates 760 nt or 208 nt,

respectively, from the G4 sequence or control G-rich sequence

(Supplementary Fig S1A). In order to prevent 50-to-30 DNA degradation

in extract, primers were synthetized with phosphorothioate bonds

connecting the twelve most 50 nucleotides. Primers without phosp-

horothioate bonds were used for Fig 4C and D and for Supplementary

Figs S3 and S6. Where indicated, primers were 32P-c-dATP radio-

actively labeled at the 50-ends using T4 polynucleotide kinase (PNK).

G-quadruplex structures were induced as follows: 21.9 fmol/ll
(20 ng/ll) of ssDNA plasmid was incubated with 175 fmol/ll
primer A in EB buffer (10 mM Tris pH 8) containing 50 mM KCl for

5 min at 80°C. Subsequently, the annealing mix was slowly cooled

down to room temperature in approximately 2 h allowing the

G-quadruplex structure to form and the primer to anneal. Where

indicated, the G4 stabilizing compound Phen-DC3 (Piazza et al,

2010; Bharti et al, 2013) was added to the mix at 50°C and

incubated for 30 min after which the mix was further cooled down

to room temperature.

Primer extension reaction

Pre-labeled primer B (105.6 fmol/ll) was annealed to ssDNA

template (18.3 fmol/ll) in Sequenase reaction buffer provided by

the Sequenase kit supplemented with 50 mM KCl. The mix was

incubated for 2 min at 80°C and slowly cooled down to room
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Figure 6. Role of FANCJ in promoting G-quadruplex structure replication
is independent of FANCD2.

A G4G3N and non-G4C3p plasmids were replicated in HSS. Samples were taken
at various time points and analyzed by Western blotting using xlFANCD2
antibody.

B Mock-depleted and FANCD2-depleted HSS were analyzed by Western
blotting using xlFANCJ and xlFANCD2 antibodies. A dilution series of
undepleted extract was loaded on the same blot to determine the degree of
depletion. A relative volume of 100 corresponds to 0.7 ll of HSS. A non-
specific band cross-reacting with FANCJ antibody is used as loading control
(‘Loading’).

C Mock-depleted and FANCD2-depleted HSS from (B) were used to replicate
the G4G3N template starting from primer A. Replication products were
extracted, separated on 6% urea-PAGE gels, and visualized by
autoradiography.
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temperature. DTT (6.7 mM), dNTPs (0.9 mM), and T7 DNA poly-

merase (3.3 units) (Sequenase, USB, Cleveland, OH, USA) were

added to the annealing reaction following manufacturer instruc-

tions. The reaction was carried out at room temperature. At the indi-

cated time points, the primer extension reaction was stopped by

addition of formamide loading dye (95% formamide, 20 mM EDTA,

0.05% bromophenol blue, and 0.05% xylene cyanol FF) and

the products were separated on 6% urea-PAGE gels for 30 min at

15 W.

Xenopus egg extract and replication of ssDNA plasmids

Preparation of high-speed supernatant (HSS) from Xenopus laevis

unfertilized eggs was performed as previously described (Mechali &

Harland, 1982; Walter et al, 1998; Lebofsky et al, 2009). All HSS

replication reactions in this study were performed using low ssDNA

concentrations (3 ng/ll) to prevent random priming events.

HSS was supplemented with 3 ng/ll nocodazole, ATP regenera-

tion mix (18.9 mM phosphocreatine, 1.9 mM ATP and 4.7 ng/ll
creatine phosphokinase), and 32P-a-dCTP. At t = 0, the primed

template was added to the Xenopus egg extract and the replication

reaction was carried out at room temperature. At the indicated time

points, 1 ll of the reaction was stopped with 5 ll stop solution I

(8 mM EDTA, 0.13% phosphoric acid, 10% Ficoll, 5% SDS, 0.1%

bromophenol blue, and 80 mM Tris pH 8) and 4 ll of the reaction

was stopped with 50 ll stop solution II (0.5% SDS, 10 mM EDTA,

50 mM Tris pH 7.5). Samples in stop solution I were separated on

native agarose gels. Samples in stop solution II were treated with

RNase A and Proteinase K (0.5 mg/ml) and phenol–chloroform

extracted prior to nascent strand analysis.

Where indicated, agarose gels were SybrGold stained (Molecular

Probes, Eugene, OR, USA) for visualization of non-radiolabeled

DNA.

Nascent strand analysis

To determine G4 stalling, extracted products were separated on 6%

urea-PAGE gels, which, after drying, were visualized by autoradio-

graphy. To assess the stalling efficiency, replication stalling products

were quantified, and their relative amount with respect to the total

lane intensity was plotted.

Where indicated, replication products were analyzed at nucleo-

tide resolution by separation in 5% urea-polyacrylamide sequencing

gels prepared in 0.8× GTG buffer (USB, Cleveland, OH, USA).
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Figure 7. Model for G4 DNA recognition and unwinding during DNA replication.
(A) When the DNA replication machinery encounters a G-quadruplex structure, it temporarily stalls right at the G4 site (G4 detection). Stable G-quadruplex structures depend
on FANCJ for their resolving (B), while others are resolved through FANCJ-independent mechanisms (D) after which DNA synthesis proceeds and the G4 sequence is faithfully
replicated. In the absence of FANCJ (C), the G-quadruplex structures are not resolved leading to persistent replication stalling at the G4 sequence.
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Briefly, extracted products were digested for 3 h at 37°C with AseI

restriction enzyme. Reaction was stopped by addition of formamide

loading dye, and products were separated on sequencing gels for

200 min at 55 W. After drying, the products were visualized by

autoradiography. Sequencing ladders were generated from dsDNA

pBluescript template and primer B using the Thermo Sequenase TM

Cycle Sequencing kit (USB, Cleveland, OH, USA) following manu-

facturer instructions.

Antibodies and immunodepletions

FANCJ antibody was prepared using amino acids 69–249 of Xenopus

laevis FANCJ as antigen. Antiserum was raised in rabbits, and

antibody specificity was confirmed by Western blotting. Antibodies

against FANCD2 were described previously (Knipscheer et al, 2009).

To deplete Xenopus egg extracts of FANCJ, one volume of protein

A-sepharose Fast Flow (PAS) (GE Healthcare, Piscataway, NJ, USA)

was bound to 3 volumes of a-xlFANCJ serum or pre-immune serum

through an overnight incubation at 4°C. Beads were washed twice

with 500 ll PBS, once with 500 ll ELB (10 mM HEPES–KOH at pH

7.7, 50 mM KCl, 2.5 mM MgCl2, and 250 mM sucrose), twice with

500 ll ELB + 0.5 M NaCl, and finally twice with 500 ll ELB. Three
rounds of depletion for 20 min at 22°C were performed using one

volume of pre-cleared HSS mixed with 0.2 volumes of the antibody-

bound sepharose. Extracts were collected and immediately used for

DNA replication experiments following the same procedure as

described above. When indicated, recombinant xlFANCJ was added

to the depleted extract. FANCD2-immunodepleted HSS extracts were

prepared as described previously (Knipscheer et al, 2009). The level

of depletion was determined by Western blot analysis of a dilution

series of undepleted HSS next to the depleted extract.

Supplementary information for this article is available online:

http://emboj.embopress.org
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