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Protein phosphorylation on tyrosine residues is an

important cell-signaling mechanism, controlled by the

combined actions of protein-tyrosine kinases (PTKs)

and protein-tyrosine phosphatases (PTPs). PTKs are

tightly regulated by various mechanisms. Whereas

PTPs were initially regarded as household enzymes

with constitutive activity, dephosphorylating all the

substrates they encountered, evidence is now accumu-

lating that PTPs are tightly regulated. As described

elsewhere in this minireview series, the human genome

encodes around 100 enzymes that have the capacity to

dephosphorylate phosphotyrosine (pTyr) in proteins

[1,2]. We focus on the regulatory mechanisms of classi-

cal PTPs, a cysteine-based subclass of the PTP super-

family that exclusively dephosphorylates pTyr in

proteins. Classical PTPs comprise cytoplasmic and

transmembrane proteins that are tentatively called

receptor (R)PTPs. Characterization of the catalytic

activities of PTPs indicated that their enzymatic activ-

ity is extremely high with a kcat value up to three

orders of magnitude higher than that of the PTKs, the

enzymatic counterpart of the PTPs. All cells express

multiple PTKs and PTPs, therefore, tyrosine phos-

phorylation can occur in cells only if PTPs are tightly

regulated. Different levels of regulation can be dis-

cerned from the organismal through the cellular to the

molecular level as indicated in Fig. 1. Here, we discuss

the different regulatory mechanisms that have evolved.

Expression

Differential expression of PTPs is an obvious regulator

of PTP function. Among the PTPs are ubiquitously

expressed family members such as SHP2 or PTP1B,
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Protein-tyrosine phosphatases are tightly controlled by various mecha-

nisms, ranging from differential expression in specific cell types to restricted

subcellular localization, limited proteolysis, post-translational modifications

affecting intrinsic catalytic activity, ligand binding and dimerization. Here,

we review the regulatory mechanisms found to control the classical pro-

tein-tyrosine phosphatases.
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and more selectively expressed members that are abun-

dant in neuronal or hematopoietic compartments [3–5].

However, in a given cell type, such as endothelial cells,

many of the 38 classical PTP genes appear to be

expressed, at least as represented by low mRNA levels

[6] (see http://expression.gnf.org/cgi-bin/index.cgi).

PTP mRNA expression is regulated by different mech-

anisms. Induction of the expression of several PTP

genes has, for example, been reported upon neuronal

or hematopoietic differentiation [7–11] and a number

of PTPs are upregulated in cells reaching high densi-

ties, including DEP-1 [12], PTP-LAR [8], RPTPl [13],

RPTPk [14], and PTPb ⁄VE-PTP [15]. A highly

dynamic expression pattern for PTPs has been seen

during the onset and termination of smooth muscle

cell proliferation in restenosis [16]. In cancer cells,

mRNA expression of some PTPs is downregulated by

promoter methylation [17].

Relatively few studies have addressed the detailed

mechanisms involved in the transcriptional regulation of

specific PTP mRNAs. An example is analysis of the

PTP1B promoter, which identified a region involved in

the induction of PTP1B expression by p210 BCR-Abl

activity. This region was designated PRS and interacts

with Egr-1 and SP-family transcription factors [18].

Y box-binding protein-1 (YB-1) is another transcrip-

tional inducer of PTP1B and acts by binding to an

enhancer element between -152 and -132 of the PTP1B

promoter [19]. In a recent search for novel Smad targets

in transforming growth factor (TGF)b-stimulated mam-

mary epithelial cells, the PTPj-encoding gene PTPRK

was identified [20]. Although details of transcriptional

regulation are still unknown, upregulation of PTPj
through the Smad pathway seems to mediate several of

the TGFb responses in these cells, including inhibition

of cell proliferation and enhanced cell motility.

Alternate use of promoters within PTP genes is

another mechanism that can lead to tissue-specific PTP

mRNA expression, as in the case of SHP1 [21], or to

the expression of different PTP isoforms, as for

RPTPe. In the latter case, alternate promoter use leads

to the expression of either a transmembrane RPTPe
molecule or a soluble, cytoplasmic version of PTPe
with presumably important consequences for the access

to substrates [22]. Similarly, three distinct promoters

can direct the generation of several isoforms of

PTPRR proteins in neuronal cells, of which some are

cytoplasmic [23].

Regulation of mRNA stability may be another

important level of control in PTP expression. In their

analysis of PTP genes, Andersen et al. [2] observed

that PTP genes often encode long 3¢-UTRs, which may

be important in this respect. Very few studies have

addressed this issue. For example, increased stability

of TC-PTP, but not PTP1B, mRNA has been observed

in mitogen-stimulated T lymphocytes [24].

Although largely unexplored, PTP levels are likely

to also be controlled at the levels of translation and

protein stability. Several PTP proteins exhibit rather

long half-lives, for example, SHP2 [25], whereas short

half-lives have been shown for different isoforms of

PTPRR [26]. A cell-density-dependent increase in the

expression level of RPTPl has been attributed to a

reduced rate of degradation when this PTP becomes

engaged in homophilic interactions upon cell–cell con-

tacts [27].

Subcellular localization

Like protein phosphorylation, dephosphorylation by

PTPs is required in a cell-compartment-specific man-

ner. Protein–protein interaction domains and compart-

ment-specific targeting domains in PTPs serve to

Differential expression in organs

Differential expression in tissues

Differential expression in cells

Subcellular localization

Regulation at the molecular level

Fig. 1. Regulation of PTPs at different levels. (top to bottom) PTPs

are differentially expressed in specific organs, tissues or cells.

Within cells, PTPs are directed to specific subcellular locations. At

the molecular level, PTPs are regulated by post-translational modifi-

cations.
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achieve the required PTP localization [28,29] from the

cell surface to the nucleus (Fig. 2).

At the plasma membrane, RPTPs regulate tyrosine

phosphorylation as it occurs in response to cell

stimulation of PTK-coupled receptors [30] or in the

context of cell–cell or cell–matrix adhesion [31,32].

Complex formation of RPTPs with substrates is

important in these cases and has been shown, for

example, with several RTKs [33,34]. RPTP domains

which mediate such interactions remain to be identi-

fied. In addition, cytoplasmic PTPs are recruited to

the sites of cell-surface tyrosine phosphorylation.

Paradigms are SHP1 and SHP2, which are recruited

to tyrosine-phosphorylated cell-surface receptors and

adaptor proteins through their SH2 domains [3,4],

whose recognition specificities have recently been

elucidated in great detail [35]. Interestingly, the C-ter-

minus of SHP1 seems to be involved in targeting this

PTP to the plasma membrane. It has previously been

shown, that the SHP1 C-terminus harbors a high-

affinity binding site for acidic phospholipids [36].

Recent studies revealed that this site is important for

targeting SHP1 to lipid rafts in T lymphocytes, where

it regulates T-cell receptor signaling [37]. Similarly,

HePTP is targeted to lipid rafts. In this case, targeting

depends on prior phosphorylation by a PKC isoform

[38]. Another non-transmembrane PTP that regulates

the tyrosine phosphorylation of surface receptors is

PTP1B [39]. Very efficient substrate recognition by

this PTP occurs by its catalytic domain [40,41]. How-

ever, non-catalytic interactions with substrates may

also be important for PTP1B recruitment. A recently

published crystal structure revealed binding of PTP1B

in a phosphotyrosine-independent manner to the

‘backside’ of the insulin receptor, an interaction that

may facilitate the rapid engagement of substrate

residues upon insulin–receptor activation [42]. Interest-

ingly, PTP1B can also be recruited to substrates via

adaptor molecules. Phospholipase Cc1 serves as a

scaffold downstream of the activated growth hormone

receptor and recruits PTP1B by an as yet unknown

mechanism into a ternary complex with JAK2, lead-

ing to JAK2 dephosphorylation [43]. It will be inter-

esting to see if phospholipase Cc1, which binds to

many cell-surface receptors, mediates the interaction

of PTP1B with other targets as well. Recruitment of

non-transmembrane PTPs to cell–cell adhesion com-

plexes and cell–matrix adhesion complexes occurs, for

example, via FERM and PDZ domains as in PTP-

BAS and via proline-rich domains as in PTP-PEST

[28,29,31,32].

Some PTPs reside in the endoplasmic reticulum

(ER). The best investigated in this respect is PTP1B

whose C-terminus contains an ER-anchoring hydro-

phobic sequence [39]. Spatial distribution of PTP1B

activity over the cell has recently been shown using

sophisticated FRET analyses. Most cellular PTP1B

activity resides in a perinuclear compartment, whereas

the more peripheral PTP1B population has lower

activity [44]. How PTP1B can access sites of tyrosine

phosphorylation at the cell surface is the topic of

intense investigation. In the case of activated epidermal

growth factor receptor (EGFR) and platelet-derived

growth factor receptor (PDGFR), interaction with

Fig. 2. Subcellular localization of PTPs.

Cytoplasmic PTPs are recruited to activated

cell-surface receptors by SH2, proline-rich

FERM (band 4.1, ezrin, radixin, moesin hom-

ology) and PDZ (postsynaptic density pro-

tein 95, discs large, Zonula occludens)

domains. RPTPs are also engaged in these

complexes. Nuclear localization signals

(NLS) and ER targeting domains direct PTPs

to these compartments. A Sec14-homology

domain (Sec14h) mediates functional associ-

ation with secretory versicles. Cytoplasmic

PTPs are recruited into lipid rafts by differ-

ent domains. The kinase-interacting motif

(KIM) in PTPs mediates binding to MAPK.

Proteolysis releases the catalytic domain of

(R)PTPs into the cytoplasm and possibly

also into the nucleus.
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PTP1B takes place in conjunction with endocytosis at

the surface of ER membranes, which extend far into

the cell periphery [45]. PTP1B, which remains bound

to the ER, can also access cell–matrix adhesions and

this process involves microtubule activity [46]. Is there

a function of PTP1B (and possibly other PTPs) in the

ER itself? One function seems to be the regulation of

ER stress [47]. Furthermore, it was observed early on

that PTP1B can effectively dephosphorylate precursor

molecules of cell-surface receptors, such as the insulin

receptor or the EGF receptor in the ER, during bio-

genesis [48,49]. Recently, dephosphorylation of ER-

bound immature forms of different RTKs of the

PDGFR family, notably of FLT3, has been shown to

enhance their maturation to complex glycosylated sur-

face receptors [50]. Similar observations have been

made for FGFR3 [51,52]. Spontaneous basal activity

of RTKs appears to present an obstacle for efficient

processing and an important function of ER-bound

PTPs may be suppression of this activity. It should be

noted that RPTPs share localization in the ER with

maturing RTKs and may also participate in suppres-

sion of detrimental RTK basal activity. PTPs may also

affect further aspects of RTK trafficking. For example,

recycling of internalized PDGFb-receptor is enhanced

in cells lacking T-cell PTP [53].

An interesting, recently explored example of cellular

targeting is the localization of PTP-MEG2 to secretory

vesicles, where it dephosphorylates N-ethylmaleimide-

sensitive factor and thereby regulates vesicle fusion

[54]. A Sec14-homology domain at the N-terminus of

PTP-MEG2 ensures this localization by mediating

interactions with resident proteins, such as TIP47 [55].

In the cytoplasm, the specificity of the interaction of

PTPs with soluble substrates is enhanced by targeting

domains, as exemplified by the kinase-interaction motif

which directs HePTP, STEP and PTPRR isoforms to

members of the mitogen-activated protein kinase fam-

ily and facilitates effective dephosphorylation [56,57].

Finally, PTP activity is also needed in the nucleus.

Dephosphorylation of tyrosine phosphorylated mem-

bers of the STAT family is important for terminating

STAT signaling, and for recycling of dephosphoryl-

ated STAT molecules into the cytoplasm [58]. An

important PTP in this context is TC-PTP. An ER-

bound 48-kDa version and a 45-kDa version that can

shuttle into the nucleus are generated by alternative

splicing [49,59]. Nuclear localization of the 45-kDa

TC-PTP is accomplished by a nuclear localization sig-

nal that is not functional in the 48-kDa isoform. The

45-kDa TC-PTP can effectively suppress STAT1 sig-

naling [60] and may also dephosphorylate STAT3

[61]. SHP1 can localize to the nucleus in some cell

types and in response to certain cell stimuli, based on

a nuclear localization signal in its C-terminus,

however, the functional role of nuclear SHP1 remains

to be clarified [62]. SHP2 has been shown to dephos-

phorylate STAT5, however, in this case dephosphory-

lation occurs in the cytosol [63] and is unlikely to

function in signal termination. Tyrosine-phosphory-

lated STAT3 has been identified as a possible sub-

strate of RPTPq ⁄RPTPT [64]. This may occur

proximal to the receptor or an as yet unidentified pro-

teolytic fragment of RPTPq may have access to

nuclear pSTAT3.

Alternative splicing and limited
proteolysis

Alternative splicing and limited proteolysis may lead

to specific changes in the domain structure of PTPs,

resulting in functionally different PTP splice variants.

Among the receptor-like PTPs, alternative splicing fre-

quently gives rise to structural variants of the extracel-

lular domains [9,65–68], which results in a different

profile of ligand interaction [69,70] or in the generation

of secreted molecules which engage in alternate

ligand ⁄ receptor interactions [68,71,72].
Alternative splicing may also result in changes in the

regulatory domains. For example, the C-terminus of

SHP1 is extended and altered in its amino acid

sequence in SHP1-L, a long form of SHP1 generated

by exon skipping [73], leading to loss of the raft-target-

ing sequence and an essential part of the nuclear local-

ization sequence. In PTP-BAS, alternative splicing

affects the ligand specificity of one of the PDZ

domains [74]. Further, altered PTP activity may be

caused by alternative splicing, as shown for SHP2 [75]

and recently for RPTPa [76]. Splicing events are

regulated, and occur upon acquisition of certain

differentiation stages or in response to growth factor

stimulation [68,77].

At the post-translational level, many PTPs are regu-

lated in activity and function by limited proteolysis.

RPTPs of the R2A family (LAR, RPTPr and RPTPd)
and the R2B-MAM family (RPTPl, RPTPj, RPTPq
and RPTPk) undergo proteolytic cleavage in the extra-

cellular domain by furin-like proteinases ⁄ convertases
during their biogenesis, and the mature PTPs are com-

posed of non-covalently associated extracellular (E)

and transmembrane–intracellular (P) domains [78,79].

Additional proteolysis occurs when cells are stimulated

with phorbol esters or Ca2+-ionophores [80,81] or, in

case of MAM-domain PTPs, when cells reach high

densities [13,82]. The latter leads to shedding of the

extracellular domains and internalization and redistri-
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bution of the remaining PTPs [80]. Recent studies have

identified further mechanistic details and suggest

putative functions for the shedding process in case of

MAM-domain PTPs. Secondary cleavage of mature

RPTPj at high cell density occurs by ADAM10, fol-

lowed by a third, intra-membrane cleavage through

the action of c-secretase. Interestingly, the phosphatase

intracellular portion generated in this process was

localized to the nucleus [82]. Recent elucidation of the

crystal structure of the extracellular domain of RPTPl
(see below) suggests that RPTPl is acting as a sensor

for cell–cell contacts and is locked in cell–cell adher-

ence junctions by a ‘spacer–clamp’ mechanism to regu-

late the tyrosine phosphorylation of other junction

components. Shedding of the extracellular domain is

predicted to allow truncated RPTPl to leave the junc-

tions [83].

Limited proteolysis is also common in non-trans-

membrane PTPs. For example, caspase-mediated lim-

ited proteolysis of PTP-PEST has recently been linked

to the regulation of apoptosis [84]. Fragmentation of

PTP-PEST by caspase 3 leads to elevated PTP activity,

resulting in an altered interaction between PTP-PEST

and adaptor molecules such as Paxillin and facilitating

detachment of the cell from the substratum. Notably,

degradation of PTP-PEST upon apoptosis was rela-

tively specific and could not be seen with a range of

other PTPs. Several PTPs, including PTP1B, PTP-

MEG, and SHP1 can undergo limited cleavage by cal-

pain in response to an elevation in intracellular Ca2+

levels in platelets [85–88], leading initially to enzyme

activation by removing domains that exert negative

regulation. Upon platelet aggregation, calpain, how-

ever, eventually degrades completely and inactivates

PTP1B, a process that is critical for efficient thrombus

formation in vivo [89]. Another inactivating calpain-

dependent cleavage of PTP1B has been seen in epithe-

lial cells upon UVA ⁄B irradiation and requires

reversible oxidation (see below) of the PTP [90]. It is

important to further elucidate the function of calpain

for regulation of PTP activity and PTP localization in

more cell types and signaling pathways.

Post-translational modification:
phosphorylation

Many PTPs are regulated by covalent post-transla-

tional modifications (Fig. 3). In general, phosphoryla-

tion modulates the catalytic activity of enzymes

directly by allosteric mechanisms or by providing bind-

ing sites for other proteins. Phosphorylation was rec-

ognized as a potential regulatory mechanism for PTPs

early on [91] and several classical PTPs, including

CD45, PTP1B and PTP-PEST, were identified as being

phosphorylated on serine residues [92–95]. However,

relatively little is known about how phosphorylation

regulates PTPs. RPTPa is phosphorylated on two ser-

ine residues in the juxtamembrane domain, Ser180 and

Ser204 [96], and phosphorylation of these sites stimu-

lates catalytic activity [97]. These two phosphorylation

sites are located close to the wedge-like helix–loop–

helix structure that is essential for inactivation of the

dimeric conformation [98] suggesting that phosphory-

lation of these sites may lead to disruption of the inac-

tive dimer conformation, thus resulting in catalytic

activity. RPTPa is the major activator of Src in mitosis

[99,100] and mutation of the two serine phosphoryla-

tion sites eliminates the ability of RPTPa to activate

Src in mitosis [101]. Whether serine phosphorylation

affects the catalytic activity of PTP1B remains to be

determined definitively [92,102]. SHP1 and SHP2 are

phosphorylated on serine residues in response to PKC

activation. SHP2 activity is not affected by serine

phosphorylation [103]. Substitution of SHP1 Ser591 by

Asp results in reduced catalytic activity, which led Liu

et al. [104] to suggest that phosphorylation of this site

inhibits SHP1 catalytic activity.

PTPs have also been found to be phosphorylated on

tyrosine. Tyrosine phosphorylation of PTPs immedi-

ately suggests autoregulatory or feedback mechanisms,

making it an intriguing regulatory mechanism for

PTPs. CD45 was found to be phosphorylated tran-

siently on tyrosine [105,106]. Moreover, the SH2-

containing PTP, SHP2, is phosphorylated on tyrosine

Glc Ox

UbiProteolysis Sumo

P

Fig. 3. Post-translational modification of PTPs. Most RPTPs are gly-

cosylated in their extracellular domain (Glc). PTPs are tightly regu-

lated by oxidation of their catalytic-site cysteine, which inhibits

catalytic activity. Phosphorylation of serine, threonine and even

tyrosine residues is recognized as an important regulatory mecha-

nism of PTPs. Proteolysis in the extracellular domain of RPTPs may

lead to shedding of the ectodomain and intracellularly to release of

the catalytically active PTP domain. Sumoylation and ubiquitination

may be important regulators of PTP stability and ⁄ or subcellular

localization and thus of their function.
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[107,108]. Tyrosine phosphorylation of SHP2 generates

a binding site for the SH2 domain of the adaptor

protein GRB2 and SHP2 thus acts as an adaptor pro-

tein, linking GRB2-SOS to activated receptor tyrosine

kinases [109,110]. Tyrosine phosphorylation of SHP1

and SHP2 may activate catalytic activity because sub-

stitution of the tyrosine-phosphorylation sites by phos-

phomimetic residues led to enhanced catalytic activity

[111,112]. The transmembrane PTP, RPTPa is phos-

phorylated on a C-terminal tyrosine [113]. This phos-

phorylation site is a consensus GRB2-binding site and

GRB2 binds readily to phosphorylated RPTPa
[113,114]. The stoichiometry of Tyr789 phosphoryla-

tion is �20%, which is similar to the percentage of

RPTPa bound to GRB2 [113]. This suggests that all

tyrosine-phosphorylated RPTPa is bound to GRB2

which is not surprising in light of the autodephosph-

orylation activity of RPTPa. Zheng et al. [99,100]

developed a model in which pTyr789 binds the SH2

domain of Src, resulting in activation of Src by

RPTPa-mediated dephosphorylation of the inhibitory

pTyr527 in Src. CD45 can dephosphorylate RPTPa
pTyr789 in vitro and RPTPa pTyr789 is not detected

in T cells that express CD45, suggesting that RPTPa is

a direct substrate of CD45 [115]. The data indicate

that there is cross-talk between RPTPs at the level of

direct interactions, warranting further investigation

into the role of PTPs in the regulation of each other

and suggesting the possibility of PTP cascades, much

like the kinase cascades identified previously.

Post-translational modification:
oxidation

It is now well established that PTPs are negatively reg-

ulated through reversible oxidation of the catalytic-site

cysteine [116,117]. Inhibitory oxidation caused by ele-

vated levels of reactive oxygen species (ROS) has been

shown for various PTPs following activation of differ-

ent classes of cell-surface receptors, including receptor

PTKs, integrins and G-protein-coupled receptors

(Table 1). Cell adherence and density, UV-radiation

and cell migration also affect levels of PTP oxidation

(Table 1). In most cases, NADPH oxidases or mito-

chondria have been implied as the sources of ROS.

The biochemical mechanisms of PTP oxidation have

been elucidated in some detail. The 3D structure of

reversibly oxidized PTP1B and RPTPa shows a sulfe-

nyl-amide at the catalytic site, formed by a covalent

bond between the sulfur of the catalytic cysteine and

the backbone nitrogen of the neighboring serine [118–

120]. Glutathionylated and nitrosylated versions of the

active site cysteine of oxidized PTPs have also been

found, in addition to intermolecular Cys–Cys disulfides

[121–123].

Therefore, intriguing and previously unrecognized

cross-talk exists between PTKs and ROS signaling

with PTPs as mediators. Some key aspects of this

cross-talk now being explored are the specificity of the

signaling, the possibility that enzymes involved in ROS

metabolism control tyrosine kinase signaling and the

in vivo significance of PTP oxidation.

Protein-tyrosine phosphatase domains of different

PTPs display intrinsic differences with regard to sus-

ceptibility to oxidation. This was first demonstrated in

analyses of RPTPa, which revealed that the second

PTP domain is much more readily oxidized than the

catalytically more active membrane proximal PTP

domain [124]. A large in vitro screen indicates large

differences in oxidizability between PTPs that corre-

lates with the conformation of the conserved active-site

arginine residue [125]. Similarly, the catalytic activity

of a panel of PTPs is differentially sensitive to oxida-

tion [126]. T cells stimulated with increasing concentra-

tions of H2O2 show oxidation of SHP2, but not SHP1

[127]. Interestingly, one study also introduced the pos-

sibility of localized ROS signals as a mechanism for

specificity by demonstring specific oxidation of PTP-

PEST caused by co-localization in focal contacts with

an activated NADPH oxidase [128].

The overall concept of PTPs as targets of ROS stim-

ulates studies on PTP and RTK activities in cells

Table 1. Oxidation of protein-tyrosine phosphatases (PTPs).

ROS modulator Target PTP References

Cell-surface receptors ⁄ signaling molecules

Receptor tyrosine kinases

EGFR PTP1B [164]

InsulinR PTP1B, TC-PTP [165,166]

PDGFR SHP2 [167]

T-cell receptor SHP2 [127]

B-cell receptor ‘BCR-associated PTP’ [168]

Integrins ‘FAK-targeting PTP’ [169]

GPCRs

Lipoxin A4

receptor

SHP2 [170]

Endothelin 1 SHP2 [171]

ROS-scavengers ⁄ reductases

PrxII ‘membrane-associated

PTPs’

[129]

Other

UV irradiation RPTPa, RPTPj, SHP1,

DEP1, PTP1B

[90,124,172,173]

Cell density SHP2 [174]

Endothelial cell

migration

PTP-PEST [128]
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where levels of reductases or ROS scavengers are

manipulated. Deletion of peroxiredoxin II (PrxII), a

peroxidase that eliminates H2O2, decreases PTP activ-

ity and stimulates PDGF receptor signaling [129].

Independent evidence for cell-context-dependent differ-

ences in PTP oxidation comes from a study showing

that SHP2 oxidation, following H2O2 stimulation, var-

ies dramatically between different cell lines [130].

Recent studies support the notion that PTP oxida-

tion is relevant in tissue settings. Restenosis, involving

PDGF receptor-dependent vascular smooth muscle

proliferation, is enhanced in PrxII) ⁄ ) mice [129]. Fur-

thermore, systemic treatment with antioxidants in a

rabbit model of restenois attenuates lesion formation

in a way that involves increased vessel-wall PTP activ-

ity and reduced PDGF receptor phosphorylation [131].

Concerning PTP regulation by oxidation, it should

be noted that Sdp1, a yeast PTP, was recently shown

to be activated by oxidation [132]. Whether this mode

of regulation is also relevant for classical PTPs is likely

to be explored. However, it should be noted that the

activating oxidation-induced disulfide involves a cyste-

ine residue that is not conserved in classical PTPs,

indicating that this mode of regulation might be

restricted to other subsets of PTPs.

Ligands

The highly variable extracellular domains of receptor-

like PTPs imply regulatory functions. As indicated in

Table 2, efforts over the last 15 years have led to the

identification of a number of PTP ligands. Type IIB

receptor PTPs, including RPTPl, RPTPj and RPTPk,
as well as type IIA RPTPd, all display homophilic

interactions that are important in cell adhesion.

RPTPb ⁄ f has multiple heterologous interaction part-

ners (Table 2) [66]. However, among these, only pleio-

trophin directly modulates the activity of this enzyme,

acting as an antagonist of RPTPb ⁄ f, thus increasing

the phosphorylation of a number of RPTPb ⁄ f sub-

strates including b-catenin, b-adducin, p190Rho-GAP

and ALK [133–136].

RPTPr also has multiple binding partners, which

have been identified in the nervous system and skeletal

muscles, including nucleolin, alpha-latrotoxin and the

heparan-sulfate proteoglycans agrin and collagen

XVIII [137–139]. Characterization of the RPTPr inter-

actions with these proteins demonstrates that they dis-

play a dependency of the dimerization state of RPTPr
and that splice variants of RPTPr differ with regard

to their binding specificities [69,70,139]. The effects of

these interactions on the activity of RPTPr remain to

be elucidated.

Some of the most exciting findings showing biologi-

cally significant PTP–ligand interactions come from

recent studies of the role of PTP-LAR during synaptic

development in Drosophila. A combination of genetic

studies, tissue culture analyses and biochemical experi-

ments led to a model where RPTP-LAR-mediated

development of the neuromuscular junction is con-

trolled by two heparan-sulfate proteoglycans; syndecan

and dallylike [140,141]. At the neuromuscular junction,

RPTP-LAR is expressed in the pre-synaptic neuronal

part, whereas the ligands are expressed on the muscle

cells. A key substrate for RPTP-LAR in this process is

the phospho-protein Enabled (Ena). Syndecan and dal-

lylike both bind RPTP-LAR with high affinity but

exert agonistic and antagonistic effects, respectively, on

the process of synaptic development. Dallylike controls

the activity of RPTP-LAR because downregulation of

dallylike increases Ena phosphorylation.

The crystal structure of the homophilic dimer of two

RPTPl ectodomains provides new insight into the

structural and mechanistic basis for earlier observa-

tions on the cell-adhesive homophilic RPTPl inter-

actions [83]. In the dimer, the two subunits occur as

two antiparallel rigid structures. The dimer structure is

maintained through interactions between the MAM

and Ig domains of one molecule and the FN1 and

FN2 domains of the other. Interestingly, the length of

the dimeric complex (�330 Å) is very similar to the

width of the extracellular space in the adherens junc-

tion. This finding suggests that homophilic interactions

between RPTPl molecules of juxtaposed cells will pref-

erentially occur at adherens junction, and thereby

restrict localization of this enzyme to its substrates in

cadherin complexes. Furthermore, changes in the

width of the intracellular space following expression of

different RPTPl deletion mutants indicate that this

rigid interaction has the capacity to directly control

the distance between cells. Finally, this structure sug-

gests that many of the previously reported colon-

cancer-associated mutations in the related RPTPq
[142] led to proteins that are either misfolded or defec-

tive in homophilic interactions.

Dimerization

Dimerization is a well-known regulatory mechanism of

transmembrane proteins, including type I transmem-

brane proteins with a single transmembrane domain

[143]. The first evidence that RPTPs are regulated by

dimerization was provided by chimeric proteins con-

sisting of the cytoplasmic domain of the RPTP, CD45,

and the extracellular domain of the EGFR [144]. This

chimera rescues the T-cell response in cells lacking
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CD45, indicating that the construct is functional. EGF

treatment leads to dimerization of the chimera and

functionally inactivates the chimera, in that the T-cell

response is impaired after EGF treatment. The crystal

structure of the membrane-proximal domain of RPTPa
provided evidence for dimerization-induced inactiva-

tion of RPTPs [98]. Dimers were observed in these

crystals with a large buried surface at the interface of

the two molecules. A helix–loop–helix, wedge-like

structure of one of the molecules inserted into the cat-

alytic cleft of the other and vice versa, thereby occlud-

ing access for substrates to the catalytic site and

inactivating PTP. Mutation of the wedge in the

EGFR–CD45 chimera abolishes EGF-induced func-

tional inactivation of the chimera, indicating that the

wedge has an important role in the dimerization-

induced inactivation of RPTPs [145]. Introduction of a

cysteine residue into the extracellular juxtamembrane

domain of RPTPa leads to constitutive dimerization.

Depending on the exact location of the cysteine

residue, these dimers are active or inactive [146]. Muta-

tion of the wedge in the inactive mutant leads to acti-

vation of PTP activity, demonstrating the importance

of the wedge in dimerization-induced inactivation of

RPTPs. Moreover, peptides encompassing the wedge

of LAR or RPTPl bind these RPTPs in a homophilic

manner and administration of these peptides to cells

results in specific defects that are consistent with the

inhibition of RPTP function [147]. Although the wedge

is conserved among RPTPs and functional experiments

suggest that it has an important role in dimerization-

induced inactivation, the model of wedge-mediated

RPTP inactivation is the subject of debate because the

crystal structures of full-length LAR and full-length

CD45 are not compatible with this role for the wedge

[148,149]. The membrane-distal PTP domain causes a

steric clash when the wedge of one monomer is mod-

eled into the catalytic site of the other, as observed in

Table 2. Ligands of receptor protein-tyrosine phosphatases (RPTPs).

Common

name

RPTP

class Ligand(s)

Effect on

activity Comments References

CD45 R1 Galectin-1 Inhibition Interaction based on recognition of

CD45 carbohydrates

[175,176]

RPTPd R2A Homophilic binding Not reported Extracellular domain is also a ligand

promoting adhesion and neurite

outgrowth

[177,178]

LAR R2A LARFN5C Activation LAR isoform, binds homophilically [72]

Laminin-Nidogen Not reported Binding is specific for a LAR splice

version

[179]

DLAR R2A Syndecan (heparan sulfate

proteoglycan)

Activation DLAR ligand [140,141]

Dallylike (heparan sulfate

proteoglycan)

Inhibition DLAR ligand; competitive binding with

Syndecan

[141]

HmLAR2

(leech)

R2A Homophilic interaction Not reported Interaction induces repulsive responses

in comb cells

[180]

RPTPr R2A Heparan sulfate

proteoglycans (agrin,

collagen XVIII),

nucleophilin, a-latrotoxin,

unidentified ligand in

developing muscle

Not reported Ligand binding requires PTP dimerization [69,70,137–139]

RPTPj R2B Homophilic binding Not reported [181]

RPTPl R2B Homophilic binding Not reported Structure of extracellular domain reveals

‘spacer–clamp’ mechanism in cell–cell

adhesions; homophilic interactions appear

to trigger RPTPl signaling in retial neurites

[83,182–184]

RPTPk R2B Homophilic binding Not reported [185]

DEP1 R3 Components in Matrigel Activation Molecular identity of ligand(s) not known [186]

RPTPb ⁄ f R5 Pleiotrophin Inhibition May be linked to activation of several

pathways; whether inhibition occurs by

induction of dimer formation is not known

[133,134,136]

Tenascin Not reported [187]

Contactin Not reported [188]

TAG-1 ⁄ Axonin-1 Not reported [189]
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RPTPa. However, if one assumes that there is flexibil-

ity between D1 and D2, a wedge–catalytic site interac-

tion is feasible in CD45 and LAR. Flexibility between

D1s and D2s may be regulated dynamically, thus con-

trolling the formation of inactive RPTP dimers.

The functional data show that RPTPs can be regu-

lated by dimerization. But do RPTPs dimerize? There

is ample evidence that RPTPs dimerize in living cells.

Chemical cross-linkers show dimerization of CD45,

RPTPa, Sap-1 and RPTPr [70,150–153]. RPTPa ho-

modimerizes in living cells, as demonstrated by fluores-

cence resonance energy transfer between chimeras of

RPTPa proteins fused to derivatives of green fluores-

cent protein [154]. Chin et al. [155] showed that dimer-

ization of many RPTPs may be driven by their

transmembrane domain. PTP domains may also be

involved in homo- and heterodimerization

[151,156,157]. Co-immunoprecipitation experiments

have been used to demonstrate dimerization of full-

length RPTPa [150], CD45 [158] and RPTPe [159].

Although dimerization was first shown to inactivate

RPTPs, it is now evident that both active and inactive

RPTP dimers exist. The exact make-up of the dimers

determines the catalytic activity of the RPTPs. RPTPa
mutants with disulfide bonds at different positions in

the extracellular juxtamembrane domain suggest that

subtle changes in the relative orientation of the RPTPs

determines whether they are active or inactive and

actually provides an appealing model for regulation.

Changes in the experimental conditions lead to subtle

changes in the quaternary structure of RPTPa, as dem-

onstrated using an epitope tag in the extracellular

domain of RPTPa [160]. Rotational coupling within

RPTPs may therefore be an important regulatory

mechanism (Fig. 4). As described above, Lee et al. [70]

demonstrated that only dimeric ectodomains of

RPTPr bind ligand and that subtle changes in the

rotational coupling of the ectodomains abolished

ligand binding. These results provide support for the

model that intracellular changes, such as phosphoryla-

tion or oxidation, result in changes in the quaternary

conformation within RPTP dimers, thus altering the

ligand-binding properties. Therefore, RPTPs may not

only have the capacity for outside-in signaling, i.e. to

bind ligands extracellularly resulting in changes in cat-

alytic activity intracellularly, but also for inside-out

signaling, i.e. to alter the ligand binding repertoire in

response to intracellular changes.

Outlook

Control of PTP expression levels remains surprisingly

poorly characterized. Improved understanding of tran-

scriptional and translational control is likely to reveal

novel processes governed by PTPs. It should also be

noted that the involvement of microRNAs in control-

ling PTP expression remains to be explored.

Recent discoveries of regulatory ligands for Dro-

sophila RPTP-LAR should encourage the continued

search for additional PTP ligands. It will be interesting

to follow-up on the concept of inside-out signaling and

to further analyze how oxidation and dimerization

affect ligand binding. The structural understanding of

the RPTPl homophilic interactions will assist in stud-

ies on whether this type of binding affects the specific

activity of RPTPs involved in cell-adhesive inter-

actions.

To date, studies on post-translational PTP modifica-

tions have focused on reversible oxidation of the active

site and phosphorylation. However, other types of

modifications are also involved in controlling PTPs.

PTP1B is sumoylated in a manner that inhibits its cat-

alytic activity [161]. It will be interesting to see if other

Ligands

Post-translational
modification

Active Inactive

Fig. 4. Rotational coupling regulates RPTP dimers. RPTPs dimerize

constitutively. Whether RPTP dimers are active depends on the

exact make-up of the dimers. Post-translational modifications, such

as oxidation or phosphorylation may shift the dimers from an active

to an inactive state or vice versa by inducing subtle changes in rota-

tional coupling. The dimeric states may be stabilized by different

ligands binding to either form of the extracellular dimer. Ligand

binding may therefore drive the equilibrium of dimers into one of

the forms, representing classical outside-in signaling. Alternatively,

intracellular post-translational modifications may change the

exposed surface of the extracellular domain, resulting in binding of

different ligands, which represents inside-out signaling.
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PTPs are regulated by sumoylation. Likewise, ubiquiti-

nation may regulate the stability and activity of PTPs,

warranting further investigation.

Further studies on the regulation of PTPs by oxida-

tion will continue to give new insights into fundamen-

tal cell processes. One key topic where progress can be

expected is the source of ROS involved in PTP regula-

tion. Analyses of whether spatially restricted ROS

production is a common mechanism for conferring

specificity are also awaited. Furthermore, it is likely

that the description of how PrxII modulates RTK sig-

naling by controlling PTP oxidation, will be followed

by more studies on how reductases and ROS scaveng-

ers control PTP oxidation. Concerning the latter issue,

it should be noted that modulation of glutaredoxin has

been shown to affect PDGF receptor signaling through

effects on the oxidation of LMW-PTP [162].

The refined understanding of PTP regulation sug-

gests novel approaches for the design of PTP agonists

and antagonists. Obviously, the identification of extra-

cellular homo- and heterophilic ligands suggests the

development of neutralizing ligand-targeted antibodies.

The effects of dimerization on RPTP activity suggest

the possibility of designing agents that stabilize or dis-

rupt the dimeric state. The recent demonstration of a

DEP-1-modulating antibody, which required bivalency

to exert its action [163], provides an example of this

approach. Finally, it may be possible to exploit the

reversible oxidation of PTPs for therapeutic purposes,

as indicated by early studies with non-specific antioxi-

dants [131]. It has also been speculated that modifiers

that stabilize the inhibited oxidized conformation of

the active site could be designed. Hopefully, continued

collaborative studies will thus be able to combine the

knowledge derived from basic biology studies on PTPs,

with analyses of the molecular etiology of human dis-

eases, into novel translational initiatives.
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Böhmer FD & Imhof D (2007) Monitoring phospha-

tase reactions of multiple phosphorylated substrates by

J. den Hertog et al. Regulation of protein-tyrosine phosphatases

FEBS Journal 275 (2008) 831–847 ª 2008 The Authors Journal compilation ª 2008 FEBS 841



reversed-phase HPLC. J Chromatogr B Analyt Technol

Biomed Life Sci 853, 204–213.

42 Li S, Depetris RS, Barford D, Chernoff J & Hubbard

SR (2005) Crystal structure of a complex between pro-

tein tyrosine phosphatase 1B and the insulin receptor

tyrosine kinase. Structure 13, 1643–1651.

43 Choi JH, Kim HS, Kim SH, Yang YR, Bae YS,

Chang JS, Kwon HM, Ryu SH & Suh PG (2006)

Phospholipase Cgamma1 negatively regulates growth

hormone signalling by forming a ternary complex with

Jak2 and protein tyrosine phosphatase-1B. Nat Cell

Biol 8, 1389–1397.

44 Yudushkin IA, Schleifenbaum A, Kinkhabwala A,

Neel BG, Schultz C & Bastiaens PI (2007) Live-cell

imaging of enzyme-substrate interaction reveals spatial

regulation of PTP1B. Science 315, 115–119.

45 Haj FG, Verveer PJ, Squire A, Neel BG & Bastiaens

PI (2002) Imaging sites of receptor dephosphorylation

by PTP1B on the surface of the endoplasmic reticulum.

Science 295, 1708–1711.

46 Hernandez MV, Sala MG, Balsamo J, Lilien J & Arregui

CO (2006) ER-bound PTP1B is targeted to newly form-

ing cell–matrix adhesions. J Cell Sci 119, 1233–1243.

47 Gu F, Nguyen DT, Stuible M, Dube N, Tremblay ML

& Chevet E (2004) Protein-tyrosine phosphatase 1B

potentiates IRE1 signaling during endoplasmic reticu-

lum stress. J Biol Chem 279, 49689–49693.

48 Lammers R, Bossenmaier B, Cool DE, Tonks NK,

Schlessinger J, Fischer EH & Ullrich A (1993) Differ-

ential activities of protein tyrosine phosphatases in

intact cells. J Biol Chem 268, 22456–22462.

49 Tiganis T, Bennett AM, Ravichandran KS & Tonks

NK (1998) Epidermal growth factor receptor and the

adaptor protein p52Shc are specific substrates of T-cell

protein tyrosine phosphatase. Mol Cell Biol 18, 1622–

1634.

50 Schmidt-Arras DE, Böhmer A, Markova B, Choudh-
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130 Weibrecht I, Böhmer SA, Dagnell M, Kappert K,
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