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Abstract Fetal haematopoiesis is a highly regulated process in terms of time and location. It is characterized by the emergence of
specific cell populations at different extra- and intraembryonic anatomical sites. Trafficking of haematopoietic stem cells
(HSCs) between these supportive niches is regulated by a set of molecules, i.e. integrins and chemokine receptors,
which are also described for the recruitment of differentiated innate immune cells. In this review, an overview will
be given on fetal haematopoiesis as well as trafficking of HSCs during fetal life. In addition, we will focus on the appear-
ance of the first differentiated neutrophils and monocytes in the fetal circulation and describe how they acquire the
ability to roll, adhere, and transmigrate into inflamed fetal tissue. Furthermore, we will discuss other effector functions
of innate immune cells evolving during fetal ontogeny.
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This article is part of the Spotlight Issue on Leucocyte Trafficking.

1. Introduction
On the daily basis, various types of haematopoietic cells ensure proper
transport of oxygen and nutrients through the body as well as protec-
tion against infections and other foreign threads. Most haematopoietic
cells die or have a limited lifetime after they performed their function.
Therefore, a massive and constant haematopoietic production is
needed throughout life. This is possible due to the presence of haem-
atopoietic stem cells (HSCs) that have two major properties, multipo-
tency and self-renewal. The concept of stem cell and haematopoietic
cell hierarchy was first postulated at the beginning of the 21st century
(reviewed in Ramalho-Santos and Willenbring1). Pappenheim2,3 was
pioneer in suggesting the existence of precursor cells capable of differ-
entiation into both red and white blood cells, and Maximow4 thereafter
popularized the term of ‘stem cell’. HSCs can indeed differentiate at the
clonal level into more committed progenitors and precursors that mas-
sively proliferate to produce all blood cell types from the lymphoid and
myeloid lineages. HSCs can also self-renew to maintain a constant HSC

pool throughout the life of an organism. In adults, most HSCs are lo-
cated in the bone marrow (BM) where they are mainly slow cycling/qui-
escent.5,6 Interestingly, HSCs have the ability to traffic between tissues.
This biological process is also a crucial feature during embryonic devel-
opment, a time when the first HSCs are generated and then colonize
different and sequential haematopoietic sites before finally relocating
to the BM before birth. At the same time, the first immune cells arise
from haematopoietic precursor cells and circulate in the fetal vascula-
ture in growing numbers. To date, our understanding of fetal blood cell
trafficking is still limited. This will most likely change with the recent de-
velopment of appropriate new in vivo models in the mouse foetus,
which provide interesting new opportunities to expand our knowledge
about cell trafficking in the fetal vasculature.

This review will provide the reader with an overview on the current
understanding of haematopoietic stem/progenitor cell and innate im-
mune cell (neutrophils and monocytes) trafficking during murine and
human fetal life. In addition, we will discuss future challenges and per-
spectives in this field.
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2. Development of the
haematopoietic system

2.1 Primitive and definitive haematopoiesis
Sabin7 brought to light the existence of progenitors for both blood and
endothelial lineages in vertebrate yolk sac (YS). The establishment of in
vitro explant culture systems and in vivo analysis elucidated the differenti-
ation potential of these cells referred to as the haemangioblasts,8–14 and
it was long suggested that the YS might be the site of HSC production.15

The first haematopoietic cells produced in the YS are mostly erythro-
blasts (large nucleated erythrocytes).16 They are formed in the extra-
embryonic mesoderm of the YS in structures called ‘blood islands’ at
an early embryonic stage (embryonic day (E)7.25 post coitus in the
mouse, the animal model that we mainly describe in this review)17

(and reviewed in Ferkowicz and Yoder10). To a lower extent, macro-
phages and megakaryocytes are also produced in the YS.18 Slightly later
during development (after E7.5), various committed progenitors from
the lymphoid, erythroid, and/or myeloid lineages are produced in the
YS,15,16,19 – 22 the allantois and chorion (which will fuse later on to
form the placenta and the umbilical cord),16,23–26 and the caudal part
of the embryo.27,28 The intraembryonic region including the dorsal aorta,
vitelline artery, gut, and lining splanchnopleura is referred to as the para-
aortic splanchnopleura (P-Sp) region. Because these mature cells and
progenitors are transiently present during embryonic life and do not
last into adulthood, their production is referred to as the ‘primitive’ or
embryonic haematopoietic wave (Figure 1).

Since the first blood cells are produced in the YS, it was hypothe-
sized in the 1970s that the first HSCs were also generated in the
YS.15 However, grafting experiments conducted in the avian model
(i.e. quail – chick and then chick–chick grafting approach)29,30 and
thereafter in the amphibian model (Xenopus laevis)31 – 33 have chal-
lenged this dogma. Indeed, the haematopoietic production from the
YS appeared to be transient while a sustained haematopoiesis leading
to adult haematopoietic cell production was, in fact, derived from cells
produced in the region of the aorta. Therefore, a second wave of haem-
atopoietic production referred to as ‘definitive’ or adult occurs within
the embryo. This wave is characterized by the production of HSCs that
are needed for the long-term establishment of the adult haematopoi-
etic system (Figure 1). Of note, the resident macrophage population of
the adult central nervous system, named microglia, derives from mye-
loid progenitors that were initially generated in the YS (before E8).34

Very recently, it was also shown that, in fact, the majority of adult
tissue-resident macrophages (in liver, brain, epidermis, and lung) origi-
nates from erythro-myeloid progenitors that develop in E8.5 YS.35 Such
cells therefore constitute an exception to the transient YS haematopoi-
etic wave described so far.

Tissue grafting experiments and cell tracing in chimeras are impos-
sible experiments to perform in mammals since embryos develop in-
side the mother uterus. Therefore, other assays were developed to
detect haematopoietic stem/progenitor cells (HSPCs) in tissues.
McCulloch and Till developed the first functional assay to explore
in vivo stemness in mammals. In this transplantation assay, donor BM
cells were injected into irradiated mice recipients where they gave
rise to myeloid multilineage colonies in the spleen of the transplanted
animals.36,37 It proved the multilineage potential of single BM cells, so-
called colony forming unit in the spleen (CFU-S).38 Similar transplanta-
tions performed with mouse embryonic tissues revealed that the aorta-
gonad-mesonephros (AGM, derivative of the developing P-Sp region)

of E10 embryos contain a high proportion of CFU-S (compared with
YS and fetal liver).39 The gold standard assay to identify HSCs remains
to date the long-term in vivo transplantation where cells are tested for
their capacity to restore the haematopoietic system of irradiated adult
wild-type recipients up to 4 months after transplantation.40 Using this
assay, HSCs were first detected in the AGM region starting at E10.5.41

The HSC activity within the AGM was remarkably increased after a
3-day organ culture of the AGM (as explant) prior to cell transplant-
ation.42 Such studies have ascertained the embryo as the first site of
HSC detection in mammals, therefore confirming the findings obtained
in the avian and amphibian embryo models. The location of the first
HSCs was later on refined and shown to be at E10.5 in the major arter-
ies such as the aorta (of the AGM region) and the vitelline and umbilical
arteries.43 Surprisingly, HSCs are also present at that stage in the vas-
culature of the head.44

Clusters of cells tightly attached to the main arteries were observed
for the first time more than a century ago45,46 and were since found in
most vertebrate species that were looked at.47 HSCs are believed to
reside in these clusters (also referred as intra-aortic haematopoietic
clusters or IAHCs) because Runx12/2 haematopoietic mutant em-
bryos that lack HSCs have also no IAHCs.48,49 The transcription factor
RUNX1 is essential for HSC production.50–52 IAHCs appear first in the
vitelline and umbilical arteries at E9 and then in the dorsal aorta at
E9.5.53 The number of IAHC cells peaks at E10.5 (≈700 IAHC cells/
aorta) and progressively decreases till E14.5.53 It is interesting to
note that IAHCs are located in the ventral aspect of the aorta and
are thus polarized in most vertebrate species. The mouse embryo is
an exception since IAHCs are also present in the dorsal aspect of
the aorta (although to a lesser extent).53,54 However, the HSC activity
is restricted to the ventral part of the aorta as shown by long-term
transplantation of either the sub-dissected ventral or dorsal part of
the aorta.54 Clusters were also observed in the head vasculature and
the vascular labyrinth of the placenta.44,55,56 Our group has recently
shown that beside very few HSCs,41,57 – 59 IAHCs also contain very
few committed progenitors and very few pre-HSCs.60 Pre-HSCs or
HSC precursors are incapable to reconstitute the haematopoietic
system of wild-type adult recipients upon transplantation, but
they are capable to reconstitute more permissive recipients
such as neonates or immunocompromised adult recipients.61 – 63

The exact and complete cell composition of IAHCs remains an
open question to date.

Despite decades of uncertainty, the endothelial origin of HSCs is
now well documented. First hypothesized more than a century
ago,45,46 IAHCs and therefore HSCs indeed derive from a specialized
endothelium named haemogenic endothelium due to its ability to gen-
erate haematopoietic cells. It appears that IAHC cells co-express
haematopoietic and endothelial surface markers, indicating a close re-
lationship between endothelial and haematopoietic lineages.64 The
endothelial origin of IAHCs was first demonstrated in the chicken em-
bryo by endothelial lineage tracing.65,66 Various strategies including
genetic lineage tracing experiments,67 conditional Runx1 deletion in
endothelial cells,68 and embryonic stem cells/embryoid bodies differen-
tiation model69,70 have been then used to confirm the endothelial ori-
gin of mouse HSCs. The direct visualization of the haemogenic
endothelium into HSPC transition by time-lapse live confocal imaging
has provided the most convincing evidence thus far of the existence
of a haemogenic endothelium in the embryonic aorta. Imaging was per-
formed ex vivo in non-fixed mouse embryo slices71,72 and in vivo on zeb-
rafish embryos.73– 75
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Slightly after their detection in the main arteries, HSCs start to be
detected at E11–11.5 in highly vascularized tissues such as the YS, pla-
centa, and fetal liver.41,57,58,76 However, it is important to mention that
the YS and placenta might generate cells with HSC potential, but this
remains a matter of debate to date.55,77 – 79 The mouse blood vessels
are formed from E6.5 to E9.5, and the heart starts to beat around
E8.5 leading to the beginning of blood circulation.80 However, a func-
tional circulatory system is not obtained until E10,81 which occurs be-
fore HSC detection making it difficult to ascertain the anatomical
origin(s) of HSCs (for review see Boisset and Robin82). As soon as
the circulatory system is operative, HSCs and progenitors can freely mi-
grate through the circulation to colonize the fetal liver and other organs
around E10.583 (Figure 1).

2.2 Fetal sites of haematopoiesis
Limiting cell dilution transplantations and statistical analysis were per-
formed to estimate the number of HSCs in the different haematopoi-
etic organs throughout mouse embryonic development.57,58 An
average of 11 HSCs are present in the whole embryo conceptus at
E11.5.57,58 This number rapidly increases to reach 152 HSCs at
E12.5.57 They mainly locate in the fetal liver and placenta that constitute
two very important HSC reservoirs at mid-gestation.57,76 The mechan-
ism by which HSCs migrate from the AGM to the fetal liver and pla-
centa is still not well understood. In addition to HSCs, various types

of progenitors mainly produced in the YS84 start to colonize other
haematopoietic tissues most likely via the blood circulation. By E10,
the placenta is the largest reservoir of progenitors. However, from
E15 on the number of progenitors in the fetal liver will exceed by far
the number in the placenta (e.g. 1300 CFU in culture (CFU-C)/placenta
and 11 200 CFU-C/fetal liver at E17).23 Committed progenitors and/or
HSCs will then further colonize the spleen to mainly differentiate into
myeloid cells and some lymphoid cell subsets85 and the thymus to dif-
ferentiate in T-lymphoid cells.86 The HSC pool, constituted at mid-
gestation in the fetal liver, starts then to colonize the BM at E1787 (Fig-
ure 1). Although HSCs are known to circulate and reside in multiple tis-
sues, they mainly reside in the BM in adults.88

3. Trafficking of HSPCs throughout
development
The trafficking of HSCs and haematopoietic progenitors via blood cir-
culation from specific intra- and extra-embryonic sites is needed and
most likely highly regulated throughout development to guarantee
that these cells reach their final destination. The migration process of
these cells is not yet fully understood due to major technical limitations
such as the difficulty to access mammalian embryos or the lack of gen-
etic tools for the avian model that has slowed down lineage tracing

Figure 1 Molecules involved during embryonic/fetal HSPC trafficking. The main molecules involved in HSPC trafficking include: (i) the two integrin chains,
aIIb (CD41) and b1 (CD29); (ii) VE-cadherin (CD144), the type I transmembrane protein of the cadherin superfamily, which is an endothelial cell-specific
adhesion molecule; (iii) SCF, a dimeric molecule that binds to and activates the receptor tyrosine kinase c-kit. Activation of the SCF/c-kit axis mediates cell
survival, migration, and/or proliferation; (iv) SDF-1, also known as C-X-C motif chemokine 12 (CXCL12), that binds primarily to CXC receptor 4 (CXCR4;
CD184). Activation of the CXCL12/CXCR4 axis induces intracellular signalling leading to chemotaxis, cell survival, cell proliferation, and gene transcription.
The first time points of appearance of the different HSPC types are indicated during primitive and definitive mouse haematopoiesis. YS: yolk sac; PsP:
para-aortic splanchnopleura; UA: umbilical artery; VA: vitelline artery; AGM: aorta-gonad-mesonephros; FL: fetal liver; BM: bone marrow.
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approaches. However, several families of trafficking molecules involved
were shown to be key players of HSC trafficking (Figure 1).

3.1 Two major synergistic regulatory axes:
c-kit/SCF and CXCL12/CXCR4
HSCs have the ability to migrate from the circulation to the BM, which
occurs physiologically when the first HSCs leave the fetal liver to col-
onize the BM, starting at E17.87 This process called ‘homing’ involves
important players. Chemotaxis is an important contributor of embry-
onic cell trafficking. The stem cell factor [SCF, encoded by the Steel (Sl)
locus], also known as kit ligand (KitL), is an important factor among the
numerous chemokines and chemoattractants. Throughout develop-
ment, HSCs express high levels of the SCF receptor, the tyrosine kinase
c-kit. In the fetal liver, SCF is an essential chemoattractant,87 notably
produced by the fetal hepatic progenitors known to support adult
HSCs in vitro.89 In adults, conditional deletion of SCF or CXCL12
(C-X-C motif-ligand 12 or stromal cell-derived factor-1a) in endothe-
lial and perivascular stromal cells affects HSC frequency.90,91 Sl2/2 em-
bryos dye at birth. They have less CFU-S than their wild-type
littermates, but they have a similar fold increase in CFU-S numbers be-
tween E13 and E15.92 Thus, SCF might be dispensable for the initiation
of mouse haematopoiesis and HSC proliferation in the fetal liver,92 but
might be essential to maintain HSCs once they colonized the BM. c-kit
signalling is in fact needed for the maintenance of quiescent HSCs in the
BM.93 SCF and CXCL12 synergize to enhance the migration of fetal li-
ver HSCs to the BM.87 Endothelial cells in the placenta express high le-
vels of SCF mRNA and protein,56 suggesting that SCF/c-kit signalling
might also be important for HSC regulation.

BM cells such as osteoblasts, endothelial cells, and a subset of reticu-
lar cells continuously produce CXCL12, which creates a chemoattract-
ing gradient for the circulating HSCs that express its receptor CXCR4
(C-X-C receptor 4).90,94 –96 The binding of CXCL12 to CXCR4 acti-
vates multiple signal transduction pathways (reviewed in Busillo and Be-
novic97 and Kucia et al.98). Upon attraction, the circulating HSCs in
proximity to the BM start to tether and slowly roll on the vascular
endothelium until firm adhesion, followed by transmigration along
the chemoattractant gradient into the BM occurs, a process reminis-
cent to leucocyte recruitment into inflamed tissue, which is described
in the second part of the review. Cxcr499 and Cxcl12100 knockout mice
die at embryonic stage, with similar developmental defects such as the
incapacity of HSPCs to migrate from the fetal liver to the BM. On the
other hand, the conditional deletion of Cxcr4101 or Cxcl1290,102 in adult
mice leads to the release of HSCs into the blood circulation. However,
HSCs lacking functional CXCR4 conserve their homing and engraft-
ment capabilities,101,103 leading to the hypothesis that HSCs express
other redundant adhesion molecules. For example, the HSC-specific
adhesion molecule roundabout (ROBO) 4104 and its ligand SLIT2,
which are expressed by the BM microenvironment, were suggested
to reinforce CXCL12/CXCR4 function.105 CXCL12/CXCR4 thus
form an important axis for both HSC colonization and retention in
the BM by regulating cell adhesion, cell survival, and cell cycle status.103

3.2 Integrins
Integrin-mediated adhesion represents a crucial mediator for HSC
movement throughout development. Several integrin heterodimers
were described so far at different developmental stages and locations.
b1 integrin (CD29) is required on the surface of HSCs for proper fetal
liver colonization.106 Indeed, b1-deficient haematopoietic cells in

chimeric embryos were found in the circulation and YS, but not in
the fetal liver, showing the incapacity of the cells to colonize the fetal
liver in the absence of b1 integrin.106 Moreover, b1-deficient cells ex-
hibit an accumulation of primordial germ cells along their migration
route and only very few cells manage to populate the gonads.107

aIIb integrin subunit [CD41, Itga2b, and platelet (gp)IIb] is expressed
on the surface of all HSCs in the AGM and only on a portion of HSCs in
the YS. In contrast, HSCs from the placenta and fetal liver do not ex-
press aIIb.

108 Besides being a good HSC marker, aIIb is also essential for
the maintenance of the HSC activity specifically in the AGM.109 aIIb ex-
pression on HSCs decreases throughout development and its expres-
sion regulates HSPC production in various embryonic sites, suggesting
a potential role (yet to demonstrate) of aIIb in maintaining HSPCs in
their successive embryonic microenvironments.83,110,111

a6 integrin subunit is implicated in the BM homing of fetal liver pro-
genitors, while a4 integrin subunit is involved in the homing of HSCs.112

3.3 VE-cadherin
Mouse HSCs and precursors in the YS, placenta, and AGM express
VE-cadherin (CD144),113,114 which is involved in adults in regulating
endothelial barrier function and leucocyte transmigration. The surface
expression level of VE-cadherin on HSCs starts to decrease in the fetal
liver (by E16.5), which might allow the migration to and the coloniza-
tion of the BM.115,116

4. Trafficking of myeloid cells during
fetal development
During mouse fetal development, the onset of blood circulation is ob-
served at around E8.5.81 At that time, primitive haematopoiesis in the
YS consists of erythro-myeloid progenitor cells, which give rise to er-
ythroblasts, megakaryocytes, and cells of the myeloid lineage like
monocytes and neutrophils. These cells are gradually replaced during
fetal life by cells derived from HSCs originating from sites of definitive
haematopoiesis like the fetal liver and BM.117 Since monocytes and neu-
trophils constitute the first line of defence against invading bacteria and
pathogens especially in early life, when adaptive immunity is not yet fully
developed, in this part of the review, we will concentrate on the traf-
ficking and function of myeloid cells during fetal ontogeny.

Mouse fetal and adult neutrophils and monocytes are characterized
by surface expression of CD11b and Gr1. Within this population, neu-
trophils can be differentiated by their high expression of Ly6G. Neutro-
phils can only be found in very low numbers early during ontogeny
(,2% of circulating nucleated cells at E14). At later fetal stages, they
increase in number and reach �20% at E18.117 Neutrophils together
with monocytes are the main cellular components of the innate im-
mune system, and effective immune defence requires their recruitment
to sites of inflammation.

In adults, leucocyte recruitment follows a well-described cascade of
adhesion and activation events, which traditionally distinguishes three
different steps: leucocyte rolling, firm adhesion, and transmigration (re-
viewed in Ley et al.118 and Kolaczkowska and Kubes119). Over the
years, the traditional concept of leucocyte recruitment has been fur-
ther expanded, integrating new findings outlined below. Such progress
was possible mostly by significant advances in bioimaging tools [i.e. mul-
tiphoton laser scanning microscopy, spinning disk microscopy, total in-
ternal reflection fluorescence (TIRF) microscopy] and a better
understanding of intracellular activation events in leucocytes and
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endothelial cells (Figure 2). In the following paragraph, we will shortly
summarize the molecular events of rolling, adhesion, and extravasation
of adult myeloid cells before pointing out the differences of leucocyte
recruitment during fetal ontogeny.

In inflamed tissues, leucocytes are captured to and roll along the
inflamed endothelial surface of postcapillary venules via binding to
P- and/or E-selectin expressed on the inflamed endothelium. During
rolling, leucocytes have ample of time to communicate with the endo-
thelial compartment through interactions with different endothelial
surface receptors and recognition of surface-associated molecules.
Such molecules are either expressed by inflamed endothelial cells, de-
posited on the endothelial cell surface from sources within the vascu-
lature, or transferred from the underlying inflamed tissue. Processing
these signalling cues may lead to the activation of leucocyte-expressed
integrins (b2 integrins and a4b1 integrin) with concomitant slowing
down of rolling velocity and finally firm arrest on the inflamed endothe-
lium. Subsequent integrin-dependent signalling events induce consider-
able changes in the actin cytoskeleton. It leads to postarrest adhesion,
strengthening of leucocytes with spreading and flattening of the

adherent neutrophil on the inflamed endothelium. Thereafter, neutro-
phils start to crawl along the endothelial surface in search for an appro-
priate extravasation site (preferentially at tricellular endothelial
junctions) where neutrophils and monocytes eventually transmigrate
into tissue. This process is not only dependent on integrins, but also
on a whole variety of junctional molecules, including VE-cadherin,
PECAM-1, JAM family members, CD99, CD99L, and others.120

While the different leucocyte recruitment steps were thoroughly in-
vestigated in the adult organism under in vitro and in vivo conditions (tak-
ing advantage of an ever-growing number of gene modified mice), the
regulation of leucocyte recruitment during fetal ontogeny is still incom-
pletely understood. However, recent progress in the development of
suitable in vivo models in the mouse foetus has shed new light on the
molecular mechanisms of leucocyte recruitment in vivo.117 Neonates
exert a high susceptibility to bacterial infections121 with a strong correl-
ation between gestational age and morbidity and mortality.122,123

Therefore, understanding the intricacies of fetal leucocyte recruitment
is instrumental for the development of new therapeutic approaches in
the treatment of severe bacterial infections in the foetus and neonate.

Figure 2 Potential causes of impaired leucocyte trafficking. Rolling of fetal neutrophils on inflamed endothelium is severely compromised due to lower
surface expression of L-selectin and PSGL-1 on the neutrophil surface as well as lower expression and transcriptional up-regulation of P- and E-selectin
on inflamed endothelium. For P-selectin, a lower number of P-selectin containing Weibel-Palade bodies has also been described in fetal endothelial cells.
Diminished leucocyte adhesion in the foetus is associated with reduced Mac-1 surface expression as well as reduced activation-induced up-regulation of
Mac-1 on neutrophils. Additional factors, which contribute to decreased adhesion, are reduced CXCR2 surface expression on neutrophils, aberrant
chemokine receptor signalling, reduced fMLF-receptor activity, and an altered neutrophil actin cytoskeleton.
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Numerous studies have documented the high risk of bacterial infec-
tions in neonates,121 and clinical studies report a strong correlation be-
tween morbidity and mortality and the degree of prematurity.122,123

The increased risk for neonatal infections (which can reach up to
60% in extremely premature infants123) was attributed to the immatur-
ity of the innate immune system, which gives rise to the presumption
that both leucocyte recruitment and effector functions are ontogenet-
ically regulated during early fetal life. Further below, we will describe
what is currently known about the regulation of the leucocyte recruit-
ment cascade during fetal ontogeny, mainly in mouse and man
(Figure 2).

4.1 Leucocyte rolling is developmentally
regulated
Several groups have investigated selectins and their ligands on fetal and
neonatal myeloid cells using flow cytometry or functional in vitro assays.
L-selectin expression in neutrophils isolated from cord blood samples
of preterm and term neonates is severely compromised.124 – 128 Func-
tionally, reduced L-selectin expression could be correlated with the
diminished attachment of neonatal neutrophils to human umbilical
vein endothelial cells (HUVECs).129 However, the mechanism remains

unclear as acutely inflamed endothelial cells in peripheral tissue (ex-
cluding lymphatic tissue) do not express L-selectin ligands.130 Besides
reduced L-selectin expression on leucocytes, reduced P- and E-selectin
expression was also reported on inflamed endothelial cells shortly after
birth. In vivo studies in neonatal rats revealed reduced endothelial
P-selectin expression. This was verified on human endothelial cells of
premature infants and could be traced back to reduce numbers of
P-selectin storage granules and P-selectin transcription.131 Along the
same line, lipopolysaccharide (LPS)-induced up-regulation of E-selectin
on HUVECs of premature infants was severely reduced,132 suggesting
that the fetal endothelial compartment is impaired in its ability to sup-
port leucocyte rolling when compared with adult organism. In this con-
text, it is important to note that such responses were investigated in
primarily isolated HUVEC until Passage II. Using higher passages of HU-
VECs, the results might be different. For the blood compartment, two
independent reports have found reduced expression of P-selectin
glycoprotein ligand-1, the major selectin ligand on neonatal and fetal
neutrophils, respectively.132,133 Finally, using an intravital microscopy
model in the mouse foetus, one of the authors (M.S.) recently demon-
strated that neutrophil rolling in inflamed YS vessels in vivo is strongly
reduced to absent in the mouse foetuses until E15 (of 21 days carriage
in mice). For later fetal time points (E16–E18), rolling interactions

Figure 3 Effector functions of myeloid cells are compromised during fetal life. Expression of TLRs only rises to normal levels late during fetal ontogeny.
Intracellular signalling events are compromised in the developing embryo. Furthermore, activation of the complement system is severely diminished re-
sulting in lower direct pathogen lysis as well as reduced phagocytic capacity. In addition, concentrations of neutrophil-derived antimicrobial peptides and
proteins (APPs) are significantly lower in cord blood plasma of both preterm and term infants. Similarly, the generation and release of reactive oxygen
species (ROS) is compromised during fetal life. Finally, NET formation, although functional, is significantly delayed in neonates.
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increased towards birth, suggesting an ontogenetic regulation of neu-
trophil rolling. To exclude the possibility that microvascular parameters
like vessel diameter, blood flow velocity, and wall shear rates in YS ves-
sels contribute to the observed rolling deficit, these parameters were
quantified and no marked differences observed during the different
stages of fetal development investigated. Furthermore, in vitro flow
chamber experiments performed under steady shear stress conditions
and using isolated human cord blood neutrophils confirmed the devel-
opmental regulation of neutrophil rolling on immobilized P- or
E-selectin.132

4.2 Integrin-dependent adhesion in preterm
and term neonates
As selectin-dependent interactions are not sufficient to arrest leuco-
cytes on the endothelium, firm adhesion of leucocytes (similar to
HSCs) requires the activation of leucocyte-expressed integrins which
mediate firm leucocyte adhesion on the endothelium via binding to in-
tegrin ligands on the endothelium including ICAM-1 and the receptor
for advanced glycation endproducts (RAGE). The necessary activation
step can be provided by several pro-inflammatory mediators such as
chemokines, formyl peptides, LTB4, and others. Integrin activation con-
sists in conformational changes, redistribution of the integrin molecules
on the surface (clustering), as well as increased integrin surface expres-
sion.134 Studies on b2 integrin expression and function in neonatal neu-
trophils revealed diminished total cell content of Mac-1 (aMb2, CD11b/
CD18)135 and suggest a correlation of total and activation-induced
Mac-1 expression and gestational age.127,136 In contrast, other reports
describe equal surface expression of Mac-1 under resting conditions in
neonatal and adult neutrophils, but diminished Mac-1 up-regulation
after chemotactic stimulation in neonatal neutrophils.137 In contrast
to Mac-1, LFA-1 (aLb2, CD11a/CD18) expression and LFA-1-
dependent adhesion are not reduced in neonates.124,138

To date, little is known about the adhesive properties of neutrophils
during fetal development or in preterm infants. In 1990, Bektas et al.139

reported decreased adherence to nylon fibres of neutrophils in pre-
term infants. This was attributed to diminished b2 integrin expression.
Strunk et al. 28 detected diminished expression of the integrin subunits
CD11a, CD11b, and CD18 on neutrophils and monocytes isolated
from preterm infants (21–32 weeks of gestational age). However,
McEvoy et al.136 have shown severely diminished Mac-1 and a less pro-
nounced reduction in LFA-1 expression in preterm compared with
term neonates. Nussbaum et al. investigated cord blood neutrophils
obtained from very premature to mature infants. They found no differ-
ences in LFA-1 expression on cord blood neutrophils from preterm
and term infants, but reduced Mac-1 expression with decreasing gesta-
tional age.132 In ex vivo microflow chambers coated with E-selectin,
ICAM-1, and CXCL8, defective adhesion was observed in preterm neu-
trophils compared with neonatal and adult neutrophils.132 The reduced
expression of Mac-1 in neutrophils from preterm infants might contrib-
ute to the observed reduction in adhesion. However, the almost com-
plete absence of neutrophil adhesion in the most immature infants
investigated suggests additional factors contributing to this, including
strongly reduced rolling and most likely also impaired intracellular sig-
nalling. Interestingly, fetal neutrophil adhesive function in humans was
only correlated with gestational age, but not with postnatal life. This
could be shown in flow chamber assays comparing adhesion of neutro-
phils isolated from premature and mature infants at different postnatal
time points. These experiments revealed that postconceptional age,

but not postnatal age, was the only determinant of neutrophil adhesive
function, suggesting that postnatal exposure to the outside environ-
ment does not lead to a boosting of innate immunity. In addition, it im-
plies that neutrophil function during fetal ontogeny is intrinsically
regulated during ontogeny and not influenced by changes of the
environment.132

4.3 Transmigration and chemotaxis in
preterm and term neonates
The recognition of immobilized chemokines or other pro-inflammatory
mediators such as leukotriene B4 on the luminal surface of inflamed
endothelial cells is considered a critical step for the induction of firm ad-
hesion of neutrophils and monocytes and subsequent extravasation into
inflamed tissue.140 Human neutrophils isolated from cord blood and
adult peripheral blood had impaired chemotactic activity of neonatal
neutrophils in response to activated serum141–143 and to six neutrophil-
specific chemokines in vitro.144 Neutrophils isolated from stressed
neonates migrated even less efficient compared with healthy neonates,
emphasizing the problems neonates face with encountering
pathogens.145

Locomotion of leucocytes is accompanied by an actin-dependent
change of cellular shape, going from a round morphology in the resting
state into an amoeboid shape after polarization.146 Rigid cytoskeletal
structures prevent both uropod formation and the redistribution of adhe-
sion sites, and can thereby contribute to the impaired migratory response
of neonatal neutrophils.147 Decreased actin content and polymerization
seems to relate to impaired chemotactic responsiveness148 or impaired
chemokine receptor signalling149 in neonatal neutrophils. Additionally, ab-
errant NF-kB signalling downstream of chemokine receptors in neutro-
phils from newborns leads to their impaired migratory capacity.150

Impaired chemotactic capacity is also reported in neutrophils iso-
lated from cord blood of preterm infants.139 These findings were con-
firmed in murine YS vessels in our laboratory. Bacterial products like
the formylated peptide fMLF represent a strong stimulus for neutro-
phils to adhere and subsequently extravasate into inflamed tissue. After
fMLF superfusion of YS vessels, fetal neutrophils showed a significantly
reduced responsiveness to fMLF stimulation, resulting in reduced
adhesion and attenuated extravasation of fetal neutrophils. This was
more pronounced in the younger foetuses (E13–E15) compared
with older foetuses (E17–E18)117 and the result of reduced binding
of fMLF to its receptors on neutrophils. However, impaired
fMLF-triggered intracellular signalling events in neutrophils cannot be
excluded to contribute to reduced fetal neutrophil adhesion and ex-
travasation following fMLF stimulation. Interestingly, reduced CXCR2
chemokine receptor expression was found on fetal neutrophils, which
also may contribute to reduced neutrophil recruitment during fetal life.

5. Effector functions of fetal
neutrophils and monocytes
Neutrophils and monocytes participate in innate immune defence
through many different mechanisms. They share expression profiles
for pattern recognition receptors such as Toll-like receptors (TLRs)
or RAGE, but also express cell surface receptors binding complement
components or antibodies. During fetal and neonatal life, several of
these components are not fully functional yet, which explains in part
the high susceptibility to severe bacterial infections in premature and
mature infants (Figure 3).
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5.1 Complement receptors
Monocytes and neutrophils express three complement receptors: CR1
(CD35), CR3 (Mac-1, aMb2 CD11b/CD18), and CR4 (aXb2, CD11c/
CD18). While expression of these receptors is low in the resting state,
they can rapidly be mobilized from intracellular stores after activa-
tion.151,152 Complement receptors mediate binding and phagocytosis
of complement-opsonized microbes and particles.

CR1 and CR3 expression is already detectable on fetal monocytes
and neutrophils starting at 14 weeks post conception.153 Activation-
induced up-regulation seems to be functional on both premature153

and mature leucocytes.154 In contrast, investigations on the whole com-
plement system revealed compromised activation of the complement
pathway in term neonates. This is even more pronounced in preterm
infants and results in impaired direct lysis of pathogens as well as in
diminished phagocytosis of complement-opsonized pathogens.155,156

5.2 Toll-like receptors
Sensing of microbes can be the result of binding of conserved bacterial
structures to TLRs.157 Binding to specific TLRs (for instance, TLR4 re-
cognizes bacteria-derived LPS) activates different signalling pathways,
finally resulting in killing of microbes and the release of cytokines.158

Therefore, age-dependent functional maturation of TLR and
TLR-induced signalling pathways is of substantial interest.

TLR expression levels on cord blood leucocytes are severely dimin-
ished in extremely premature infants (,24 weeks of gestational
age).159 TLR expression positively correlates with gestational age,
reaching normal expression levels in monocytes isolated from term
neonates.160,161 Consequently, diminished TLR expression seems not
to be causative for higher susceptibility to bacterial infections, at least
in term neonates. However, it is important to emphasize that despite
normal expression levels, differences exist in the magnitude of intracel-
lular signalling events like extracellular signal-regulated kinase 1/2
(ERK1/2) and p38 activation,162 and expression of the TLR signalling
adaptor molecule MyD88.163 Interestingly, term newborns suffering
from bacterial sepsis appropriately up-regulate both TLR surface ex-
pression levels and intracellular signalling pathways.164

5.3 Phagocytosis
There exist conflicting results on the phagocytic activity of leucocytes
isolated from preterm and term neonates. Some studies report a di-
minished ability of premature leucocytes to engulf opsonized patho-
gens.128,139,165,166 Interestingly, Prosser et al.167 show that despite of
lower absolute numbers of phagocytes, they retain a higher capacity
for bacterial uptake. This finding is in accordance with Hallwirth
et al.168 who also reported higher phagocytic activity in monocytes
of preterm infants.

5.4 Reactive oxygen species
Reduced respiratory burst activity is reported for monocytes169 and
neutrophils isolated from preterm infants,170 – 172 and this correlates
with gestational age.173 In line with these findings, neutrophils from pre-
term infants show a lower capacity to up-regulate oxidative burst inten-
sity upon stimulation with coagulase-negative staphylococci, which
represents the major cause of neonatal septicaemia.174 Contrasting
results show that higher oxidative burst activity is detected in preterm
infants compared with more mature infants and adults.128 In addition,
more reactive oxygen intermediates are also detected in phorbol-12-
myristate 13-acetate (PMA)-stimulated cord blood neutrophils of term

babies compared with adult neutrophils stimulated with PMA.175 In re-
spect to functional maturation of oxidative burst capacity of phagocytes
after birth, it is only dependent on chronological age but not on gesta-
tional age.176

5.5 Antimicrobial proteins and peptides
The production of antimicrobial proteins and peptides (APPs) is a spe-
cial characteristic of neutrophils. These proteins are scarce in mono-
cytes and macrophages. APPs are stored in neutrophilic granules and
they are released into the phagocytic vacuole after pathogen ingestion.
Major families are defensins and cathelicidines, which act mainly
through permeabilization of bacterial membranes.177 – 180

In neutrophils and cord blood plasma of term and preterm infants,
lower concentrations of neutrophil-derived antimicrobial peptides
can be found. In cord blood plasma of preterm infants with gestational
age lower than 30 weeks, calprotectin (MRP8/14, S100A8/A9) and the
acute phase reactant sPLA2 were severely diminished.181 With respect
to cord blood leucocytes, significantly reduced levels of bactericidal/
permeability increasing protein, which is a central effector molecule
against gram-negative bacteria, can be detected in neutrophils of neo-
nates.182 Lactoferrin, another APP family member with bacteriostatic
iron-binding activity, contributes to the initiation of the oxidative burst
in neutrophils.183,184 Neutrophils isolated from newborn infants show
lower levels of lactoferrin production and this, accordingly, relates
to their diminished antimicrobial activity.185 Interestingly, preliminary
results from clinical trials suggest a protective role for lactoferrin in
neonatal sepsis.186

5.6 Neutrophil extracellular traps
In addition to intracellular killing of engulfed pathogens, neutrophils are
also able to degranulate and release their content to the extracellular
space. This phenomenon is described as neutrophil extracellular traps
(NETs) consisting of DNA strands bound to neutrophil-derived anti-
microbial peptides and proteins.187 These NETs are released upon
pro-inflammatory stimulation and capture and kill extracellular patho-
gens like bacteria,188 viruses,189 and fungi.190 Even after stimulation,
neutrophils isolated from preterm and term infants failed to form
NETs in one study.191 However, it turned out that NET formation in
neonatal neutrophils is stimulus- and time-dependent, since equally po-
tent NET formation can be observed after extended TLR2- and
TLR4-stimulation in neonatal and adult neutrophils, suggesting that
NET formation in neonatal neutrophils is functional, but significantly
delayed.192

6. Conclusion and perspective
The first haematopoietic cells, including HSCs, are produced early dur-
ing embryonic development in various anatomical sites. A great feature
of these cells is their ability to traffic from successive supportive niches
throughout development until they reach their final destination, where
they will reside in adults. Understanding the mechanisms that underlie
HSPC production and migration is crucial for the establishment of op-
timal transplantation protocols. Also knowing that leukaemic stem cells
might use a trafficking machinery similar to HSCs, the field of cancer
biology would certainly benefit from a better understanding of the me-
chanisms controlling stem cell trafficking.

Leucocytes are part of the cells produced during development that
share trafficking capacities with HSCs. Recruitment and effector func-
tions of neutrophils/monocytes in the growing foetus are still not fully
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understood, but play a major role during fetal life. Indeed, there is ac-
cumulating evidence that impaired innate immune responses during
fetal life critically contribute to a higher susceptibility to infections in
premature infants.

Genome-wide association studies on fetal and adult myeloid cells
have opened up new possibilities to elucidate the molecular basis for
the observed differences between preterm, term, and adult leucocyte
function. Transcriptome analysis of both resident tissue macrophages
from newborn mice193 and human fetal peripheral blood monocytes193

revealed that both basal transcriptional profiles as well as changes
in gene expression after stimulation are fundamentally different from
their adult counterpart. Additionally, fate mapping techniques with
transgenic mouse lines now allow to differentiate between cells origin-
ating from primitive vs. definitive haematopoiesis.194 These findings
have challenged the classical view on primitive haematopoietic cells
being present only transiently during fetal life and will give new insights
into the mechanisms of innate immune cell development. Comple-
menting these approaches with novel microscopy techniques and
fetal in vivo models will certainly further boost this research area and
will offer an exciting new perspective for future studies in the foetus.
This will not only advance our understanding of how HSPC trafficking
and immune responses evolve during fetal ontogeny, but also open new
opportunities to elucidate the interplay between maternal and fetal
circulation, most notably in pregnant women with cardiovascular
diseases including diabetes, atherosclerosis, and also pregnancy-
associated disorders such as preeclampsia.
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