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Sequencing metabolically labeled transcripts in
single cells reveals mRNA turnover strategies
Nico Battich*, Joep Beumer, Buys de Barbanson, Lenno Krenning†, Chloé S. Baron‡,
Marvin E. Tanenbaum, Hans Clevers, Alexander van Oudenaarden*

The regulation of messenger RNA levels in mammalian cells can be achieved by the modulation of
synthesis and degradation rates. Metabolic RNA-labeling experiments in bulk have quantified these rates
using relatively homogeneous cell populations. However, to determine these rates during complex
dynamical processes, for instance during cellular differentiation, single-cell resolution is required.
Therefore, we developed a method that simultaneously quantifies metabolically labeled and preexisting
unlabeled transcripts in thousands of individual cells. We determined synthesis and degradation rates
during the cell cycle and during differentiation of intestinal stem cells, revealing major regulatory
strategies. These strategies have distinct consequences for controlling the dynamic range and
precision of gene expression. These findings advance our understanding of how individual cells in
heterogeneous populations shape their gene expression dynamics.

M
ammalian cells use diverse strategies
to regulatemRNA levels by controlling
their synthesis and degradation rates
(1, 2). High synthesis or degradation
rates allow cells to rapidly respond to

extracellular and intracellular signals (2, 3),
whereas low degradation rates allow them
to integrate transcriptional information over
time (4). The extent to whichmammalian cells
exploit different regulatory strategies during
complex dynamical processes such as cell cycle
progression or organ formation remains un-
clear. This is partially due to the difficulty in
distinguishing these strategieswhen only tran-
script levels are measured.
Additionally, the study of these regulatory

strategies in bulk assays is hindered by the
presence of heterogeneous cell types in the
same tissue and unsynchronized cell states
that result from the cell and circadian cycles
(1, 5–7). Advances in single-cell RNA sequenc-
ing help to resolve cellular heterogeneity
(8–14), yet do not provide insights into how
the dynamic control of transcription and deg-
radation leads to the observed expression pat-
terns. The kinetic parameters that govern the
life ofmRNA can bemeasured by itsmetabolic
labeling during transcription (1, 5, 6). Here, we
demonstrate thatmRNA labeledwith 5-ethynyl-
uridine (EU) can be detected in thousands of
single cells by sequencing. We determined
transcription and degradation rates in heter-
ogeneous and unsynchronized cell popula-

tions and uncoveredmRNA control strategies
during the cell cycle of human cells and differ-
entiation of mouse intestinal stem cells.
To measure newly synthesized transcripts

in single cells, we labeled mRNA by incubat-
ing cells with EU, an analog of uridine that
can be biotinylated with click chemistry, a
methodwe have named “single-cell EU-labeled
RNA sequencing” (scEU-seq) (15). Briefly, after
EU incubation, cells were dissociated, fixed,
and permeabilized, and EU-labeled RNA was
biotinylated in situ.We sorted single cells and
generated mRNA/cDNA hybrids using poly-T
primers containing a cell barcode, a unique
molecular identifier (UMI), a 5′ sequencing
adapter, and the T7 promoter. Cells were pooled,
EU labeled and unlabeled hybrids were sep-
arated using streptavidin magnetic beads, and
libraries were generated for both fractions
(Fig. 1A). The UMI counts for labeled mRNA
were higher in EU-treated cells compared
with dimethyl sulfoxide (DMSO)–treated cells
or empty control wells, resulting in a high
signal-to-noise ratio and low across-well cross-
contamination rates (Fig. 1B). Only 12 of 11,848
detected genes were affected by the EU treat-
ment itself (fig. S1A). When we compared the
total mRNA (unlabeled and EU-labeled UMIs;
total UMIs) from EU-treated versus DMSO-
treated RPE1-FUCCI cells, we found high re-
covery efficiency (99.5±0.4%) of labeledmRNA
(fig. S1B). After 120 min of EU incubation, the
labeled mRNA fraction was on average 8.9 ±
0.7% (fig. S1B), which agrees with an expected
average production of 8 to 10% of the tran-
scriptome during a period of 2 hours in un-
synchronized cells with a cell cycle length of
~20 to 24 hours (16).
To assess whether scEU-seq specifically en-

riches transcripts synthesized during the EU-
labelingwindow,weperformedpulse and chase
experiments varying either the EU incubation
time or the length of a chase phase with uridine

(U) after EU treatment for 22 hours (Fig. 1C and
fig. S1, C to G). As expected, we detected an in-
crease in labeled UMIs as a function of the EU
pulse length (Fig. 1D) and a decrease as a func-
tion of the U chase length (Fig. 1E). We could
still detect significantly higher UMI counts for
very short labeling times (15 and 30min) com-
pared with the DMSO control (Fig. 1D and fig.
S1G). In these short EU pulses, we found that
labeled UMIswere enriched in transcripts that
contained unspliced introns (Fig. 1F).
Next, we incubated K562 cells at either 37°C

or 42°C for a period of 45 min in the presence
of EU or DMSO. The differential gene expres-
sion signature upon heat shock was more
pronounced in the fraction of EU-labeled
mRNAs compared with the unlabeled frac-
tion or with cells treated with DMSO (fig. S2).
Consistently, the functional annotation anal-
ysis (17) for up-regulated genes in the EU-
labeled fraction revealed an enrichment for
genes encoding heat shock or stress response
proteins (fig. S2B). In addition, UMIs of these
stress response genes represented a large per-
centage in the EU-labeled samples but not in
the DMSO-treated or unlabeled controls.
Using data from the scEU-seq pulse and

chase experiments, we can estimate the synthe-
sis rate k and the degradation rate constant g
for all detected transcripts. Furthermore, we
can place individual cells along cell cycle or
differentiation trajectories and thus infer how
synthesis and degradation rates change over
time. We first estimated k and g with high res-
olution along the mammalian cell cycle. For
each of the 5422 cells that passed quality con-
trols in the pulse and chase experiments, we
calculated the relative position along the cell
cycle using the Geminin-GFP and the Cdt1-
RFP signals from the FUCCI system (fig. S3, A
and B) (18). The expression of known cell cycle
markers followed the expected pattern relative
to theGeminin-GFPandCdt1-RFP (18), whereas
the housekeeping geneHPRT1 displayed con-
stant expression during the cell cycle (Fig. 2A
and fig. S3C). The level of labeled transcripts
of cell cycle–controlled genes changed as a
function of the cell cycle (fig. S4 and fig. S5),
with the total UMI counts per cell approxi-
mately doubling during one cell cycle (fig. S6,
A and B). These results suggest that our es-
timation of the cell cycle progression in single
cells is accurate.
To fit k and g to the experimental datasets,

we simulated the dynamics of the pulse and
chase experiments and quantified the accu-
racy of the fitting procedures. The simulations
defined the range of k and g values for which
we can accurately determine these rates, and
demonstrated that a model that does not as-
sume steady-state dynamics of gene expres-
sion is more fitting for our datasets (fig. S7).
Next, we used the cell cycle progression es-

timates to pool cells from different EU-labeling
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time points and fitted k and g using the non–
steady-state model (Fig. 2B and fig. S8) on 528
genes that showed high expression changes
during the cell cycle (fig. S9). Separate fits of
the pulse and chase experiments with the non–
steady-statemodel resulted in accurate g values,
but simultaneous fits of both experiments fur-
ther reduced uncertainty (Fig. 2B and fig. S10,
A and B). We averaged the degradation rates

over the cell cycle andobtained goodagreement
between our data and a published dataset
(Spearman r = 0.585, fig. S10C) (5). The es-
timated values of k and g for the 528 genes
allowed us to predict their transcript levels at
any position during cell cycle progression. Our
predictions matched measurements of CEL-
seq2 (19), an independent single-cell mRNA-
sequencing method, for expression changes

along the cell cycle (median correlation of
0.730 for 528 genes; Fig. 2C and fig. S10D).
We found widespread changes of both syn-

thesis and degradation rates during the cell
cycle (Fig. 2, B and C). Clustering of the ex-
pression levels, synthesis rates, and degrada-
tion rate constants with self-organizing maps
(SOMs) revealed distinct strategies of mRNA
regulation during the cell cycle (Fig. 2, B and
D). To find common properties between the
different strategies regardless of the position
of the expression peak, we computed the co-
sine similarity between synthesis and degra-
dation dynamics (Fig. 2B and fig. S11A). We
observed three types of regulatory strategies
during the cell cycle: cooperative, neutral, and
destabilizing. The cooperative strategy describes
an increase in the synthesis rate that is ac-
companied by a decrease in the degradation
rate constant and vice versa, thus having a
negative cosine similarity. The neutral strategy
is characterized by small relative changes in
the degradation rate constant compared with
the synthesis rate. The destabilizing strategy is
characterized by a simultaneous increase or
decrease of the synthesis rate and the degra-
dation rate constant, resulting in positive co-
sine similarity. Among the groups of genes
that follow the cooperative strategy, we found
a subset of genes that have an expression peak
in G2 and are involved in microtubule spin-
dle assembly and mitosis regulation (strategy
group B); genes with a functional enrichment
for signaling and protein phosphorylation
(group F); and genes that are expressed during
S phase and are involved in DNA replication,
repair, andmaintenance (groupD; Fig. 2C and
fig. S11B). We validated the changes of the
degradation rate constant during the cell cycle
for these genes (groups B, D, and F) by per-
forming a bulk chase experiment of 500 pooled
cells gated for G1, S, or G2 (Pearson r between
0.290 and 0.611; fig. S11C). Genes that follow
the neutral strategy were functionally enriched
in microtubule activity (group A), homology
recombination repair (group E), or cytokine
activity, G1/S transition, and DNA replication
initiation (group C; Fig. 2C and fig. S11B).
Further simulations in which we varied the
regimes of k and g throughout the cell cycle
(fig. S12, A to C) validated that we can accu-
rately determine the strategy type for most
of the parameter combinations tested (fig.
S12, D to G). These results indicate that genes
with similar cellular functions tend to be con-
trolled by similar strategies and may share
posttranscriptional regulators.
We next investigated the change in pre-

dicted expression by assuming either a model
with constant g or constant k (Fig. 2, D and
E). These constants were chosen tomatch the
expression averaged over the cell cycle as ob-
served in the experimental data. The model
assuming dynamic g and k could accurately
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Fig. 1. Single-cell EU RNA sequencing (scEU-seq). (A) Schematics of the scEU-seq workflow. (B) Boxplots
showing UMI counts of labeled mRNAs per well either containing single cells or left empty. Cell types are
indicated. No cutoff was applied to the UMI counts per well. Signal-to-noise ratios are 49.74 (P = 2.4 × 10−26)
for K562 cells, 19.69 (P = 2.4 × 10−77) for FUCCI-expressing RPE1 cells, and 32.48 (P = 1.7 × 10−157) for
cells derived from mouse intestinal organoids; P values are from a Mann–Whitney U test. Estimated cross-
contamination rates per well are 37.31 ± 4.11, 21.13 ± 1.80, and 8.26 ± 0.87 (mean UMIs per cell ± SEM)
for K562, RPE1-FUCCI, and organoid cells, respectively. (C) Design of pulse and chase experiments.
(D) Boxplots showing UMI counts of labeled mRNAs per cell. RPE1-FUCCI cells were treated with EU for
the indicated times. (E) As in (D), but RPE1-FUCCI cells were treated with EU for 22 hours and then washed
and treated with U for the indicated times. Cells shown in (D) and (E) were filtered as described in (15).
(F) Fractions of UMI of labeled mRNAs containing unspliced introns for RPE1-FUCCI cells.
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predict the dynamic range and the expression
timing of our CEL-seq2 dataset. However,
when either rate was assumed constant, we
observed changes in both expression prop-
erties. As expected, the synthesis rate k had
an impact on the dynamic range of all genes
(Fig. 2F), whereas the impact on timing was
strongest for the strategy groups A and G,
which show constant degradation rates during
the cell cycle (Fig. 2G). Strong effects on the
dynamic range could be observed by assuming
a constant g for the groups of genes showing
cooperative strategies (groups B, D, and F; Fig.

2F). In addition, for three of the four clusters
in group B, the effects on expression timing
obtained by assuming constant degradation
were similar to the results obtained by the
constant synthesis model (Fig. 2G). These re-
sults imply that the degradation and synthe-
sis rates are coordinated to achieve precise
expression dynamics during the cell cycle.
Next, we asked whether scEU-seq could re-

veal similar mRNA regulatory strategies dur-
ing cellular differentiation. We used intestinal
organoids expressing the GFP-Lgr5 reporter
in intestinal stem cells (20, 21) (Fig. 3A) and

performed a pulse experiment using an EU
incubation time of 120 min and chase experi-
mentswith a 0-, 45-, or 360-minU chase phase.
The UMAP (UniformManifold Approximation
and Projection for Dimension Reduction) rep-
resentation of the 3831 cells that passed quality
controls places stem cells in the center and
shows two branches representing the differen-
tiation trajectories of enterocytes and secretory
cells (Fig. 3, B to D). We did not observe batch
effects between the experiments (fig. S13A).
The expression of the GFP-Lgr5 fusion closely
matches the measured expression of the Lgr5
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Fig. 2. scEU-seq reveals mRNA control
strategies during the cell cycle. (A) Scatter
plot of the Geminin-GFP- and Cdt1-RFP–
corrected signals of RPE1-FUCCI cells
(n = 5422 cells). Expression levels (total
UMI counts per cell) of four example genes
are indicated in blue. (B) Clustered heat
maps of estimated synthesis and degradation
rates. Leftmost panel shows the cosine
similarity (s) between the rates (n =
528 genes). (C) As in (B) but showing
the observed expression levels (left,
data generated using CELSeq2) and predicted
expression levels (right) along cell cycle
progression. (D) Schematics of the
calculation of the dynamic range (top)
and the timing of the expression peak
(bottom). (E) Density plot of the peak
timing distance against the dynamic range
of the predicted relative to the observed
expression for models with dynamic
synthesis and degradation rates (black, left),
a constant synthesis rate (blue, middle),
and a constant degradation rate (red, right).
Top panels compare the distributions
of peak timing distances (blue versus
black: P = 1.05 × 10−22, red versus black:
P = 6.67 × 10−8, F test for variance).
Rightmost panel compares the distributions
of dynamic ranges (blue versus black:
P = 9.98 × 10−85, red versus black:
P = 1.63 × 10−58, Wilcoxon test, n =
528 genes). (F) Median absolute differences
(delta) in dynamic range between the
constant synthesis model [blue in (E)]
and the full dynamic model [black in (E)] and
between the constant degradation model
[red in (E)] and the full dynamic model
[black in (E)]. (G) As in (F) but for
the peak timing distance.

A

B
synthesis rate degradation rate sim

ila
rit

y

co
si

ne
 s

im
ila

rit
y 

(s
) 1

-1

20-2

log2(norm. rate)

TOP2A

KIF11

CDK1
KIF2C

PLK1

MCM6

MCM3

RFC4

UBE2C

CENPE

TTK

UNG

MCM2

RFC1

degradation rate 
undefined (<0.14h-1)

FC

cell cycle

ex
pr

es
si

on

dynamic range
D E

log10(fluorescence), Geminin GFP

lo
g 10

(f
lu

or
es

ce
nc

e)
, C

dt
1 

R
F

P PCNA

0 1 2 3

0 16

counts

PLK1

0 1 2 3

0 16

counts

HPRT1

0 1 2 3

0 6

counts

peak timing distance

dy
na

m
ic

 r
an

ge
lo

g 2 
(p

re
di

ct
ed

 / 
ob

se
rv

ed
)

observed 
(CelSeq2)

predicted 
(scEU-seq)

0 0.5 1

cell-cycle progression

z-score expression

30-3

A

B

A

C

D

E

G

F

de
gr

ad
at

io
n

sy
nt

he
si

s

de
gr

ad
at

io
n

sy
nt

he
si

s

tim
ing

dy
na

m
ic

   
  r

an
ge

ab
so

lu
te

 d
el

ta
0.

3
0

0 10.5-0.5-1 0 10.5-0.5-10 10.5-0.5-1

0.5

0

-1

-0.5

-1.5

peak timing

densityde
ns

ity

P = 1.63x10-58

P = 9.98x10-85

observed
predicted

P = 6.67x10-8P = 1.05x10-22

synthesis rate
constant

degradation rate
constant

0

1

2

3

UNG

0 1 2 3

0 8

counts

cell cycle
progression

5,422 cells

-2

-2.5

ab
so

lu
te

 d
el

ta
0.

6
0

G

cell cycle

ex
pr

es
si

on

RESEARCH | REPORT
on M

arch 5, 2020
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://science.sciencemag.org/


Battich et al., Science 367, 1151–1156 (2020) 6 March 2020 4 of 5

um
ap

 1um
ap 2

Lgr5-GFP

Enterocytes
Tuft cells

Paneth cells

Stem cells

3,831 cells
A B

D

12
0

20 40 60 80 10
0

Lgr5-GFP
Fluorescence 

Lgr5
Stem cells

Lyz1
Paneth cells

Apoa1
Enterocytes

Dclk1
Tuft cells

0 0.4 0.8 1.2

Log10 (UMI count)

0 0.5 1 1.5 2

Log10 (UMI count)

0 0.4 0.8 1.2

Log10 (UMI count)

0 0.2 0.4 0.6 0.8

Log10 (UMI count)

E

F

branch 1
Secretory
lineage

branch 2
Enterocycte
lineage

H
0 1 2 3 4

trajectory

5 6 7 8 9 10

trajectory

dif
fe

re
nt

ia
tio

n

Goblet cells

C

1

2

3

4

5

9

7

10 6

8

11
Enterocytes

Tuft cells

Paneth
cells

Stem cells

Goblet cells

Enteroendocrine
progenitors

Entero-
endocrine 
cells

TA cells

TA cells

Enteroendocrine cells

Secretory Enterocyte

1.50-1.5

log2(norm. rate)

branch 1 branch 2

co
si

ne
 s

im
ila

rit
y 1

0

-1

similarity synthesis rate degradation rateobserved expression

br
an

ch
 1

br
an

ch
 2

3.50-3.5

log2(norm. rate)

4

0

-4z-
sc

or
e 

ex
pr

es
si

on

Ephx2

Apoa1

Lyz1

Spdef

Defa24
Defa17

Sox9

Sox4

de
lta

1

0

-1

sy
n
th

e
si

s
d
e
g
ra

d
a
tio

n

sy
n
th

e
si

s
d
e
g
ra

d
a
tio

n

dynamic 
range time

I

dynamic 
range time

sy
n
th

e
si

s
d
e
g
ra

d
a
tio

n

sy
n
th

e
si

s
d
e
g
ra

d
a
tio

n

G

J

dy
na

m
ic

 r
an

ge
lo

g 2 
(p

re
di

ct
ed

/o
bs

er
ve

d)

2

1

0

-2

-1

-3

-4

peak timing distance
0 0.5 1.51-0.5

de
ns

ity

P = 0.043
P = 0.021

K L

A

B

C

D

E

Total transcripts

A B

150

100

50

0

150

100

50

0co
un

ts

co
un

ts

1

0.75

0.5

1.25

1

0.8

0.6h-1

h-1

m
ol

ec
ul

es
/h

m
ol

ec
ul

es
/h

mean
transcription rate

mean
degradation rate

0.2

0.4

0.2

0.15

0.1

0.05

A B

Cyp3a25
Gstm3

Muc3

Mki67

Rnase4

synthesis rate
constant 
P = 6.29x10-12

degradation rate
constant 
P = NS

house-
keeping

M N
Total transcripts

mean
transcription rate

mean
degradation rate

density

0 0.5 1.51 0 0.5 1.51

Fig. 3. mRNA control strategies during intestinal organoid differentiation.
(A) Schematics of intestinal organoid crypts. (B) UMAP showing the expression
levels of Lgr5-GFP (green) in 3831 cells from intestinal organoids. (C) UMAP
showing clusters of cells with similar gene expression (SOM analysis, cluster
number indicated) and their respective cell identity. (D) UMAP showing the
expression levels (blue) of four genes that are markers for stem cells, Paneth
cells, enterocytes, and tuft cells, respectively. (E) UMAP showing the Monocle2
differentiation branches 1 and 2, as indicated by arrows. Colors indicate the
monocle trajectory values. (F) Heat maps of the observed expression levels along
the two differentiation branches, the secretory lineage into Paneth cells (branch 1)
and the enterocyte lineage (branch 2) (n = 301 genes). Red dots mark the position
of housekeeping genes. (G) As in (F) but showing the estimated synthesis (left
panels) and degradation rates (right panels). Genes are clustered and the cosine
similarity is indicated independently for the two branches. Strategies with strong
changes in the synthesis and the degradation rates are highlighted in (I) and (J).
(H) Density plot of the peak timing distance against the dynamic range of the

predicted relative to the observed expression for models with dynamic synthesis
and degradation rates (black, left), constant synthesis rate (blue, middle), and
constant degradation rate (red, right) [n = 72 genes with strong cooperative and
destabilizing strategies (groups A, B C, D and E); see (I) and (J)]. Top panels
compare the distributions of peak timing distances (blue versus black: P = 6.29 ×
10−12, red versus black: P = nonsignificant, Wilcoxon test). Rightmost panel
compares the distributions of dynamic ranges (blue versus black: P = 0.021, red
versus black: P = 0.043, F test for variance, n = 72 genes). (I and J) Delta values of
data shown in (H) for genes with strong cooperative and destabilizing strategies
(groups A, B C, D, and E). Shown are differences in dynamic range and timing,
respectively, between the constant synthesis model [blue in (H)] and the full
dynamic model [black in (H)] and between the constant degradation model
[red in (H)] and the full dynamic model [black in (H)]. (K) Mean synthesis and
degradations rates for genes in group A. (L) Mean synthesis and degradation rates
for genes in group B. (M) Total number of UMIs detected for genes in group A.
(N) Total number of UMIs detected for genes in group B.
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transcript (Fig. 3, B and D). We clustered
single-cell expression levels using SOMs and
identified stem cells (clusters 8 and 11), fully
differentiated cells (clusters 1, 3, 5, 9, and 10),
and potentially intermediate stages (clusters
10, 4, 6, and 2; Fig. 3C).
We selected 295 genes that showed a high

coefficient of variation comparedwith themean
expression and differences in expression be-
tween the stem cells and cells in intermediate
or differentiated stages (fig. S13, B and C). We
used monocle2 (22) to sort cells along the
differentiation trajectories of secretory cells
(branch 1) and enterocytes (branch 2; Fig. 3E
and fig. S14, A to C).We added six housekeeping
genes as a control and calculated the synthesis
rates and degradation rate constants through-
out differentiation for these 301 genes (fig. S14,
D to F).
We used SOMs to cluster genes by their ex-

pression level, synthesis rates, and degrada-
tion rate constants. The results demonstrate
that cells use both the synthesis and degra-
dation rate to control gene expression during
differentiation. The housekeeping genes clus-
tered separately from differentially regulated
genes between branches 1 and 2 (Fig. 3, F and
G, and fig. S15A). For 24% of genes (72 genes),
the degradation rate changed during differ-
entiation, whereas the synthesis rate increased,
displaying cooperative and destabilizing strat-
egies, respectively, as observed for the cell cycle.
Among the genes with destabilizing strategies
(group A), we identified functional enrichment
for oxidoreductase activity and drug metabo-
lism (fig. S15B). These genes were up-regulated
in enterocytes and six of them belong to the
cytochrome P450 family localized to the endo-
plasmic reticulum (23). Gene groups with co-
operative strategies (group D and B) were
enriched for genes encoding secreted proteins
or components of the endoplasmic reticulum
or Golgi complex (fig. S15B).
When we analyzed the gene expression dy-

namics as before, assuming a constant synthe-

sis rate, we observed that the dynamic range
decreased and the expression timing and dy-
namics changed (Fig. 3H). By contrast, a con-
stant degradation rate had little effect on the
timing of the expression peak but increased
the variance of the dynamic range; although
the dynamic range of genes with destabiliz-
ing strategies increased (groups A and E), it
decreased for genes with cooperating strat-
egies (groups B andD; Fig. 3, I and J). In agree-
ment with this, we found that the absolute
increase in the synthesis rate of genes in groupA
was higher than those in group B (Fig. 3, K
and L), whereas the expression levels in both
groups changed along the differentiation tra-
jectory with similar dynamics andmagnitude
(Fig. 3, M and N). This effect is explained by
the stabilization of transcripts in group B
toward the end of differentiation branch 2
(Fig. 3L and fig. S15C).
Here, we show that cells use cooperative,

neutral, or destabilizing strategies to actively
regulate gene expression during the cell cycle
and during differentiation. Both synthesis and
degradation rates control the accuracy and
precision of the dynamic range and the timing
of the expression peak. By contrast, during
differentiation, the degradation rate seems to
affect only the dynamic range of expression,
whereas the timing is fully encoded by the
dynamics of the mRNA synthesis rate. Thus,
our data support findings that the modula-
tion of mRNA degradation rates plays a role
in mammalian cellular homeostasis such as
T cell homeostasis (24) and differentiation of
mammalian embryonic stem cells (25).
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expression and RNA degradation during development.
during development, indicating that this method can be applied to better understand the relationship between gene 
When examining intestinal organoid cells, scEU-seq data can be used to discern between transcription and degradation
5-ethynyl-uridine (EU) in single cells (scEU-seq), which allows estimation of RNA transcription and degradation rates. 

 developed a method to sequence messenger RNA labeled withet al.the life span of RNA within the single cell. Battich 
RNA transcripts are an easily accessed representation of gene expression, but we lack a comprehensive view of

RNA life span at single-cell resolution
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