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SUMMARY

Adult mitotic tissues like the intestine, skin, and
blood undergo constant turnover throughout the
life of an organism. Knowing the identity of the
stem cell is crucial to understanding tissue homeo-
stasis and its aberrations upon disease. Here we pre-
sent a computational method for the derivation of a
lineage tree from single-cell transcriptome data. By
exploiting the tree topology and the transcriptome
composition, we establish StemID, an algorithm for
identifying stem cells among all detectable cell types
within a population. We demonstrate that StemID re-
covers two known adult stem cell populations, Lgr5+
cells in the small intestine and hematopoietic stem
cells in the bonemarrow.We apply StemID to predict
candidate multipotent cell populations in the human
pancreas, a tissue with largely uncharacterized turn-
over dynamics. We hope that StemID will accelerate
the search for novel stem cells by providing concrete
markers for biological follow-up and validation.

INTRODUCTION

The identification of a stem cell in a tissue is a major challenge of

pivotal importance. Being able to detect the stem cell population

allows for powerful approaches to study cell differentiation dy-

namics by, for example, lineage tracing (Barker et al., 2007;

Busch et al., 2015). Additionally, it provides a first step toward

ex vivo propagation of primary stem cells in organoid cultures

(Lancaster et al., 2013; Sato et al., 2009), important for applica-

tions in regenerative medicine. Moreover, stem cell populations

relevant for disease progression, such as cancer stem cells, are

promising targets for therapeutic intervention. Stem cells are

typically rare, which makes their discovery by traditional popula-

tion-based assays very difficult. For example, it took decades of

dedicated research to define the population of hematopoietic

stem cells (HSCs) (Eaves, 2015), but it remains an open question
266 Cell Stem Cell 19, 266–277, August 4, 2016 ª 2016 The Authors.
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howmuch heterogeneity exists within this subpopulation of bone

marrow cells (Wilson et al., 2015). Similarly, the discovery of in-

testinal stem cells (van der Flier and Clevers, 2009) took years

of work, and heterogeneity within this compartment remains un-

der debate (Buczacki et al., 2013).

The recent availability of single-cell mRNA sequencing

methods allows profiling of healthy and diseased tissues with

single-cell resolution (Grün et al., 2015; Jaitin et al., 2014; Ma-

cosko et al., 2015; Patel et al., 2014; Paul et al., 2015; Treutlein

et al., 2014; Zeisel et al., 2015). The transcriptome of a cell can

be interpreted as a fingerprint, revealing its identity. However,

biological gene expression noise (Eldar and Elowitz, 2010; Raj

and van Oudenaarden, 2008) and technical noise because of

amplification of minute amounts of mRNA from a single cell

(Brennecke et al., 2013; Grün et al., 2014) affects the readout

andmakes it a challenge to discriminate cell types based on their

transcriptome. By sequencing large numbers of randomly

sampled single cells from a tissue, it is now possible to compile

a nearly complete inventory of cell types.

These inventories can be screened for cell types of particular

interest, such as stem cells. An obvious strategy for the identifi-

cation of the stem cell is the derivation of a lineage tree from sin-

gle-cell sequencing data. However, transcriptomes of randomly

sampled cells only represent a snapshot of the system, and tem-

poral differentiation dynamics cannot be directly derived. How-

ever, if the system of interest comprises all differentiation stages,

such as the intestinal epithelium or the bone marrow, then at-

tempts can be made to infer a lineage tree by assembling sin-

gle-cell transcriptomes in a pseudo-temporal order. Existing

approaches assume a continuous temporal change of transcript

levels to assemble differentiation trajectories (Bendall et al.,

2014; Haghverdi et al., 2015; Trapnell et al., 2014), but resolving

the correct tree topology remains a challenge.

Here we present a method to identify rare and abundant cell

types of a system and use these cell type classifications to guide

the inference of a lineage tree. We investigate the general prop-

erties characterizing the position of a cell type within the lineage

tree and identify the number of branches and the transcriptome

uniformity of a cell type as features correlating with the degree of

pluripotency. We show that our approach successfully recovers

the identity of the stem cell in the intestine and in the bone
Published by Elsevier Inc.
creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. RaceID2 Recovers Intestinal Cell Types

(A) The intestinal epithelium is a well characterized differentiation system. Lgr5-positive stem cells give rise to secretory and absorptive precursors by WNT and

NOTCH signaling that further differentiate into mature intestinal cell types.

(B) Summary of the lineage-tracing experiment performed to sequence single 5-day-old progeny of Lgr5-positive cells.

(C) Heatmap of cell-to-cell transcriptome distances measured by 1 – Pearson’s correlation coefficient (r). RaceID2 clusters are color-coded along the

boundaries.

(D) t-distributed stochastic neighbor embedding (t-SNE)map representation of transcriptome similarities between individual cells. The clusters identified in (C) are

highlighted with different numbers and colors, and the corresponding intestinal cell types identified based on known marker genes are indicated.

See also Figure S1.
marrow, two systems with a well described stem cell population.

We then use our method to predict multipotent cell populations

in the adult human pancreas.

RESULTS

Robust Identification of Mouse Intestinal Cell Types by
RaceID2
To develop a robust approach for the inference of differentiation

trajectories, we used a previously published dataset from a line-

age tracing experiment comprising the progeny of Lgr5-positive
mouse intestinal stem cells (Grün et al., 2015). This system is

ideal for testing the inference of differentiation dynamics

because the lineage tree is alreadywell characterized (Figure 1A).

The continuously self-renewing intestinal epithelium is arranged

in crypts and villi, with a small number of Lgr5+ stem cells, also

known as crypt base columnar cells (CBCs), residing near the

crypt bottom. These CBCs give rise to rapidly proliferating

transit-amplifying (TA) cells that migrate upward along the

crypt-villus axis and develop into the terminally differentiated

cell types (Barker, 2014; van der Flier and Clevers, 2009).

Although absorptive enterocytes constitute the most abundant
Cell Stem Cell 19, 266–277, August 4, 2016 267



cell type, the secretory lineage comprises rare cells, such as

mucus-producing goblet cells, hormone-secreting enteroendo-

crine cells, and antimicrobial Paneth cells. Labeled cells were

collected 5 days after label induction using an Lgr5-CreERT2

construct and a Rosa26-YFP reporter with a loxP-flanked tran-

scriptional roadblock (Figure 1B).

We first improved the robustness of the initial clustering step of

our previously developed RaceID algorithm (Grün et al., 2015) by

replacing the k-means clustering with k-medoids clustering (Fig-

ure S1). Second,we noticed that the previously used gap statistic

(Tibshirani et al., 2001) was not ideal for determining the cluster

number. Although increasing the number of clusters in many

cases leads to a growing gap statistic, the decrease of the

within-cluster dispersion (Tibshirani et al., 2001) saturatesquickly.

A further increase of the cluster number, therefore, reduces clus-

ter reproducibility. In RaceID2, we thus determine the cluster

number by identifying the saturation point of the within-cluster

dispersion. Together, these two changes lead to a more robust

initial clusteringofRaceID2 (Experimental Procedures; FigureS1).

For the intestinal lineage tracing data (Experimental Proce-

dures), RaceID2 recovered a larger group of Lgr5+ stem cells

(cluster 2) and early progeny (clusters 1 and 8) as well as the ma-

jor mature cell types; i.e., enterocytes (cluster 3), goblet (clusters

4 and 19), Paneth (clusters 5 and 6), and enteroendocrine cells

(cluster 7) (Figures 1C and 1D). These cell types could be unam-

biguously assigned based on the cluster-specific upregulation of

marker genes inferred by RaceID2 (Table S1).

Inference of the Lineage Tree with Guided Topology
One of the major challenges for the inference of differentiation

pathways in a systemwithmultiple cell lineages is the determina-

tion of branching points. To overcome this problem, we prede-

fined the topology of the lineage tree by allowing differentiation

trajectories linking each pair of clusters. A putative differentiation

trajectory links the medoids of two clusters, and the ensemble of

all inter-cluster links defines the possible topology of the lineage

tree. To minimize the effect of technical noise and, at the same

time, the computational burden, we first reduce the dimension-

ality of the input space requiring maximal conservation of all

point-to-point distances. In a second step, we assign each cell

to its most likely position on a single inter-cluster link. To find

this position, the vector connecting the medoid of a cluster to

one of its cells is projected onto the links between the medoid

of this and all remaining clusters, and the cell is assigned to the

link with the longest projection after normalizing the length of

each link to one. The projection also defines the most likely posi-

tion of the cell on the link (Figure 2A), reflecting its differentiation

state (Experimental Procedures). If this strategy is applied to the

intestinal data, thenonly a subset of links ispopulated (Figure 2B).

To determine links that are more highly populated than expected

by chance and are therefore candidates for actual differentiation

trajectories, we computed an enrichment p value based on com-

parison with a background distribution with randomized cell po-

sitions (Figure 2B; Figure S2A). Furthermore, we reasoned that

the coverage of a link by cells indicates how likely it is that this

link represents an actual differentiation trajectory and not only

biased perturbations driving the transcriptome of a given cluster

preferentially toward the transcriptome of another cluster without

leading to actual differentiation events.Wedefined a link score as
268 Cell Stem Cell 19, 266–277, August 4, 2016
one minus the maximum difference between the positions of

each pair of neighboring cells on the link after normalizing the

length of each link to one (Figure S2B). If this score is close to

one, then the link is densely covered with cells with only small

gaps in between. If the link score is close to zero, the cell density

is only concentrated near the cluster centers connected by this

link. A detailed description of the algorithm is given in the Exper-

imental Procedures. The computationally inferred intestinal line-

age tree is consistent with the known lineage tree (Figure 1A).

Secretory cell types (clusters 4, 5, 6, and 7) populate individual

branches emanating from the central Lgr5+ cluster, and absorp-

tive enterocytes (cluster 3) differentiate from the samegroup via a

more abundant group of TA cells (cluster 1).

We compared the inferred lineage tree to the tree predicted by

Monocle (Trapnell et al., 2014), a recentmethod for the derivation

of branched lineage trees that does not rely on a predefined tree

topology, and found that Monocle could not resolve the different

branches of secretory cells (Figure S2).

High Connectivity and High Transcriptome Entropy
Reveals the Identity of the Stem Cell
Next we attempted to predict the stem cell identity from the line-

age tree. Our working definition of a stem cell for this purpose

purely relies on multipotency. More precisely, we try to identify,

from the lineage tree, the cell population with the highest degree

of multipotency. We noticed that different cell types showed a

variable number of populated links to other clusters. The link

score is reflected by the thickness of the line in our graphical rep-

resentation (Figure 2B). We also show links with a low link score

because they are informative about the associated cell state. For

example, a cell typewithmany low-scoring links can fluctuate to-

ward a diversity of fate biases, whereas cell types with only a few

links are much more canalized. These two scenarios reflect a

more promiscuous transcriptome, such as expected for stem

cells, versus a more confined transcriptome, as expected for a

mature cell type. In our data, cluster 2, which contains cells pos-

itive for Lgr5 and other established stem cell markers (Ascl2 and

Clca4) (Figure 2C), was the most highly connected cluster.

Another putative property of stem cells is the tendency to exhibit

a more uniform composition of the transcriptome in comparison

with differentiated cells. Mature cell types frequently express a

small number of genes at very high levels, crucial for cell type-

specific functions. The transcriptome of Paneth cells, for

instance, is dominated by high numbers of lysozymes and other

host defense genes. The uniformity of the transcriptome is re-

flected by Shannon’s entropy (Shannon, 1948), and this concept

has previously been applied to study cellular differentiation

(Anavy et al., 2014; Banerji et al., 2013; Piras et al., 2014) (Exper-

imental Procedures). We anticipate that the transcriptome of a

multipotent cell type is more uniform in each individual cell. In

addition, multiple state biases could coexist within this popula-

tion that can give rise to diverse mature cell types upon external

stimuli, or stochastically, leading to high entropy (Banerji et al.,

2013; Ridden et al., 2015). For the intestinal lineage tracing

data, both Paneth and goblet cells had clearly reduced entropy

compared with Lgr5-positive cells, whereas the entropy of enter-

ocytes and enteroendocrine cells was comparable with stem

cells (Figure 2D). We found that, for all analyzed datasets (see

below), the number of links discriminates better between
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Figure 2. Lineage Tree Inference for Intestinal Stem Cell Progeny

(A) Schematic of the method used to infer differentiation trajectories (see main text and Experimental Procedures).

(B) Outline of the method visualized in the t-SNE-embedded space. All RaceID2 clusters with more than two cells (top) are connected by links, and, for

each cell, the link with the maximum projection is determined as shown in (A). Only populated links are shown (center). Cluster centers are circled in black.

Significant links are inferred by comparison with the background distribution with randomized cell positions (Experimental Procedures). Only significant links are

(legend continued on next page)
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Figure 3. StemID Identifies StemCells in Com-

plex with Non-random Mixtures of Intestinal

Cells

(A) t-SNE map of transcriptome similarities of intes-

tinal cells from a variety of single-cell mRNA

sequencing experiments (main text and Figure S3).

RaceID2 clusters are highlighted with different

numbers and colors. Cell types identified based on

marker gene expression are shown.

(B) Heatmap showing the average expression of

known cell type markers across all clusters with more

than five cells. For each gene, the sum of expression

values over all clusters is normalized to one.

(C) Inferred intestinal lineage tree. Only significant

links are shown (p < 0.01). The color of the link in-

dicates the �log10 p value. The color of the vertices

indicates the entropy. The thickness indicates the link

score, reflecting how densely a link is covered with

cells (Experimental Procedures).

(D) Barplot of StemID scores for intestinal clusters.

In (B)–(D), only clusters with more than five cells were

analyzed. See also Figures S3, S6, and S7.
multipotent and differentiated cells when rescaled by the en-

tropy. Therefore, the simplest score that performs well in

discriminating multipotent cells from the remaining cell types

was a product of the median entropy (after subtracting the min-

imal entropy observed in the system) and the number of links of a

cluster (Experimental Procedures). This score exhibits a clear

maximum for cluster 2 comprising the Lgr5+ stem cells (Fig-

ure 2D). We named our algorithm StemID for the lineage tree

inference and the derivation of this score.

StemID Recovers Intestinal Stem Cells in a Complex
Dataset with Non-random Cell Type Frequencies
Next we wanted to test whether StemID could identify Lgr5+

cells in a larger and more complex dataset comprising intestinal

cells of various independent experiments conducted in our lab.

In this dataset, we combined 3 weeks and 8 weeks of Lgr5 line-
shown (p < 0.01). The color of the link indicates the�log10p value. The color of the vertices indicates the ent

how densely a link is covered with cells (Experimental Procedures).

(C) Transcript counts (color legend) of the intestinal stem cell markers Lgr5, Clca4, and Ascl2 are highlig

restricted to cluster 2 and clusters 5 and 6. Clusters 5 and 6 comprise Paneth cells, which were shown

transcript counts across all Defensin genes, which are markers of Paneth cells, are shown at the bottom

(D) Barplot of StemID scores for all clusters. The median transcriptome entropy of each cell type was co

entropy across all cell types was subtracted for each cell types because absolute differences were only

significant links for each cluster (center), yielding the StemID score (right).

See also Figure S2.
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age tracing data. A subset of those was en-

riched in secretory cells by fluorescence-

activated cell sorting (FACS) on CD24 (van

Es et al., 2012; Figure S3). For both time

points, we also sorted non-traced CD24+

control cells (Experimental Procedures; Fig-

ure S3). RaceID2 revealed the known intes-

tinal cell types within this dataset based on

cluster-specific expression of known cell

type marker genes and subdivided these

into stages of differentiation or maturation

(Figures 3A and 3B; Figure S3A). A full list

of differentially expressed genes for each cluster is given in Table

S2. For example, intestinal stem cells in cluster 7,marked by high

expression of Lgr5 and Clca4 (Figure 3B), were connected

directly to all secretory branches, whereas TA cells (cluster 5) pri-

marily give rise to enterocytes (cluster 10) (Figure 3C; Figures

S3C and S3D). Interestingly, we observed two distinct differenti-

ation trajectories for Paneth cells (clusters 13 and 14), one via a

Dll1-positive common precursor of Paneth and goblet cells (clus-

ter 1) and another one directly connecting stem cells (cluster 7) or

TA cells in cluster 5, marked by upregulation of the cell-cycle

gene Pcna, directly to the mature Paneth cell clusters. Both the

Dll1-dependent (van Es et al., 2012) and the direct route (Farin

et al., 2014; Sawada et al., 1991), which was observed after

ablation of Paneth cells, have been described. The recovery of

alternative differentiation pathways demonstrates the power of

our guided lineage inference. We were not able to recapitulate
ropy. The thickness indicates the link score, reflecting

hted in the t-SNE map. Expression of these genes is

to co-express Lgr5 (Grün et al., 2015). Accumulated

right.

mputed across all cells in a cluster (left). The lowest

small. This Dentropy was multiplied by the number of
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Figure 4. StemID Identifies Hematopoietic

Stem Cells in Non-random Mixtures of

Bone Marrow Cells

(A) t-SNE map of transcriptome similarities of he-

matopoietic cells sampled from physically inter-

acting doublets or multiplets (main text and Fig-

ure S4). RaceID2 clusters are highlighted with

different numbers and colors. Cell types identified

based on marker gene expression are shown.

(B) Heatmap showing the average expression of

known cell type markers across all clusters with

more than five cells. For each gene, the sum of

expression values over all clusters is normalized

to one.

(C) Inferred hematopoietic lineage tree. Only sig-

nificant links are shown (p < 0.01). The color of the

link indicates the �log10 p value. The color of the

vertices indicates the entropy. The thickness in-

dicates the link score, reflecting how densely a link

is covered with cells (Experimental Procedures).

(D) Barplot of StemID scores for hematopoietic

clusters. MP, myeloid progenitor; EP, erythroblast

progenitor.

See also Figures S4, S6, and S7.
this finding with a minimum spanning tree-based alternative

approach (Figure S3E).

We then computed the StemID score and found that the

Lgr5+/Clca4+ cells (cluster 7) exhibit the highest score (Fig-

ure 3D). The second highest score was observed for cluster

21, which represents a common progenitor to Paneth and goblet

cells. The TA cells in cluster 5, which our lineage inference iden-

tifies as progenitors with an enterocyte fate bias, acquire the

third-highest StemID score.

Noticeably, Paneth cells in cluster 13 and mature goblet cells

in cluster 2 show the same connectivity as the stem and progen-

itor cells in clusters 7, 5, and 21, but rescaling by entropy helps

correctly assign a mature state to these cells (Figure S3F). In

conclusion, StemID could identify intestinal stem cells and

distinguish progenitor populations from more mature intestinal

cell types.

StemID Recovers Hematopoietic Stem Cells within a
Non-random Sample of Bone Marrow Cells
To test the performance of StemID in a different biological sys-

tem, we applied the algorithm to single-cell sequencing data of

mouse bone marrow cells. These cells were selected based on

physical interactions between doublets or larger groups of

cells and are thus not sampled randomly from all cell types

in the bone marrow. This dataset was complemented with

Kit+Sca-1+Lin�CD48�CD150+ HSCs (Kiel et al., 2005) sorted

from the bone marrow (Experimental Procedures; Figure S5B).

Cell types identified by RaceID2 were dominated by the myeloid

lineage and comprised HSCs, erythroblasts, megakaryocytes,
Cell S
two groups of granulocytes (neutrophils

and eosinophils), macrophages, a small

group of B lymphocytes, and several

clusters representing progenitor stages

of the myeloid lineage (Figures 4A and

4B; Figure S6A). A full list of differentially

expressed genes for each cluster is shown in Table S3. Cluster

1 comprises almost exclusively sorted HSCs (Figure S4B). The

inferred lineage tree (Figure 4C; Figures S6C and S6D) indicates

that HSCs differentiate into multipotent progenitor cells (cluster

5) but are also directly linked tomature lineages. HSCs andmulti-

potent progenitors are both linked tomegakaryocytes (cluster 4),

eosinophils (clusters 10 and 29), macrophages (cluster 28), and

two branches covering a spectrum of progenitor and mature

states of the neutrophil (clusters 11, 3, 2, 14, 12, and 22) and

erythroid lineage (clusters 9, 8, 7, 6, and 13), respectively. The

B lymphocytes are only directly linked to the HSCs, suggesting

that cluster 5 represents a myeloid progenitor population, and

no lymphoid progenitors were present in our sample. The in-

ferred lineage tree is therefore consistent with the existence of

a common myeloid progenitor population giving rise to erythro-

cytes, megakaryocytes, granulocytes, and macrophages (Orkin

and Zon, 2008). StemID determines the highest score for cluster

1 and, therefore, correctly recovers HSCs among all cell types in

the mixture (Figure 4D; Figure S6). The second-highest score

discriminates the multipotent myeloid progenitors (cluster 5)

from the remaining cell types, and the third-highest score was

assigned to the earliest progenitor of the erythroblast lineage.

Therefore, the level of multipotency also correlates with the

StemID score of bone marrow-derived cells.

The high connectivity of cluster 1 provides evidence for early

fate biases already in HSCs. Moreover, the high entropy of

HSCs reflects a more uniform transcriptome in individual cells

of this population. The entropy distribution across all cells in

this cluster is shifted in comparison with all other groups
tem Cell 19, 266–277, August 4, 2016 271



Figure 5. The Multipotency of HSCs Is Reflected by High Transcriptome Entropy

(A) Boxplot of the transcriptome entropy for all RaceID2-derived bone marrow cell types with more than five cells. The boundaries of the box represent the 25%

and 75% quantiles, the thick line corresponds to the median, and whiskers extend to the 5% and 95% quantiles. The broken red line indicated the 25% quantile

for HSCs (cluster 1).

(B) Two-dimensional clustering of lineage markers in all HSCs (cluster 1). The heatmap shows logarithmic expression.

(C) Self-organizing map (SOM) of Z-score-transformed, pseudo-temporal expression profiles along the neutrophil differentiation trajectory (clusters 1, 11, 3, 2,

and 12), indicated by the red arrow superimposed on the lineage tree (Experimental Procedures). The pseudo-temporal order was inferred from the projection

coordinates of all cells. The color-coding on the left indicates the cluster of origin. The SOM identified five different modules of co-regulated genes. Examples are

shown at the bottom. The clusters of origin are indicated as colors and numbers. The black line represents a moving average (window size 25).

In (A)–(C), only clusters with more than five cells were analyzed.
(Figure 5A). In general, the inter-cluster variability substantially

exceeds the intra-cluster variability. The narrow entropy distribu-

tion of cluster 1 also rules out a strong dependence on the cell

cycle. However, we also observed that 54 of the 276 HSCs

(20%) show distinct fate biases, revealed by low expression of

lineage-specific marker genes (Figure 5B), a finding that is

consistent with a recent report based on lineage tracing (Perié

et al., 2015). Because the sensitivity of single-cell sequencing

is limited, this number is almost certainly an underestimation.

We note that most HSCs (112 of 276) are assigned to the link

with the multipotent progenitor (cluster 5). We cannot address

whether the observed fate bias persists during differentiation

or whether stochastic switching between distinct cell fates oc-

curs during differentiation. Our observation is also consistent
272 Cell Stem Cell 19, 266–277, August 4, 2016
with a recent single-cell transcriptome analysis showing an un-

expected heterogeneity of myeloid progenitor cell populations

and suggests the existence of an early cell fate bias (Paul

et al., 2015). We observe very similar sets of marker genes, as

found in this study, but our lineage inference permits an analysis

of the temporal dynamics of gene expression. As an example, we

extracted all cells from the neutrophil branch (clusters 1, 11, 3, 2,

and 12) in pseudo-temporal order derived from the projection

coordinates and clustered temporal expression profiles by using

self-organizing maps (Experimental Procedures). A Z-score of

gene expression values along this trajectory reveals that the

RaceID2 clusters represent sets of cells with common modules

of co-expressed genes and that gene expression within these

modules changes smoothly over time (Figure 5C). Although
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Figure 6. StemID Predicts Human Pancreatic Pluripotent Cells

(A) t-SNE map of transcriptome similarities of human pancreatic cells. RaceID2 clusters are highlighted with different numbers and colors. Cell types identified

based on marker gene expression are shown. For ductal cells, marker genes of sub-populations are shown.

(B) Heatmap showing the average expression of known cell typemarkers across all clusters withmore than five cells. For each gene, the sum of expression values

over all clusters is normalized to one.

(C) Transcript counts (color legend) of the ductal sub-type markers CEACAM6, FTH1, KRT19, and SPP1 are highlighted in the t-SNE map.

(D) Inferred pancreatic lineage tree. Only significant links are shown (p < 0.01). The color of the link indicates the�log10 p value. The color of the vertices indicates

the entropy. The thickness indicates the link score reflecting how densely a link is covered with cells (Experimental Procedures).

(legend continued on next page)

Cell Stem Cell 19, 266–277, August 4, 2016 273



ribosomal protein-encoding genes and other components of the

translational machinery slowly decline during differentiation,

other genes are transiently switched on in progenitor populations

(e.g., Elane) or immature neutrophils (e.g., Ngp) or only upregu-

lated in mature cells (e.g., Retnlg).

Finally, we note that the identification of the HSCpopulation by

StemID is robust to changing the contribution of this population

to the mixed sample. For example, when only ten HSCs are

randomly selected and all others are discarded from the dataset,

StemID still assigns the highest score to the small HSC cluster

(data not shown).

In summary, StemID could successfully identify the stem cell

type in a complex mixture of cells isolated from bone marrow.

The inferred lineage tree recovered known trajectories but sug-

gested an early cell fate bias present already in HSCs.

StemID Predicts Multipotent Ductal Cell Populations
among Human Adult Pancreatic Cells
After having demonstrated that StemID can robustly identify the

stem cell population in two distinct biological systems, we

applied the algorithm to predict multipotent cell populations in

a less characterized system: the human pancreas. The pancreas

consists of acinar cells that produce the digestive enzymes,

ductal cells secreting bicarbonate to neutralize stomach acidity,

and hormone-producing endocrine cells that regulate hormone

metabolism (Jennings et al., 2015). It is unclear which multipo-

tent cells maintain pancreatic homeostasis and can give rise to

different mature cell types during regeneration upon injury.

Although early studies have suggested that, in humans, these

cell populations could reside within the exocrine compartment

or that dedifferentiation of exocrine cells could give rise to endo-

crine cells (Bonner-Weir et al., 2000; Puri et al., 2015), the identity

of multipotent cell populations is still unclear (Jiang and Mora-

han, 2014). We sequenced pancreatic cells from human donors

(Experimental Procedures), and application of RaceID2 revealed

all major cell types, including different subpopulations of acinar

and ductal cells; hormone-producing a, b, d, and pancreatic

polypeptide producing (PP) cells; and stellate cells (Figures 6A

and 6B; Figures S5A and S5B). A full list of differentially ex-

pressed genes for each cluster is shown in Table S4. In partic-

ular, we discovered novel subpopulations of ductal cells. In

one of these groups (cluster 14), the cell surface glycoprotein

CEACAM6was significantly upregulated (p < 0.01; Experimental

Procedures), whereas components of the ferritin protein (FTH1,

FTL), which is the major intracellular iron storage protein, were

significantly upregulated (p < 0.01; Experimental Procedures)

in the other group (cluster 4) (Figure 6C).

The inferred lineage tree assigns a central position to the

ductal cells (Figure 6D; Figures S7C–S7E). Distinct subtypes of

ductal cells appear to give rise to different endocrine sub-types

and acinar cells. Although differentiation trajectories link cluster

4 to acinar, PP, and b cells, cluster 14 is linked to a and d cells.

Consistently, clusters 4 and 14 acquire the highest StemID

score, indicating the highest level of multipotency among the
(E) Barplot of StemID scores for pancreatic clusters.

(F) Pseudo-temporal expression profiles for INS and FTH1. The transcript count is

the projection coordinate.

In (B), (D), and (E), only clusters with more than five cells were analyzed. See als
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cell types detected in this system (Figure 6E; Figure S7F). The

following ranks of the StemID score were occupied by other

ductal sub-types and precursor cells that give rise to two sub-

states of acinar cells. Interestingly, cluster 4 also directly con-

nects to stellate cells. Upon injury, these cells can switch to an

activated state and migrate to the injured location to participate

in tissue repair (Omary et al., 2007).

To collect further evidence that cluster 4 is an endocrine pro-

genitor cell, we plotted the expression of the cluster 4 marker

FTH1 and the b cell marker insulin (INS) in single cells residing

on the differentiation trajectory connecting these two cell types.

Cells were ordered by their projection coordinate. The genes

exhibited smooth, anti-correlated gradients suggestive of a

continuous transition between these two cell types (Figure 6F).

To independently validate this observation, we performed anti-

body staining against insulin and FTL in human pancreatic tissue

sections. We were able to detect individual cells co-expressing

insulin and FTLwithin ductal structures, confirming the existence

of cluster 4 cells (Figure 7A). Co-staining of glucagon revealed

that these cells specifically produce insulin and not glucagon

(Figure 7B), as suggested by our analysis (Figure 6C). Our results

indicate that the ferritin-positive sub-population of ductal cells

might differentiate into mature b cells.

DISCUSSION

In this study, we present an approach to identify stem cells using

single-cell transcriptomics data. Because the physiological state

of a cell is an approximate reflection of its transcriptome, it is a

reasonable assumption that cell types can be discriminated

based on their transcriptome. However, determining the stem

cell identity among all rare cell types discovered also requires

the derivation of a lineage tree.

To address this task, we combined cell type identification by

RaceID2 with a tree reconstruction by guided topology. We first

introduce an improved version of our previous RaceID algorithm

(Grün et al., 2015) with a more robust initial clustering step. The

replacement of k-means by k-medoids leads to increased

robustness of clustering for all datasets analyzed in the paper.

For the complex intestinal dataset (Figure 3), the fraction of clus-

ters with Jaccard’s similarity of > 0.7 is 40% for k-means versus

73% for k-medoids. The corresponding fractions are 58%

versus 83% for the bone marrow data and 40% versus 90%

for the pancreas data.

To infer differentiation trajectories, we assign every cell onto a

specific link between its cluster of origin and another cluster

based on the longest projection of the vector connecting the

cluster center with the cell position onto these links. This

adequately reflects how much a cell has moved from the most

representative cell state in the same cluster (the medoid) toward

another cell identity (or vice versa). If significantly more cells

reside on a link than expected by chance, this provides strong

evidence that cells of the cluster of origin exhibit a pronounced

transcriptome bias toward another cell fate. In addition, if a
plotted for cells on the link, connecting clusters 4, 8, and 6. Cells are ordered by

o Figure S5.
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Figure 7. Validation of Putative Endocrine Precursor Cells in Ductal

Subpopulations by Antibody Staining

(A and B) Antibody staining for INS and FTH1 in human pancreatic showing a

single cell positive for INS and FTH1 residing in the lining of the duct (arrow).

(B) Antibody staining for INS, FTH1, and GCG in human pancreatic tissue.

Shown is a single cell positive for INS and FTH1 residing in the lining of the

duct (arrow) next to a GCG-expressing cell (arrowhead). Another GCG-ex-

pressing cell is found nearby (arrowhead). Both GCG-expressing cells are

FTH1-negative.
continuum of cell states covers a given link, as evidenced by a

high link score, then this link represents a strong candidate for

an actual differentiation trajectory. Significant links with reduced

link scores, on the other hand, indicate plasticity of the con-

nected cell types in a sense that the transcriptome of a cell

type can, to some extent, fluctuate toward another fate.

The quality of our lineage inference is supported by the recov-

ery of known differentiation trajectories in the intestinal epithe-

lium and the bone marrow. Remarkably, we recovered a rare

alternative differentiation pathway where Lgr5+ cells differen-

tiate directly into Paneth cells without intermediateDll1+ progen-

itors (Farin et al., 2014; Sawada et al., 1991). We could also

show, for the intestinal and the bone marrow data, that StemID

infers a lineage tree with substantially higher resolution in com-

parison with methods published previously (Haghverdi et al.,

2015; Trapnell et al., 2014; Figure S6).

The derived lineage tree for the bone marrow suggested that,

in contrast to the classical view of dichotomous differentiation

via a hierarchy of increasingly restricted progenitor populations

(Giebel and Punzel, 2008), a cell fate bias already exists at

stages as early as the HSC stage (Figure 5B). This observation

is consistent with a recent single-cell transcriptome analysis

revealing heterogeneity of the common myeloid progenitor

cell population, indicating early fate bias (Paul et al., 2015).

Moreover, direct generation of progenitors restricted to the

myeloid fate from mouse HSCs has been described in the

past (Yamamoto et al., 2013), and the existence of unipotent
cells within human HSCs (Notta et al., 2016) and classically

defined mouse multipotent progenitor populations was shown

recently (Perié et al., 2015).

For both model systems, the StemID score, which quantifies

very general properties of a cell type (i.e., the number of links

and the entropy of the transcriptome), ranks RaceID2-predicted

cell types by their level of multipotency. Lgr5+ CBCs and sorted

HSCs acquire the highest score among all cell types of the intes-

tine and bone marrow, respectively, demonstrating the perfor-

mance of our algorithm. We could further demonstrate the

performance of StemID on two previously published datasets

(Figure S7) for cells from developing lung epithelium (Treutlein

et al., 2014) and differentiating human radial glial cells (Pollen

et al., 2015).

Potential problems for the StemID algorithm arise in the

absence of intermediate progenitors or the occurrence of unre-

lated cell types. In the absence of intermediate progenitors,

StemID infers a link to a more multipotent population. For

example, B lymphocytes in the bone marrow dataset are directly

linked to HSCs. It is known that a spectrum of progenitors will

reside on this trajectory, and, as we have observed for the other

lineages, an early fate bias toward lymphocytes could exist in

HSCs. In the absence of intermediate progenitors, a link to a

more multipotent population reflects all information on the line-

age relationship that can be extracted from the data. If the

stem cell itself is missing from the sample, StemID will identify

the cell type with the highest level of multipotency. The presence

of unrelated cell types in the mixture could lead to false positive

links. However, because the feature space is high-dimensional, it

is likely that none of the links between an unrelated cell type and

the remaining lineage tree will be significantly populated. We

also argue that links of mature cell types to related progenitor

or stem cell populations were identified with high specificity

(oftentimes only a single link in line with previous findings was

detected). This makes the occurrence of significant links be-

tween unrelated cell types unlikely.

Finally, we used StemID to screen human adult pancreatic

cells for multipotent cell populations. It is unclear which adult

pancreatic cell types can give rise to the different mature pancre-

atic lineages during normal tissue turnover or regeneration.

Although initial evidence suggested that multipotent cells within

the ductal compartment could differentiate into endocrine cells

both in humans and mice (Jiang and Morahan, 2014), subse-

quent lineage-tracing experiments produced contradictory re-

sults. Although mouse lineage tracing of carbonic anhydrase II

(Ca2)-positive ductal cells revealed that these cells give rise to

b cells upon injury (Bonner-Weir et al., 2008), lineage tracing of

Sox9-, Muc1-, or Hnf1b-positive cells could not confirm this

finding (Furuyama et al., 2011; Kopinke and Murtaugh, 2010;

Kopp et al., 2011; Solar et al., 2009). Using StemID, we were

able to predict distinct sub-populations of ductal cells with vary-

ing differentiation potential. Although ductal cells marked by high

levels of CEACAM6 are predicted to differentiate into a, d, and

PP cells, another sub-population expressing high levels of the

ferritin complex primarily appears to give rise to b cells and

acinar cells. We note that the latter sub-population does not ex-

press any of the markers used in previous lineage-tracing exper-

iments, but we caution that expression of these genes might be

too low to be reliably detected by single-cell mRNA sequencing.
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We further remark that b cell differentiation in the adult pancreas

might not be conserved between human and mouse.

We provide the well documented R source code for RaceID2

and the StemID algorithm at https://github.com/dgrun/StemID.

We hope that StemID will be useful for a better understanding

of differentiation dynamics in a variety of systems.

EXPERIMENTAL PROCEDURES

Lineage-Tracing Experiments

For lineage-tracing experiments, we injected 0.4 mg tamoxifen into 3-month-

old Lgr5-CreERT2 C57Bl6/J mice bred to Rosa26LSL-YFP reporter mice.

Isolation of Crypts from Mouse Small Intestine

Crypts were isolated frommice as described previously (Sato et al., 2009). See

the Supplemental Experimental Procedures for more details.

Human Islet Isolation, Dispersion, and Sorting

Pancreatic cadaveric tissue was procured from a multiorgan donor program

and only used when the pancreas could not be used for clinical pancreas or

islet transplantation, according to national laws, and when research consent

was present. Human islet isolations were performed in the islet isolation facility

of the Leiden University Medical Center according to a modified protocol orig-

inally described by Ricordi et al. (1988). See the Supplemental Experimental

Procedures for details regarding culturing and cell sorting.

Immunofluorescence

Pancreatic tissue samples were fixed overnight in 4% formaldehyde (Klini-

path), stored in 70% ethanol, and subsequently embedded in paraffin. After

deparaffinization and rehydration in xylene and ethanol, respectively, antigen

retrieval was performed in citric buffer for 20 min. Sections were blocked

with 2%normal donkey serum and 1% lamb serum in PBS. Primary antibodies

were rabbit anti-Ftl (ab69090), mouse anti-glucagon (ab10988), and guinea pig

anti-insulin (ab7842). Alexa Fluor-conjugated secondary antibodies against

rabbit, mouse, and guinea pig immunoglobulin G (IgG) (Life Technologies;

A11008, A10037, and A21450) were used at a dilution of 1:200. Nuclear coun-

terstaining was done by embedding with DAPI Vectashield (Vector Labora-

tories, H-1500). Imaging was performed on a Leica SP8 confocal microscope

using hybrid detectors.

Preparation of Mouse Hematopoietic Cells

We used C57Bl/6 female or male mice from 23 to 52 weeks bred in our facility.

Experimental procedures were approved by the Dier Experimenten Commis-

sie of the Royal Netherlands Academy of Arts and Sciences and performed ac-

cording to the guidelines. Bone marrow was isolated from femur and tibia by

flushing Hank’s balanced salt solution (HBSS, Invitrogen) without calcium or

magnesium, supplemented with 1% heat-inactivated fetal calf serum (FCS)

(Sigma). See the Supplemental Experimental Procedures for details regarding

single cell isolation.

Single-Cell Sequencing Library Preparation

The protocol was carried out as described previously (Grün et al., 2015). See

the Supplemental Experimental Procedures for a detailed description.

Quantification of Transcript Abundance

Read mapping and quantification were done as described previously (Grün

et al., 2015). See the Supplemental Experimental Procedures for a detailed

description.

RaceID2 and StemID

A brief overview is given in the Results. The algorithm and follow-up analyses

are described in full detail in the Supplemental Experimental Procedures.
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