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Single-cell genomics and single-cell transcriptomics have 
emerged as powerful tools to study the biology of single  
cells at a genome-wide scale. However, a major challenge is to 
sequence both genomic DNA and mRNA from the same cell, 
which would allow direct comparison of genomic variation 
and transcriptome heterogeneity. We describe a quasilinear 
amplification strategy to quantify genomic DNA and mRNA 
from the same cell without physically separating the nucleic 
acids before amplification. We show that the efficiency of  
our integrated approach is similar to existing methods for 
single-cell sequencing of either genomic DNA or mRNA. 
Further, we find that genes with high cell-to-cell variability 
in transcript numbers generally have lower genomic copy 
numbers, and vice versa, suggesting that copy number 
variations may drive variability in gene expression among 
individual cells. Applications of our integrated sequencing 
approach could range from gaining insights into cancer 
evolution and heterogeneity to  understanding the 
transcriptional consequences of copy number variations in 
healthy and diseased tissues.

One of the central questions in biology is to understand how genotype 
influences phenotype. Over the past decade, advances in microarrays 
and, more recently, next-generation sequencing have started to pro-
vide glimpses of this correlation at the genome-wide level1–4. However, 
these studies make measurements starting from a large population of 
cells or complex tissues, thus providing only an average measurement 
over the entire population. This obscures direct quantification of how 
genetic variability may affect the transcriptome at the single-cell level. 
Furthermore, as cell populations exposed to the same environment 
can also exhibit dramatic cell-to-cell variability in gene expression5, 
the ability to understand the correlation between genotype and 
gene expression will require direct measurement of the transcrip-
tome and the genome of the same cell. Recently, single-cell genome 
sequencing6–11 and single-cell transcriptome sequencing12–21 have 
emerged as promising tools for quantifying genetic and expression 
variability between individual cells22,23. However, as these single-cell 
 technologies are limited to quantification of either the transcriptome 
or the genome, it is currently not possible to explore the relation 

between genetic and expression variability in single cells. Here we 
describe a method to simultaneously quantify both the genome and 
transcriptome of the same cell.

To successfully amplify small quantities of genomic DNA (gDNA) 
and mRNA from single cells in a way that reduces handling, transfer 
and separation steps, we devised gDNA-mRNA sequencing (DR-Seq), 
a method that does not involve physical separation of the nucleic 
acids before amplification, thereby minimizing losses and chances of 
contamination. First, hand-picked single cells are lysed and reverse 
transcribed using a poly-T primer (called adaptor-1x (Ad-1x)) includ-
ing cell-specific barcodes, a 5′ Illumina adaptor and a T7 promoter 
overhang to convert mRNA to single-stranded cDNA13 (Fig. 1a). The 
gDNA and single-stranded cDNA are then subjected to quasilinear 
whole-genome amplification with an adaptor that has a defined 27-nt 
sequence at the 5′ end followed by eight random nucleotides7 (Ad-2) 
(Fig. 1a). After seven rounds of amplification, the gDNA and cDNA 
are copied to generate a variety of different short (0.5–2.5 kb) ampli-
con species, with a majority of amplicons containing Ad-2 at both 
ends and a small fraction of cDNA-derived amplicons containing 
Ad-2 at one end and Ad-1x at the other (Fig. 1a).

Next, the sample is divided to further amplify gDNA and cDNA 
(Fig. 1a). The half used to sequence gDNA is first amplified by PCR. 
After sonication, removal of Ad-2 and preparation of a cell-specific 
indexed Illumina library, this half allows quantification of gDNA. 
The other half used for cDNA sequencing is converted to double-
stranded cDNA and amplified using in vitro transcription such that 
the amplified RNA (aRNA) is uniquely produced from cDNA but not 
gDNA (Fig. 1a). 3′ Illumina adaptors are then ligated to the aRNA and  
subjected to reverse transcription and PCR, allowing quantification 
of mRNA.

We first applied DR-Seq to a mouse embryonic stem cell line (E14) 
to validate how the method compares to existing single-cell gDNA 
or mRNA sequencing techniques. We performed DR-Seq on E14 
cells and sequenced the mRNA from 13 single cells together with the 
gDNA from three of the 13 cells. Recently a few single-cell transcrip-
tomics methods have employed random sequence–based barcodes to 
identify unique mRNA molecules, thereby reducing PCR and other 
amplification biases17,20,21. Because cDNA molecules in DR-Seq are 
randomly primed by Ad-2 during quasilinear amplification, we used 
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the genomic position of such priming events 
to minimize amplification biases and achieve 
resolution close to that of identifying unique 
mRNA molecules (Supplementary Fig. 1).  
Because all amplification products that 
are generated downstream (during quasi-
linear amplification, in vitro transcription 
and PCR) from the first randomly primed 
cDNA-derived amplicon retain the same 
genomic priming location, amplification-derived duplicates could 
be removed to identify unique cDNA molecules. The genomic prim-
ing location of the first randomly primed cDNA-derived ampli-
con was called its length-based identifier (Supplementary Fig. 1).  
For example, although hundreds of reads were detected for the 
Dppa5a gene, only 34 and 27 unique length-based identifiers were 
detected in the two cells shown (Fig. 1b). A zoomed-in view of 100 
nucleotides within this transcript shows that only a few distinct 
positions are randomly primed in the two cells, with several reads 
at each genomic coordinate (Fig. 1b). Thus, unique length-based 
identifiers have the potential to reduce amplification biases and 
technical noise to enable quantification of the original number of 
cDNA molecules. To demonstrate that length-based identifiers can 
be used to achieve resolution close to identifying unique transcripts 
in single cells, we showed that the original cDNA molecules were 
primed only once on average during the quasilinear amplification 
steps, thereby enabling length-based identifiers to uniquely tag each 
original cDNA molecule (Supplementary Fig. 2 and Supplementary 
Note). Next, we identified the theoretical number of unique binding 
sites (and, therefore, length-based identifiers) available for adaptor 
Ad-2 for each gene in the transcriptome to ensure that the original 
cDNA molecules from each gene could be counted accurately with-
out reaching saturation (Supplementary Fig. 3 and Supplementary 
Note). For a majority of the genes, we found between 50 and 250 
theoretical binding sites, similar to the resolution of 4-bp random 
barcodes that have been used as unique molecule identifiers (UMIs) 
to quantify single-cell transcriptomes20,21 (Supplementary Fig. 4  
and Supplementary Note). Finally, we found that for a majority 
of expressed genes (>95%), the number of detected length-based  
identifiers was much smaller than the theoretical number of bind-
ing sites, thereby implying that the length-based identifiers do not 

undercount the number of original cDNA molecules (Supplementary 
Fig. 5 and Supplementary Note). Together these results show that 
length-based identifiers in DR-Seq can be used to minimize amplifi-
cation biases and accurately estimate the underlying distribution of 
original cDNA molecules.

To demonstrate that length-based identifiers reduce technical noise 
by minimizing amplification biases and perform similar to random 
sequence-based UMIs17,20,21, we compared cell-to-cell variability in 
the expression of endogenous genes before and after correction using 
length-based identifiers. We found that the coefficient of variation 
(CV) in expression reduced for a majority of genes (80%) in DR-Seq 
after correcting the expression using length-based identifiers, simi-
lar to the reduction observed in CEL-Seq (cell expression by linear 
amplification and sequencing) after correcting the expression with 
UMIs (Fig. 2a and Supplementary Fig. 6)13,21. This suggests that 
length-based identifiers in DR-Seq reduce technical noise, thereby 
allowing quantification of the underlying biological variability in gene 
expression between single cells. Further, as single cells contain the 
same amount of External RNA Controls Consortium (ERCC) spike-
in molecules, any cell-to-cell variability detected in these molecules 
represents technical noise and would be expected to display the lowest 
CV when compared to endogenous genes with similar mean expres-
sion levels. We found that the spike-in molecules typically showed 
the lowest CV for the entire range of mean expressions only after 
correction of the read-based DR-Seq data with the length-based 
identifiers (Fig. 2b,c). We found a similar trend in CEL-Seq after 
correcting the read-based data with UMIs (Supplementary Fig. 7). 
As a consequence of this reduction in technical noise, length-based 
identifiers in DR-Seq and UMIs in CEL-Seq improved cell-to-cell 
pairwise Pearson correlations in the expression of endogenous genes 
(Supplementary Fig. 8). Taken together, these data strongly suggest 
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Figure 1 Schematic of DR-Seq. (a) After single-
cell lysis and reverse transcription (RT) with 
adaptor Ad-1x (purple), gDNA (red) and single-
stranded cDNA (yellow) are amplified by Ad-2 
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The majority of the short amplicons contain  
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of reads within 100 nucleotides of Dppa5a for 
two cells as a function of the random priming 
location by Ad-2. The unique length-based 
identifiers found in the two cells can be used to 
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that length-based identifiers in DR-Seq substantially reduce technical 
noise, thereby allowing us to accurately count the number of original 
cDNA molecules and capture the underlying biological variability 
between single cells.

We then compared the length-corrected mRNA sequencing results 
obtained from DR-Seq to results obtained from sequencing 33 single 
E14 cells by CEL-Seq13,21 (Supplementary Fig. 9). To avoid sampling 
bias in comparing DR-Seq to CEL-Seq, we chose the 13 cells with 
the highest read counts out of 33 that were sequenced using CEL-
Seq. Despite these stringent criteria, DR-Seq and CEL-Seq detected 
similar numbers of genes, with 9,735 genes in common between the 
two methods (Fig. 2d and Supplementary Fig. 10). The numbers of 
genes detected above different expression thresholds were also similar 
between the methods (Fig. 2d). In addition, gene expression corre-
lations for each method compared to bulk sequencing were similar 
(Supplementary Table 1). Finally, analysis of synthetic ERCC spike-
in RNA molecules showed that 66 different spike-in species from a 
total of 92 were detected by DR-Seq, compared to 51 species detected 
by CEL-Seq24 (Fig. 2e and Supplementary Fig. 11). This increased 
sensitivity in detecting low-abundance spike-ins is probably due to the 
exponential amplification of cDNA-derived amplicons for the remain-
der of the quasilinear amplification steps in DR-Seq. For the higher 
range of concentrations, the number of spike-in molecules detected 
correlated well with the expected number of molecules (Fig. 2e). 
Further, we detected linear correlation over three orders of magnitude 
between the detected and theoretical number of spike-in molecules 
for both CEL-Seq and DR-Seq, which suggests that the methods have 
similar dynamic ranges in detecting transcripts (Fig. 2e). Expression 

of endogenous genes also spanned three orders of magnitude in both 
CEL-Seq and DR-Seq, implying that the methods have similar sensi-
tivities in amplifying reverse-transcribed cDNA molecules (Fig. 2d).  
Taken together, these analyses of the two methods across different 
metrics suggest that DR-Seq performs similarly to CEL-Seq and 
the additional steps involved in amplifying gDNA do not adversely 
affect the mRNA sequencing results (Supplementary Fig. 12 and 
Supplementary Note).

To analyze gDNA sequencing results in DR-Seq, we mapped reads 
from the gDNA fraction to the genome after masking out the coding 
sequences. This masking is performed because the fraction that is 
used to sequence gDNA also contains reads that originate from cDNA 
molecules within coding sequences (Fig. 1a). By masking the coding 
sequences within the genome, such ambiguous reads that might arise 
from either gDNA or cDNA within coding regions are discarded com-
putationally, leaving only reads that arise from gDNA (Supplementary 
Fig. 13). Because the coding regions make up a small portion of the 
genome, such a strategy does not influence copy-number calling over 
large genomic regions (Online Methods). Further, gDNA reads in 
DR-Seq were distributed into unequal bins of variable size to account 
for the masking of the genome (Supplementary Fig. 14 and Online 
Methods). Further, to reduce amplification biases introduced during 
the quasilinear amplification steps, we developed a computational 
technique to reduce bin-to-bin technical noise in gDNA read counts. 
During quasilinear amplification, the first amplicons that are gener-
ated from the gDNA template do not loop out of the reaction pool and 
remain templates for the remaining cycles. Thus, differences in the 
cycle in which gDNA regions are first amplified can introduce bin-to-

Figure 2 Development of a computational 
technique to reduce technical noise in DR-Seq 
data and comparison of DR-Seq to existing 
single-cell gDNA or mRNA sequencing methods 
in E14 cells. (a) Reduction of cell-to-cell 
variability in the expression of genes after 
correction of raw read-based data using length-
based identifiers implies reduction in technical 
noise in DR-Seq data (Supplementary Fig. 6). 
(b) CV versus mean expression of genes for 
read-based data. Compared to endogenous 
genes (gray), spike-in molecules (red) typically 
do not display the lowest CV for a given mean 
expression level, implying that read-based data 
contain technical noise that obscures biological 
variability between single cells. (c) CV versus 
mean expression of genes after correcting read-
based data using length-based identifiers shows 
reduced technical variability between single 
cells (Supplementary Fig. 7). (d) Comparison 
of mRNA sequencing results between DR-Seq 
and CEL-Seq in detecting genes above different 
expression thresholds obtained from bulk 
mRNA sequencing data. Inset, total number 
of genes detected by bulk mRNA sequencing, 
CEL-Seq and DR-Seq (Supplementary Fig. 10). 
(e) Detection of ERCC spike-in molecules in 
both methods increased monotonically with the 
expected number of molecules per cell. Shown 
are spike-ins found in at least two single cells. 
(f) Box plot comparing bin-to-bin variability in gDNA read counts using two different methods for three cells amplified by DR-Seq. The box plots show 
the CV of read distribution over all the autosomes in the mouse genome. Central mark indicates median, lower and upper edges of the box indicate  
the 25th and 75th percentiles, respectively, and whiskers extend 1.5 times of the interquartile range beyond the edges of the box. (g) Comparison of 
single-cell gDNA sequencing results between DR-Seq and MALBAC. The green line indicates the theoretical limit, with reads distributed uniformly 
across the whole genome using Lorenz plots. (h) Power spectrum of read distribution over different genomic length scales for bulk sequencing and 
single cells processed by DR-Seq and MALBAC. (i) Read distribution for regions of the genome with different GC contents. RPM, reads per million; 
RPKM, reads per kilobase per million.
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bin variability and pileup of reads for certain regions of the genome. 
To correct for this amplification bias, we developed a coverage- 
based model to more accurately count the original amplicons that 
are generated from the gDNA template rather than those that are 
repeatedly amplified from the quasilinear amplification–generated 
products. Because the coverage-based method is not influenced by 
amplification duplicates, it reduced technical noise in estimations of 
gDNA counts over the entire genome (Supplementary Note). For 
the E14 cell line, we found that bin-to-bin technical variability for all 
the autosomes was twofold lower in our coverage-based method than 
in the conventional read-based method (Fig. 2f). Further analyses  
quantifying bin-to-bin technical variability and correlations between 
single cells revealed that the coverage-based method reduced 
amplification biases and technical noise, thereby improving copy-
number calling in cancer genomes (Supplementary Figs. 15–18, 
Supplementary Table 2 and Supplementary Note).

After making these improvements to reduce technical noise, we 
compared gDNA sequencing results from DR-Seq to results obtained 
from sequencing three E14 cells using MALBAC (multiple anneal-
ing and looping-based amplification cycles)7, with all single cells 
sequenced at depths of 0.6–2.5×. To identify sequencing biases and 
differences in coverage, we used Lorenz plots to compare cumulative 
read depth to cumulative fraction of the genome covered, ordered by 
increasing coverage (Fig. 2g). Bulk gDNA sequencing, without the 
need for whole-genome amplification, achieves a read distribution 
close to the theoretical limit. DR-Seq and MALBAC, relying on qua-
silinear amplification using random primers to amplify the genome, 
show greater coverage biases than does bulk sequencing, but they per-
form similarly to each other (Fig. 2g). Furthermore, in assessments of 
systematic biases and drifts in read distribution along the length of the 
genome, power spectra showed that DR-Seq and MALBAC showed 
more bias over large genomic scales (i.e., low frequencies), with both 
methods performing similarly across the entire range of genomic 
scales (Fig. 2h). Finally, analysis of GC sequencing bias showed that 
regions of the genome with high and low GC content deviated from 
the expected normalized counts25 (Fig. 2i). DR-Seq and MALBAC 
showed similar trends in GC bias, with DR-Seq showing modestly 
higher bias, possibly owing to the extra round of quasilinear ampli-
fication in DR-Seq. However, as the GC bias is easily corrected for, it 

does not influence the final gDNA analysis (Supplementary Fig. 18).  
Taken together, these results suggest that combined gDNA and mRNA 
sequencing from the same cell by DR-Seq performs similarly to exist-
ing methods for sequencing either the genome or transcriptome of 
single cells (Fig. 2).

We next applied DR-Seq to a breast cancer cell line (SK-BR-3) to 
understand how copy-number variations in single cancer cells influ-
ence gene expression programs. We applied DR-Seq to 21 SK-BR-3 
cells and sequenced mRNA from 21 and gDNA from 7 of these cells. 
We detected 12,205 genes and, as with the E14 data set, found similar 
correlation between average expression of genes from these single cells 
and bulk mRNA sequencing (Pearson r = 0.66, Spearman r = 0.69) 
(Supplementary Fig. 19a,b and Supplementary Table 1). Similarly, 
detection of spike-ins correlated well with the expected numbers of 
molecules (Supplementary Fig. 19c,d). gDNA from the seven cells 
was sequenced at a depth of 0.6–1.6× (Supplementary Table 3).  
Sequencing coverage and GC bias were similar to that observed in 
single E14 cells (Supplementary Fig. 20a–c).

After correcting for GC bias, we used the circular binary segmenta-
tion (CBS) algorithm to detect breakpoints26. Raw data and break-
point detection for chromosome 8 from one cell correlated well with 
copy-number changes detected in bulk sequencing (Fig. 3a). Similarly, 
breakpoint detection over the entire genome for all the single cells 
correlated well with the bulk sequencing results (Supplementary 
Fig. 21). The median read counts for each of the segments were used 
to estimate copy numbers in single cells (Supplementary Figs. 18a  
and 21, Supplementary Table 2 and Supplementary Note). We 
also developed a model to estimate confidence intervals for the 
copy numbers called by our algorithm (Supplementary Fig. 22 and 
Supplementary Note). Further, the mean copy numbers over all 
single cells correlated well with the bulk sequencing copy numbers 
over the entire genome (Supplementary Figs. 17 and 18b,c). We also 
detected considerable cell-to-cell variability in copy numbers over 
certain regions of the genome (Supplementary Figs. 17 and 23).  
We performed DNA fluorescence in situ hybridization (FISH) 
over four genomic loci that span a large spectrum of copy num-
bers and found that the mean copy numbers detected by DR-Seq 
and DNA FISH were in agreement27 (Supplementary Fig. 24). 
Notably, we also found that the distribution of copy numbers for 
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(b) Genome-wide quantification of mean 
expression of genes within different copy 
number regions (Supplementary Fig. 25).  
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these four loci in single cells amplified by DR-Seq were not statisti-
cally different from distributions obtained by DNA FISH (P > 0.01,  
Kolmogorov-Smirnov test; Supplementary Table 4). These results 
showed that DR-Seq has the sensitivity to capture heterogeneity in 
copy numbers across single cells.

Next, comparison of copy-number variations in chromosome 8 to 
levels of mRNA expression in this single cell showed that the average 
expression of genes within each segment appeared to be strongly cor-
related to the copy number of that genomic region (Fig. 3a). To quan-
tify this correlation on a genome-wide scale, we calculated the mean 
expression of genes in different copy-number regions for each cell. 
We observed a monotonic increase in mean expression with increase 
in copy number on a genome-wide level across different single cells 
(Fig. 3b and Supplementary Fig. 25). This increase in expression 
with copy number provided additional validation that DR-Seq was 
sensitive enough to simultaneously detect changes in copy numbers 
and transcript counts from the same cell (Supplementary Fig. 26).

Finally, we investigated whether DNA copy-number varia-
tions within the cancer genome could be an important regulator of  
gene-expression variability. We found that genes that show more  
cell-to-cell variability in transcript numbers were generally associ-
ated with reduced copy-number loci and vice versa, implying that 
copy number variations could drive variability in gene expression 
between single cells (Fig. 3c, Supplementary Figs. 27 and 28, and 
Supplementary Note).

We have developed a method that allows combined gDNA and 
mRNA sequencing from the same cell using a single-pot strategy. 
Similar integrated strategies might be used in the future to determine  
the correlation between DNA methylation and transcription, or 
nucleosome positioning and transcription, in single cells. Additionally,  
integrated gDNA and mRNA single-cell sequencing might provide 
enhanced sensitivity to lineage-tracing studies in tumors and healthy 
tissue (Supplementary Table 5).
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oNLINe MetHoDS
Tissue culture. E14 cells were cultured in DMEM (Gibco) supplemented with 
15% FBS (Gibco), 2 mM GlutaMax (Gibco), 0.1 mM MEM nonessential amino 
acids, 0.1 mM β-mercaptoethanol (Sigma), 1% Pen/Strep (Gibco) and 1,000 U  
LIF/ml (ESGRO) on gelatinized petri dishes. SK-BR-3 cells were cultured in 
McCoy’s 5a Medium Modified (ATCC) with 10% FBS and 1% Pen/Strep. Cells 
were grown at 37 °C and 5% CO2.

Cell picking. Trypsinized single cells were picked using a mouth pipet with a 
30-µm glass capillary under a stereomicroscope. Picked cells were deposited in 
the center of the lid of a 0.2 ml PCR tube and snap frozen in liquid nitrogen.

DR-Seq. First-strand cDNA synthesis was performed by addition of 2 µL of 
reaction mix containing 0.2 µL first strand buffer (MessageAmp II, Life tech-
nologies), 0.4 µL of dNTP mix (MessageAmp II, Life technologies), 0.1 µL  
Arrayscript (MessageAmp II, Life technologies), 0.1 µL RNAse inhibitor 
(MessageAmp II, Life technologies), 0.2 µL RT primer with cell specific 
barcode (Ad-1x)13, 0.2 µL 1:500,000 diluted ERCC spike-in mix 1 (Life 
Technologies) and 0.05% IGEPAL in water. The first strand cDNA synthe-
sis and lysis reaction mix together with the spike-in molecules were added 
directly to the drop in the lid of the tube containing a single cell. Samples were 
incubated in a PCR machine with lid and block set to 42 °C for 15 min after 
which the samples were spun down and incubated for another 105 min. After 
first strand synthesis, samples were incubated for 10 min at 80 °C. Quasilinear 
amplification buffer containing 6.0 µL ThermoPol buffer (NEB) 1.0 µL 10 mM 
dNTP mix, 26 µL water and 0.15 µL 50 µM primer mix (Ad-2)7 was added to 
each sample. Samples were incubated for 3 min at 94 °C to denature the DNA. 
Seven cycles of quasilinear amplification was performed (10 °C for 45 s, 15 °C 
for 45 s, 20 °C for 45 s, 30 °C for 45 s, 40 °C for 45 s, 50 °C for 45 s, 65 °C for  
2 min, 95 °C for 20 s, 58 °C for 40 s and then immediate quenching on ice). 
Prior to each cycle 0.6 µL polymerase mix containing 2 U Bst large fragment 
(NEB) and 0.8 U Pyrophage 3173 exo- (Lucigen) was added. The ste, before 
quenching the reaction on ice (58 °C for 40 s), is not performed for the first 
quasilinear amplification round. After seven rounds of quasilinear amplifica-
tion, samples were split in two. One half of the sample was processed for gDNA 
sequencing, and the other half was processed for mRNA sequencing.

For mRNA sequencing, second strand synthesis of the quasilinear amplified 
cDNA was performed using the P1 primer (5′ - CGATTGAGGCCGGTAATAC - 3′)  
in a single cycle of PCR (94 °C for 20 s, 51 °C for 20 s, 72 °C for 7 min). After 
this, samples with nonoverlapping barcodes were pooled and cleaned up on 
a cDNA purification column (MessageAmp II, Life technologies), and eluted 
twice with 9 µL of water at 55 °C. Next, the volume of the sample was reduced 
to 6.4 µL using a SpeedVac. In vitro transcription (IVT) mix containing 1.6 µL  
10× IVT buffer, 1.6 µL ATP, 1.6 µL GTP, 1.6 µL CTP, 1.6 µL UTP and 1.6 µL  
enzyme mix (MessageAmp II, Life technologies) was added to the samples  
and incubated at 37 °C for 13 h. After IVT, the aRNA was immediately cleaned 
up without fragmentation using the aRNA clean-up columns (MessageAmp II,  
Life Technologies) and the aRNA was eluted twice in 12 µL of warm water at 
55 °C. After clean-up, aRNA quality was assessed on a bioanalyzer (Agilent) 
Eukaryote Total RNA Pico chip. Library preparation was performed as  
previously described13.

For DNA sequencing, the other half of the quasilinear amplification product 
was amplified further by PCR. PCR mix containing 1.0 µL 10 mM dNTP, 3 µL 
Thermopol buffer (10×), 0.2 µL 100 µM primer P2 (5′ - GTGAGTGATGGTT
GAGGTAGTGTGGAG - 3′) and 1.0 µL Deep VentR (exo-) polymerase (NEB) 
was added to each sample for a final volume of 68 µL. PCR was performed 
as follows: 21 cycles of 94 °C for 20 s, 59 °C for 20 s, 65 °C for 1 min, 72 °C 
for 2 min; 72 °C for 5 min at the end. After PCR, the quality of the products 
was assessed by agarose gel electrophoresis and the samples were cleaned up 
using a PCR purification column (Qiagen) (Supplementary Fig. 29). Next, to 
remove adaptor Ad-2 from the PCR product before preparing Illumina librar-
ies, another PCR was done starting with 80 ng of product from the previous 
step. PCR mix containing 0.3 µL of 50 µM primer P3 with a 5′ biotinylated 
end (5′ - GTGAGCTGGAGTTGAGGTAGTGTGGAG - 3′), 5 µL Thermopol 
buffer (10×), 1 µL 10mM dNTP and 1 µL Deep VentR (exo-) polymerase (NEB) 
was added to each sample for a final volume of 50 µL. PCR was performed as 
follows: 94 °C for 2 min, then 4 cycles of 94 °C for 20 s, 46 °C for 20 s, 65 °C 

for 1 min and 72 °C for 2 min; 9 cycles of 94 °C for 20 s, 59 °C for 20 s, 65 °C 
for 1 min and 72 °C for 2 min. The PCR product was sheared using a sonica-
tor (Biorupter) on the low power setting with 15 cycles of 1 min (30 s on, 30 s 
off) with constant cooling at 4 °C. The sheared products were then cleaned up 
using a PCR purification column (Qiagen) and eluted in 50 µL water. The final 
product distribution was verified on a bioanalyzer (Agilent) High Sensitivity 
DNA chip to have an average product size of approximately 300 bp. The DNA 
products were then added to Dynabeads MyOne Streptavidin C1 beads (Life 
Technologies) in 50 µL 2× BW buffer (10 mM Tris-HCl, 1mM EDTA and 2mM 
NaCl). After immobilizing the DNA products on the beads for 15 min, the 
biotinylated DNA was separated using a magnetic stand and the supernatant 
was stored. The biotinylated DNA was digested on the magnetic beads and 
the beads were washed twice with 50 µL 1× BW buffer. These two washes were 
then combined with the first supernatant and purified using a PCR purifica-
tion column (Qiagen). Finally, Illumina libraries were prepared with different 
index primers for each single cell using the NEBNext Ultra DNA Library Prep 
Kit for Illumina (NEB).

Applying DR-Seq to E14 and SK-BR-3 cells, the typical success rate in  
amplifying single cells was approximately 70% (21/30 for SK-BR-3 and  
13/18 for E14 cells).

Libraries were sequenced on an Illumina Hi-seq 2500. cDNA libraries from 
DR-Seq were sequenced with 100 bp paired-end sequencing and the gDNA 
and other cDNA libraries (from CEL-Seq or bulk) were sequenced with 50 bp 
or 100 bp paired-end sequencing.

Bioinformatic analysis. For bulk mRNA and CEL-Seq libraries, paired-end 
sequencing reads were aligned to the transcriptome using Burrows-Wheeler 
Aligner (BWA) with default parameters. For single-cell mRNA processed 
using DR-Seq, the Ad-2 adaptor sequence was trimmed computationally from 
the right mate and then aligned to the transcriptome using BWA with default 
parameters. For the E14 cells, we used the RefSeq gene models based on the 
mouse genome release mm10. For the SK-BR-3 cells, we used the RefSeq gene 
models based on the human genome release hg19. For bulk mRNA sequenc-
ing, both mates of each read were mapped to the transcriptome. For CEL-Seq 
and DR-Seq, the right mate of each read pair was mapped to the transcriptome 
and the ERCC spike-ins. The left mate was used to identify the cell from 
which the transcript came based on the cell-specific barcode. Reads mapping 
to more than one region were distributed uniformly. For the bulk mRNA 
sequencing libraries, PCR duplicates were removed to obtain the data set 
used in all the analysis. The left mate of the CEL-Seq libraries also contained 
a random 4-bp sequence, introduced during reverse transcription, to count 
unique cDNA molecules, as previously described21 (Supplementary Fig. 6). 
Length-based identifiers were determined for each read in the single-cell 
mRNA libraries processed by DR-Seq using the first coordinate of the right 
mate after trimming off adaptor Ad-2 (Fig. 1b). The length-based identifiers 
were used to minimize amplification biases and achieve resolution close to 
identifying unique cDNA molecules (Fig. 2a–c, Supplementary Figs. 6–8 
and Supplementary Note).

For bulk gDNA and MALBAC libraries, paired-end sequencing reads were 
aligned to the genome release mm10 for mouse cells (E14) and to the genome 
release hg19 for human cells (SK-BR-3) using BWA with default parameters. 
For the single-cell gDNA libraries processed by DR-Seq, paired-end sequenc-
ing reads were aligned to a masked genome mm10 for mouse cells and to a 
masked genome hg19 for human cells using BWA with default parameters. 
The masked genomes mm10 and hg19 were created by replacing all the coding 
sequences within the genome with ‘N’ because the fraction used to sequence 
gDNA contains sequences that could originate from the cDNA within cod-
ing regions (Fig. 1a and Supplementary Fig. 13). By masking the coding 
sequences within the genome, such ambiguous reads that might arise from 
either gDNA or cDNA are discarded computationally, leaving only reads that 
arise from gDNA. This does not pose a problem for calling copy number 
variations because the coding region constitutes only approximately 2% of the 
genome. Therefore, gDNA sequencing results obtained from DR-Seq can be 
used to quantify copy number variations and single nucleotide variants in the 
genome (Fig. 3a, Supplementary Fig. 21 and Supplementary Table 5). Next, 
all PCR duplicates within mapped reads from the bulk, MALBAC or DR-Seq 
libraries are removed. As the first step toward quantifying the gDNA data, the 
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genome is divided into bins. To account for the masking of the genome in the 
DR-Seq data, the start and end coordinates of each bin are chosen such that 
the length of all bins are the same after excluding coding regions within each 
bin. This variable binning strategy provides a more accurate description of 
the distribution of reads within each bin as reads that map to coding regions  
are masked from the analysis (Supplementary Figs. 13 and 14). Next, to 
further reduce amplification biases, we developed a coverage-based method 
to quantify the reads within bins. This coverage-based method signifi-
cantly reduces bin-to-bin technical noise (Supplementary Note, Fig. 2f and 
Supplementary Figs. 15 and 16). The reads are then corrected for GC bias25. 
The corrected read distribution is then used to identify breakpoints using 
the circular binary segmentation (CBS) algorithm26. Finally, the median read 
counts for each segment are used to call copy number variations in single cells 
(Supplementary Note).

DNA FISH. SK-BR-3 cells were grown on coverslips and fixed in methanol/
acetic acid solution (3:1 vol) for 10 min at room temperature (RT) upon reach-
ing confluency. They were washed with PBS/0.1% Triton X-100 and treated 
with 100 µg/mL of RNAseA in PBS for 1 h at 37 °C. They were then washed 
with PBS and dehydrated with ethanol series (70% ethanol, 85% ethanol,  

100% ethanol) followed by overnight air drying. The next day they were  
denatured in 70% formamide and 2× SSC buffer at 75 °C for 5 min, and then 
placed in 70% ethanol for 2 min, followed by a 2-min incubation in 85% etha-
nol and 2-min incubation in 100% ethanol. They were then air dried for 30 
min, and during this time the probes were denatured at 75 °C for 5 min. The 
hybridization was set up with HD FISH probes resuspended in the CEP buffer 
(Abbott) (100 ng/20 µL). Coverslips were sealed on microscope slides with a 
rubber cement and incubated at 37 °C overnight. The next day the coverslips 
were removed from the slides and washed three times in 2× SSC followed by 
two washes in 0.2× SSC/0.2% Tween 20 at 56 °C for 7 min each. Afterwards 
they were rinsed with 4× SSC/0.2% Tween 20 and washed once with 2× SSC for  
5 min. They were then incubated with 50 ng/mL DAPI and 2× SSC for 5 min 
at RT and mounted in the mounting solution containing 2× SSC, 10 mM Tris, 
0.4% glucose, 100 µg/mL catalase, 37 µg/mL glucose oxidase, 2 mM Trolox. 
The probes were designed using the www.hdfish.eu database. For CCDC40, 
HTT and FHIT genes, the HD-FISH probes were prepared by PCR as previ-
ously described27 (Supplementary Fig. 24 and Supplementary Table 4). For 
ZMIZ1, 40-mer oligonucleotides with a 3′ functional amino group were syn-
thesized by Biosearch Technologies Inc., and coupling to Cy5 (GE Healthcare) 
was performed in house.
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