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controls) were sequenced in the same way as single cells (Fig. 1a).  
In total, we sequenced the transcriptome of 74 cells and 76 
controls (Supplementary Table 1, Supplementary Note 1 and 
Supplementary Fig. 1).

To count individual transcripts we integrated an UMI bar-
code consisting of four random nucleotides into the primer used 
for reverse transcription. A similar UMI method was recently 
described for another single-cell sequencing protocol14. For each 
transcript species, the number of observed UMIs was converted 
into transcript counts (Online Methods). The spike-in RNA of 
known composition and concentration (Online Methods) allowed 
us to convert the number of sequenced transcripts to actual abun-
dances in cells and controls. By a linear regression of sequenced 
spike-in transcripts on the number of added spike-in transcripts, we 
inferred an average conversion factor β of ~0.034 (Supplementary 
Fig. 2a). We sequenced 102 million reads for 74 cells, and each 
transcript was sequenced seven times on average (Supplementary 
Fig. 2b and Supplementary Table 1), suggesting that, in theory, 
up to 600 cells could be sequenced on a single lane (assuming  
120 million reads per lane). However, we would like to caution that  
combining a large number of samples could lead to under- 
representation of particular samples, and it is therefore advisable 
to stay below this theoretical maximum. We note that in our data, 
each individual cell was oversequenced at least fourfold.

The UMI allows reliable transcript counting up to ~500 cop-
ies, which, at a sensitivity of 3.4%, corresponds to ~15,000 tran-
scripts per cell (Supplementary Fig. 2c). Consistent with this, 
we observed only a handful of transcripts with >200 unique bar-
codes (Supplementary Fig. 2d), and for 99% of the transcript 
species, <50 unique barcodes were sequenced. Therefore, an UMI 
of length 4 is sufficient.

We investigated the impact of UMI versus read-based expression 
quantification on technical noise by comparing average expres-
sion across controls in reads per million (RPM) and normalized 
mRNA abundance in transcripts per million (TPM). Substantial 
differences (greater than twofold) were observed across the entire 
dynamic range (Supplementary Fig. 2e,f), a result suggesting that 
the CEL-Seq method introduces substantial amplification bias. 
Technical noise, assessed by the coefficient of variation (CV), was 
reduced for almost all genes (Fig. 1b and Supplementary Fig. 2g) 
by about 50% on average, and for many genes by more than two-
fold, when expression was measured with UMIs instead of reads.

Expression of the pluripotency markers Pou5f1, Sox2 and Klf4 
was high, whereas differentiation markers showed almost no 
expression in all samples, suggesting that we sequenced healthy 
nondifferentiated cells (Supplementary Fig. 3a,b).

To understand the origin of technical noise, we first computed 
the CV for all genes across control samples. For low-expression 
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single-cell transcriptomics has recently emerged as a powerful 
technology to explore gene expression heterogeneity among 
single cells. here we identify two major sources of technical 
variability: sampling noise and global cell-to-cell variation 
in sequencing efficiency. We propose noise models to correct 
for this, which we validate using single-molecule fish. 
We demonstrate that gene expression variability in mouse 
embryonic stem cells depends on the culture condition.

The impact of stochastic gene expression on phenotypic variation has 
been subject to intense research during the past several years1,2. The 
availability of diverse single-cell sequencing methods3–8 now per-
mits the analysis of single-cell transcriptomes with high sensitivity9. 
However, owing to low amounts of input material, single-cell sequencing  
still suffers from substantial levels of technical noise. Experimental 
and computational strategies have been proposed to alleviate the 
impact of technical noise. For example, unique molecular identifiers  
(UMIs)10–12 were recently used in single-cell sequencing13–15 to 
reduce PCR amplification bias. In a previous study, a mathematical 
model was introduced for assessing statistical significance of observed 
cell-to-cell variability16. Although this model reveals whether expres-
sion noise significantly exceeds technical noise, it does not permit 
quantification of biological gene expression noise.

Here we present a method to accurately quantify technical and 
biological variability in the absolute numbers of mRNA molecules 
in single-cell sequencing experiments. To measure gene expression 
noise in mouse embryonic stem cells (mESCs), we hand-picked 
individual cells cultured in two-inhibitor (2i) medium17, depos-
ited them into single test tubes and spiked in a mixture of 92 syn-
thetic RNAs covering a wide range of expression levels18 (Fig. 1a).  
We then performed single-cell sequencing using the CEL-Seq 
(cell expression by linear amplification and sequencing) method3 
with small modifications (Online Methods). To quantify techni-
cal noise, we eliminated biological variability of cellular mRNA 
abundance by pooling thousands of cells and then splitting them 
into single-cell equivalents (~20 pg) of RNA (Online Methods). 
These pool-and-split control samples (hereafter referred to as 
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genes, the dependence of the CV on the expression level was con-
sistent with Poissonian sampling noise (Fig. 1c). Here, the s.d. of 
transcript number scales with the square root of the mean. With 
increasing expression, however, the CV starts to exceed sampling 
noise and ultimately approaches a constant value independent 
of the expression level (Fig. 1c). We reasoned that a constant 
CV arises from a noise component that implies a linear depend-
ence of the s.d. of the transcript number on the mean. This type 

of noise could originate from global tube-to-tube variability in 
sequencing efficiency, which was quantified by the conversion 
factor β. The distribution of β across individual samples indicates 
an approximately twofold range of variability (Supplementary 
Fig. 3c). The high correlation (R = 0.91) between β and the total 
number of sequenced RNAs per sample (Supplementary Fig. 3d)  
confirmed that β reliably quantifies sequencing efficiency. From 
the s.d. of β, we calculated the CV component explained by 

figure 1 | Analysis of gene expression  
noise with single-cell mRNA sequencing.  
(a) Hand-picked single mESCs were spiked 
with foreign RNA (left) and sequenced with a 
modified CEL-Seq3 protocol (Online Methods). 
To measure technical noise, RNA aliquots from 
bulk cells were treated likewise (right). (b) CV 
computed on the basis of transcripts per million 
(TPM) versus reads per million (RPM). The 
diagonal (red solid line) and twofold change 
intervals (red dashed lines) are indicated.  
(c) CV across control samples as a function of 
average expression. Blue line indicates CV for 
a hypothetical Poissonian distribution; dashed 
line represents CV computed from the s.d. of β, 
i.e., for global tube-to-tube variability.  
(d) Count distribution of Pou5f1 transcripts 
across cells and controls (dashed lines) fitted by 
negative binomials (solid lines). (e) Different 
functions were fitted to the count distribution 
in cells and controls. The goodness of fit was 
assessed by a χ2 test. The bar plot shows the 
number of genes for which a given distribution 
was not rejected (χ2 test P > 0.01).
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figure 2 | Modeling of technical variability and inference of biological noise. (a) Schematic of transcript normalization for model I. (b) Linear  
regression of the transcript counts on the predicted spike-in molecule numbers. Different slopes reflect varying efficiencies between samples. (c,d) CV as 
a function of average expression in cells and controls with (c) and without (d) count normalization. Predictions are indicated for model I in c and  
models II and III in d. The moving average and the CV for Poissonian noise are also shown. (e) Schematic of biological noise inference. Cell-to-cell  
noise (red) was fitted by a negative binomial, and a deconvolution of technical noise (gray) yields biological variability (turquoise). Example 
distributions are shown for Pou5f1. Noise distributions are similar for models II and III but narrower for model I owing to the elimination of global 
variability by normalization.
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global tube-to-tube variability as ∆β/β 
(Online Methods), which coincided with 
the observed constant CV level for highly 
expressed transcripts (Online Methods 
and Fig. 1c).

We concluded that the dominant source of technical noise 
depends on expression level: for low-expression genes, it is sam-
pling noise, and for high-expression genes, it is global tube-to-tube  
variability in sequencing efficiency.

In order to model the observed technical noise components, 
we investigated the distribution of transcript counts (Fig. 1d). We 
performed maximum-likelihood fits of various distributions and 
found that a negative binomial explained the distribution for the 
largest fraction of genes (Fig. 1e and Supplementary Fig. 4).

In a first model (model I), we eliminated tube-to-tube vari-
ability by normalizing counts in each sample to the cross-sample 
median (Fig. 2a) and subsequently inferred parameters of the 
expression distribution for the controls in order to model techni-
cal noise (Online Methods and Supplementary Fig. 5).

Models II and III are based on the raw-transcript count dis-
tributions. For these models, global tube-to-tube variability  
of sequencing efficiency was derived from the statistics of  
the sequenced spike-ins, which were used to calculate a model-
specific β (Online Methods, Fig. 2b and Supplementary  
Figs. 6 and 7). A brief description of the models is provided  
in Supplementary Note 2.

Across the entire dynamic range of transcript expression, the 
model-derived CVs yielded a good approximation of the average 
gene-specific CV (Fig. 2c,d).

We quantitatively inferred true biological gene expression 
noise by deconvolving out technical variability from the tran-
script distributions measured in cells (Fig. 2e), which were also 
fit by negative binomials (Fig. 1d,e and Supplementary Fig. 5a).  
We assumed endogenous mRNA abundance to follow a negative 
binomial, which is supported by a physical model of bursting 
expression19. Inferred parameters of the biological distribution 
were well defined for robustly expressed genes (Supplementary 
Fig. 8), and we found a clear reduction of inferred biological versus 
measured cell-to-cell noise (Fig. 2e and Supplementary Fig. 8).

To validate our biological noise predictions, we selected four 
stem cell markers (Pou5f1, Sox2, Klf4 and Pcna), a moderately 
expressed gene (Tpx2) and four genes with low expression 
(Sohlh2, Notch1, Gli2 and Stag3). These genes cover most of the 
dynamic range of transcript expression (Supplementary Fig. 9a).  
We performed single-molecule FISH (smFISH) experiments 
on these genes in independently cultured cell populations, i.e.,  
single mRNAs were labeled with a fluorescent dye and counted by 
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figure 3 | Validation of predicted biological 
variability by smFISH. (a) Pou5f1 transcripts 
labeled with Cy5 using smFISH in mESCs 
(maximal z projections). Single molecules 
appear as diffraction-limited spots.  
Nuclei were stained with DAPI. Scale bar,  
10 µm. (b) Count distribution for smFISH on 
Pou5f1 (>100 cells) and a negative binomial 
fit (black line) with uncertainty interval 
(dashed lines). The P value for rejecting a 
negative binomial was computed by a χ2 test. 
(c) CV measured in cells, as inferred after 
deconvolution of technical noise and measured 
with smFISH. In the model I comparison, the 
CV after normalization of transcript counts 
without deconvolution of sampling noise is also 
shown. Error bars are derived from estimated 
standard errors of the numerical fits. (d) z score 
of deviations between models and smFISH-
based CVs averaged across genes. The z score 
after normalization (Median norm.) of transcript 
counts without deconvolution of sampling 
noise is also shown. (e) Distribution of Fano 
factors as measured in cells and controls and 
as inferred for biological variability using 
model III. The distribution after normalization 
of transcript counts without deconvolution of 
sampling noise is also shown (Median norm.). 
The inset shows a histogram of log2 fold 
changes between Fano factors before and after 
deconvolution of technical noise. (f) Scatter 
plot of Fano factors in the serum versus 2i 
conditions. Genes that have different Fano 
factors within their error bars between the two 
conditions are colored. Error bars are based on 
standard errors of fitting parameters.
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microscopic imaging20 in >100 cells per gene (Online Methods and  
Fig. 3a,b). Transcript quantification by smFISH is highly sensitive 
and accurate20. We therefore compared sequencing-derived biologi-
cal CVs directly to the CV computed for the smFISH data. For com-
parison with model I, transcript abundance obtained by smFISH 
was normalized to the cell area. The CVs predicted by all three mod-
els were overall in good agreement with the smFISH-derived CVs  
(Fig. 3c). At low expression, our predictions overestimated the biolog-
ical noise measured by smFISH. However, for Gli2 and Stag3, which 
were on average expressed at 12 transcripts per cell as determined 
from the smFISH data, the biological noise predicted by models  
II and III already overlapped with the smFISH measurement.

We note that model I, owing to the normalization, predicts 
concentration noise, whereas models II and III estimate noise of 
the actual transcript number. Notably, the normalization alone, 
without deconvolving sampling noise, overestimates biological 
noise (Fig. 3c).

A model comparison based on z scores for the deviation of 
smFISH- and sequencing-derived noise estimates indicates that 
model III performs best (Fig. 3d). We speculate that model III 
outperforms model II owing to individual fits of the conversion 
factor at distinct expression levels.

We used our smFISH data to analyze sensitivity of CEL-Seq. 
Mean expression correlated strongly between both methods 
(Supplementary Fig. 9b), but sensitivity of smFISH was eightfold 
higher. Assuming 100% sensitivity of smFISH yields an estimated 
CEL-Seq sensitivity of 12.5% (Supplementary Fig. 9c). In con-
trast, the observed spike-in counts suggest an efficiency of only 
3.4%. This is presumably an underestimate, and a possible expla-
nation could be RNA degradation due to the age of the spike-in 
batch or other technical reasons. More speculatively, cellular RNA 
could for unknown reasons be more protected during cell lysis 
than spike-in RNA. Because the actual sensitivity of smFISH has 
been shown to be >80% (ref. 20), we estimate that the true sensi-
tivity of our CEL-Seq experiments is on the order of 10%, which 
corresponds to a mean of 500,000 transcripts per mESC.

Overall, the elimination of technical noise yields biological noise 
estimates substantially lower than noncorrected cell-to-cell noise 
(Fig. 3e). We note that the inferred biological Fano factor has to be 
divided by β to obtain the actual biological Fano factor to account 
for the limited sensitivity (Supplementary Figs. 9d and 10).

We compared our noise predictions to a recently published 
method16, which identifies genes with substantial biological noise 
without inferring the actual noise level. We observed that genes 
with biological noise clearly exceeding sampling noise according 
to our analysis, including the genes validated by smFISH, were 
not identified by this method (Supplementary Fig. 11).

Additionally, we demonstrated the validity of our approach for 
another sequencing technique based on PCR amplification of starting 
material14 (Supplementary Note 3 and Supplementary Fig. 12).

Finally, we applied our method to investigate gene expression 
noise in mESCs cultured in the 2i condition17 in comparison to 
the traditional serum culture. In 2i medium, mESCs acquire a state 
of naive pluripotency with reduced heterogeneity in morphol-
ogy and expression of pluripotency markers17. To test whether 
reduced gene expression variability in 2i medium affects a larger 
number of genes, we sequenced 44 cells and 56 serum culture 
controls (Supplementary Fig. 13a) and validated our CV predic-
tions by smFISH (Supplementary Fig. 13b).

After discarding genes with fewer than five transcripts per cell 
on average, we found that Fano factors are on average 1.4-fold 
higher for serum culture (Supplementary Fig. 14a). Out of 1,493 
genes above our expression cutoff in both culture conditions,  
615 genes were more variable, whereas only 137 genes were less 
variable in the serum condition (Fig. 3f).

Notably, genes correlating with the cell cycle (Ccna2, Ccnb1 and 
Ccnd1), or housekeeping genes, such as Gapdh, were not more variable 
in general (Fig. 3f). Increased variability in the serum versus 2i condi-
tion was also confirmed by a CV-based comparison (Supplementary 
Fig. 14b) and supported by smFISH for Pou5f1, Sox2 and Pcna 
(Supplementary Figs. 14c and 15). An extended analysis of the dif-
ferential expression variability in the two conditions is presented in 
Supplementary Note 4 and Supplementary Table 2.

methods
Methods and any associated references are available in the online 
version of the paper.

Accession codes. Gene Expression Omnibus: RNA-seq data are 
deposited under accession number GSE54695.
Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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Cell culture. Serum medium consists of DMEM (Gibco) sup-
plemented with 15% FCS (Gibco), 2 mM GlutaMAX (Gibco),  
0.1 mM MEM non-essential amino acids, 0.1 mM β-mercaptoethanol  
(Sigma), 1% penicillin/streptomycin (Gibco) and 1,000 U LIF/ml  
(ESGRO). J1 embryonic stem cells were obtained from the 
Koch institute for Integrative Cancer Research at MIT and were 
tested mycoplasma free. J1 cells have not recently been authen-
ticated. J1 cells cultured in serum medium were maintained on 
a monolayer of MEFs. 2i medium consists of 50% DMEM/F12 
and 50% N2B27 supplemented with 2 mM GlutaMAX, 0.1 mM 
MEM non-essential amino acids, 0.1 mM β-mercaptoethanol, 
1% pen/strep, 1,000 U LIF/ml, 1 µM PD0325901 (Stemgent) and 
3 µM CHIR99021 (Stemgent). J1 embryonic stem cells cultured 
in 2i medium were maintained on culture dishes coated with 
gelatin. J1 cells cultured in serum medium were passaged every 
2–3 d by dissociation with trypsin (Gibco). J1 cells cultured in  
2i medium were passaged every 2–3 d by dissociation with 
Accutase (Gibco).

Cell picking. Cells were dissociated into a single-cell suspension 
and picked under a stereomicroscope using a 30-µm glass capil-
lary and mouth pipette. Picked cells were deposited in the lid  
of a 0.5-ml LoBind Eppendorf tube and snap frozen in liquid 
nitrogen. For the pool-and-split controls, approximately 1 million 
cells were lysed, the amount of RNA was quantified on a bioana-
lyzer (Agilent) using the Eukaryote Total RNA Pico kit. 20-pg 
aliquots of total RNA were used for each pool-and-split control.

CEL-Seq library preparation. Single cells were processed  
using the previously described CEL-Seq technique3, with a few 
alterations. A 4-bp random barcode as unique molecular identifier  
(UMI) was added to the primer in between the cell-specific  
barcode and the poly(T) stretch. Instead of the 70 °C lysis step, 
cells were lysed by adding 0.05% IGEPAL CA 630 (Sigma) to 
the first-strand synthesis mix. Libraries were sequenced on an 
Illumina Hi-Seq 2500 using 50-bp paired-end sequencing.

Single-molecule FISH. Probe libraries were designed and fluores-
cently labeled as previously described20. All probe libraries consist 
of 48 oligonucleotides of 20-bp length (see Supplementary Table 3  
for probe sequences) complementary to the coding sequence of 
the genes. Cells were hybridized overnight with probes at 30° C,  
as previously described20. 4′,6-Diamidino-2-phenylindole (DAPI) 
was added during washes. Images were acquired on a PerkinElmer 
spinning disc confocal microscope with a 100× oil-immersion 
objective (numerical aperture, 1.4) using PerkinElmer Volocity 
software. Images were recorded as stacks with a z spacing of 0.3 µm.  
Diffraction-limited dots corresponding to single mRNA  
molecules were automatically detected using custom Matlab 
software based on previously described algorithms20. Briefly, the 
images were first filtered using a three-dimensional Laplacian- 
of-Gaussian filter, followed by selection of the intensity threshold 
at which the number of connected components was least sensitive 
to the threshold.

Quantification of transcript abundance. Paired-end reads 
obtained by CEL-Seq were aligned to the transcriptome using 
BWA21 with default parameters. The transcriptome contained all 

RefSeq gene models based on the mouse genome release mm10 
downloaded from the UCSC genome browser22 and contained 
31,109 isoforms derived from 23,480 gene loci. The right mate 
of each read pair was mapped to the ensemble of all RefSeq 
transcripts and to the set of 92 ERCC spike-ins18 in the sense 
direction. Reads mapping to multiple loci were distributed uni-
formly. For each cell barcode, we counted the number of UMIs 
for every transcript and aggregated this number across all tran-
scripts derived from the same gene locus. On the basis of bino-
mial statistics (see below), we converted the number of observed 
UMIs into transcript counts. We discarded all genes that were not 
expressed with at least a single transcript in at least two cells and 
two control samples. For mESCs in 2i conditions, we retained 
11,555 genes above this expression threshold; and for mESCs cul-
tured in serum, 11,701 genes were expressed above this minimum 
level. Samples with fewer than ten sequenced Pou5f1 transcripts 
were discarded because sequencing efficiency was low or the cells 
are potentially undergoing differentiation.

Conversion of UMI count to transcript number. For each gene i, 
ko,i denotes the number of observed UMIs and kn,i the number of 
non-observed UMIs. The total number K of UMIs is given by

K k ki n i= +o, ,

The probability of not observing kn,i UMIs for a gene with mi 
copies is given by

1 1−





=
K

k
K

mi n i,

which can be solved for the number of sequenced transcripts mi
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CV component from global tube-to-tube variability. The 
contribution of tube-to-tube variability to the CV can be com-
puted from the statistics of sequencing efficiencies across tubes. 
These efficiencies are quantified by the conversion factor β,  
which was obtained for each sample by a regression of the 
number of sequenced spike-in transcripts on the number of 
spike-in molecules added to the sample. Given the s.d. of β (∆β)  
and the number of transcripts for gene i (ni), the CV caused 
by tube-to-tube variability, or efficiency noise, can be com-
puted with an s.d. σi derived from the number of sequenced 
transcripts and ∆β

CV eff
i

i

i

i

in

n

n
= = =s

b
b b

b

∆
∆

Three models for the deconvolution of technical noise. We 
developed three models for technical noise, which were inferred 
from transcript count distributions measured by CEL-Seq for 
spike-in RNAs or pool-and-split control samples. All models 
are based on a negative binomial distribution fitted to the count 
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histogram (Fig. 1d,e and Supplementary Fig. 5a). A negative 
binomial

NB( ; , )
( )
! ( )

n r r
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r n
n r r

r n

m
m

m
m

=
+











+
+











G
G

is governed by two parameters, the average µ and the dispersion 
parameter r. A negative binomial is frequently used to model over-
dispersed count data. For instance, it has been used to describe 
gene expression variability across replicates of RNA-seq on bulk 
cells and to infer differential expression23,24.

The dependence of the variance of a negative binomial on the 
mean is controlled by r

s m m2 21= +
r

and converges to a Poisson distribution for large values of r. At low 
values of r, the noise inferred from a negative binomial exceeds 
random sampling, i.e., Poissonian noise.

From a phenomenological perspective, two main sources of 
technical noise have to be taken into account. First, individual 
transcripts are sampled from a pool of available transcripts for 
CEL-Seq. This noise component obeys Poissonian statistics, and 
thus the CV is inversely proportional to the square root of the 
mean. Second, we observed variability in the total number of 
sequenced transcripts (Supplementary Fig. 3c), which we term 
efficiency noise. The s.d. explained by this noise component 
(Supplementary Fig. 3c) scales linearly with mean expression and 
therefore yields a constant CV (Fig. 1c). Whereas the sampling 
noise dominates at low expression, the efficiency noise is domi-
nant for highly expressed genes. This crossover appears as a bend 
of the CV as a function of µ in logarithmic space (Fig. 1c). The 
dispersion parameter r will thus be a function of µ, and the goal 
of all three models is the derivation of this dependence in order to 
characterize technical noise for arbitrary expression levels.

Model I. In the first model the impact of efficiency noise is elim-
inated, to a certain degree, by normalizing the total transcript 
count in each control to the median transcript number across 
controls (Fig. 2a). Negative binomials are subsequently fitted to 
the normalized count distributions. The dispersion parameter of 
these fits is found to display a piecewise linear dependence on the 
mean in log space (Supplementary Fig. 5b).

log ( ) log ( )2 2r a b= + m

Separate linear fits were performed for log2(µ) < 4 and log2(µ) > 4, 
and the piecewise dependences inferred from these fits were used 
to define r. The slopes of 0.95 and −0.03, for low and high values 
of µ, respectively, correspond to the Poissonian and the residual 
efficiency noise regime (the residual noise not eliminated by the 
normalization). Compared to non-normalized expression, the 
Poissonian regime expands to much higher expression (compare 
Fig. 2c and Fig. 2d).

Model II. Model II infers efficiency noise from the variability of 
the conversion factor βII, which was obtained for each sample by a 
linear regression of the number of sequenced spike-in transcripts 

(5)(5)

(6)(6)

(7)(7)

on the number of added spike-in molecules predicted on the 
basis of the spike-in concentration (Fig. 2b and Supplementary  
Figs. 3c and 6a). The distribution of βII was fitted by a Γ distribu-
tion (Supplementary Fig. 6b). The number of transcripts of gene 
i available for sequencing, λi, can now be written as

l bi in= II

ni is the number of transcripts in a control sample or of a given 
spike-in and thus follows a Poisson distribution. The distribu-
tion of λi is therefore given as a product of a Γ distribution and a 
Poisson distribution. We confirmed by simulation across a wide 
range of parameters that the product distribution again corre-
sponds to a Γ distribution. Analytical integration of the product 
distribution was not possible. Therefore, the shape parameter a 
and the rate parameter b of the product distribution were simu-
lated for transcript counts ranging from 0 to 100,000.

The number of sequenced transcripts then follows a Poisson 
distribution

P m e
mi

i
mi i

i
( )

!
=

−l l

with rate λi, which is a Γ-distributed random variable

li i ia b~ G ( , )

A Poisson distribution with a Γ-distributed rate again yields a 
negative binomial

P m a b r ai i i i i i( ) ( / ; )~ NB m = =

which was used to describe technical noise within model II.

Model III. In model III, efficiency noise was also inferred from 
the conversion factor β. This time, however, βIII was calculated for 
each spike-in in each sample as the number of sequenced spike-in 
transcripts divided by the added number of spike-in transcripts 
(Fig. 2b), and a Γ distribution was fitted to the distribution of 
βIII across samples for each spike-in species (Supplementary  
Fig. 7a,b). The random variables λi drawn from these distribu-
tions multiplied by the mean expression level of the correspond-
ing spike-in

l bi i in n= III( )

represent the number of transcripts in the pool available  
for sequencing. If the distribution of βIII is governed by the 
parameters a and b,

bIII( ) ( ( ), ( ))n a n b ni i i~ G

then λi follows a Γ distribution with rescaled parameters,

li i i ia n b n n~ G ( ( ), ( )/ )

and the number of sequenced transcript again obeys a Poisson 
distribution with rate λi, which is identical to a negative  
binomial

P m n a n b n r a ni i i i i( ) ( ( )/ ( ); ( ))~ NB m = =

(8)(8)

(9)(9)

(10)(10)

(11)(11)

(12)(12)

(13)(13)

(14)(14)

(15)(15)
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We performed a linear regression of the shape and the rate param-
eter on the mean expression level in log space (Supplementary 
Fig. 7c,d),

log ( ( ))2 a n k f ni a a i= +

and
log ( ( ))2 b n k f ni b b i= +

which allowed us to derive an analytical formula for the depend-
ence of the dispersion parameter of the negative binomial on the 
mean

r
ka fa

kb ka
fa fb

fa
fa fb=

+
−

+ − + −2 1 1m

A negative binomial for technical noise was defined based on 
equation (18) for arbitrary expression levels.

Deconvolution of technical and biological noise. In general, the 
expression noise Pcell(n) measured for an arbitrary gene among 
single cells by any method that suffers from technical noise can 
be written as a convolution of biological cell-to-cell expression 
noise Pbiol(n) and technical noise Qctr(∆n)

P n Q n m P m
m

cell ctr biol( ) ( ) ( )= −
≥
∑

0

With the negative binomial obtained from a fit to Pcell(m) and 
the technical noise distributions inferred by the three models, 
the convolution can be expressed in terms of negative binomials 
for each gene i

NB NB NBcell cell biol biol( ; , ) ( ; , ( )) ( ; , )n r n m r m m ri i i i
m

m m=
≥
∑

0

with r(m) derived by the noise models. As explained in the 
main text, we also assume a negative binomial distribution for 
the biological noise, and its parameters µibiol and ribiol can be 
inferred by minimizing the absolute difference of the two sides  
of equation (20)

argmin | ( ; , ) ( ; , ( )) ( ;,m m m
i ir i in r n m r m mbiol biol NB NB NBcell cell − ii i

m
rbiol biol, ) |

≥
∑

0

(16)(16)

(17)(17)

(18)(18)

(19)(19)

(20)(20)

(21)(21)

For the numerical optimization we used a quasi-Newton method 
with box-constraints25 implemented in the R “optim” function.

A physical model of bursting transcription. In a general physical 
model of gene expression, the promoter of a gene can be assumed 
to be in either an active state (A) or inactive state (I). Switching 
from the active to the inactive state and vice versa occurs at rate 
koff and kon, respectively. In the active state, a gene is transcribed 
at rate kT and the transcript m decays at rate γ.

The model can be summarized by the following set of dynamic 
equations:

A I

I A

A

off

on

T

k

k

k m

m

 →

 →

 →

 → ∅g

The model was previously described and solved analytically19. 
For koff  γ, the solution is given by
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which corresponds to a negative binomial distribution with 
mean

m
g

= ×k k
k

T on

off

and dispersion parameter

r k= on
g   

(22)(22)
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(25)(25)
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