
Differentiated Troy+ Chief Cells Act
as Reserve Stem Cells to Generate
All Lineages of the Stomach Epithelium
Daniel E. Stange,1,2,8 Bon-Kyoung Koo,1,3,8 Meritxell Huch,1 Greg Sibbel,4 Onur Basak,1 Anna Lyubimova,1,5

Pekka Kujala,6 Sina Bartfeld,1 Jan Koster,7 Jessica H. Geahlen,4 Peter J. Peters,6 Johan H. van Es,1

Marc van de Wetering,1 Jason C. Mills,4 and Hans Clevers1,*
1Hubrecht Institute for Developmental Biology and Stem Cell Research & University Medical Centre Utrecht, 3584 CT Utrecht,

the Netherlands
2Department of General, Thoracic and Vascular Surgery, University Hospital Carl Gustav Carus, University of Dresden, 01307 Dresden,

Germany
3Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
4Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
5Department of Physics & Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
6Division of Cell Biology II, Antoni van Leeuwenhoek Hospital/Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands
7Department of Oncogenomics, Academic Medical Center, University of Amsterdam, 1100 DE Amsterdam, the Netherlands
8These authors contributed equally to this work

*Correspondence: h.clevers@hubrecht.eu

http://dx.doi.org/10.1016/j.cell.2013.09.008
SUMMARY

Proliferation of the self-renewing epithelium of the
gastric corpus occurs almost exclusively in the
isthmus of the glands, from where cells migrate bidi-
rectionally toward pit and base. The isthmus is there-
fore generally viewed as the stem cell zone. We find
that the stem cell marker Troy is expressed at the
gland base by a small subpopulation of fully differen-
tiated chief cells. By lineage tracing with a Troy-
eGFP-ires-CreERT2 allele, single marked chief cells
are shown to generate entirely labeled gastric units
over periods of months. This phenomenon acceler-
ates upon tissue damage. Troy+ chief cells can be
cultured to generate long-lived gastric organoids.
Troy marks a specific subset of chief cells that
display plasticity in that they are capable of replen-
ishing entire gastric units, essentially serving as
quiescent ‘‘reserve’’ stem cells. These observations
challenge the notion that stem cell hierarchies repre-
sent a ‘‘one-way street.’’
INTRODUCTION

The gastric epithelium is a physiologically self-renewing tissue

(Mills and Shivdasani, 2011). Anatomically, the stomach can be

divided into three parts: the forestomach (in mice) or the cardiac

region (in humans), the corpus, and the pyloric region. Invagina-

tions from the inner surface called gastric units or glands pene-

trate deep into the mucosa and contain distinct cell lineages.

In the corpus, the main body of the stomach, gastric units are

subdivided further into four distinct zones based on the presence
of characteristic cell types. Short-lived (2–3 days) surface mu-

cous cells are the main cell type of the uppermost segment,

the pit. Directly below the pit, the isthmus contains immature,

fast-dividing cells. Below this, the neck region contains mucous

neck cells that are thought to transdifferentiate into chief cells in

a period of weeks (Goldenring et al., 2011; Mills and Shivdasani,

2011). Chief cells populate the base and produce digestive

enzymes. Scattered throughout all regions are acid-producing

parietal cells and rare, hormone-secreting enteroendocrine cells.

Chief and parietal cells are long-lived, with an estimated turnover

rate of months (Karam and Leblond, 1993a).

Lineage-tracing studies with chemical mutagenesis (Bjerknes

and Cheng, 2002) or genetic tracing from the Sox2 locus (Arnold

et al., 2011) have demonstrated the existence of multipotent

stem cells in the epithelium. As Sox2-positive (Sox2+) cells are

scattered throughout the isthmus as well as in lower parts of

the gastric unit, it is not clear whether all or only a subset of the

Sox2+ cells can induce stem cell-like lineage-tracing events.

Additionalmarkers have beenproposed (but not provenby defin-

itive experiments such as, e.g., lineage tracing) for gastric stem

cells (Mills and Shivdasani, 2011; Qiao and Gumucio, 2011).

We have recently shown that Lgr5marks adult stem cells in the

pyloric region of the stomach (Barker et al., 2010). Lgr5+ stem

cells express a Wnt target gene program, are located at the bot-

tom of pyloric glands, and are capable of long-term renewal of

the epithelium. A second pyloric stem cell has been revealed

by lineage tracing with a Villin promoter-driven Cre transgene,

which identifies a quiescent stem cell of unknown identity that

only becomes apparent upon Interferon-g stimulation (Qiao

et al., 2007). Neither of these two studies identified stem cells

in the much larger gastric corpus. Based on the predominant

location of proliferative cells in the isthmus of the corpus units,

it is generally believed that the isthmus represents the stem

cell zone of the corpus epithelium (Karam and Leblond, 1993a).
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Figure 1. Troy Is Expressed in Chief and Parietal Cells at the Base of

Corpus Glands

(A) Confocal image showing Troy-eGFP expression at the bases of corpus

glands in a Troy-ki mouse. Projection of six 1 mm spaced z stacks.

(B) Troy-eGFP is expressed at gland bottoms throughout the corpus. Black

arrows point to the base of the epithelial lining, white arrows to the muscle

layer.

(C–E) Confocal microscopy reveals that Troy-eGFP+ cells are coexpressing

either the parietal cell marker H+K+-ATPase (C) or the chief cell marker GIF (D).

Basal enteroendocrine cells marked by chromogranin A are Troy-eGFP� (E).

(F) Electron microscopy of cryo-immunogold-labeled Troy-eGFP+ cells.

Fifteen nanometer gold label corresponding to eGFP are visible as black dots.

Both chief and parietal cells at the gland base express eGFP, and positive cells

possess characteristics of maturation specific to that lineage.

See also Figure S1.
RESULTS

Identification of Troy as a Stem Cell Marker in Multiple
Adult Tissues
Following the identification of Lgr5 as a marker of adult stem cell

populations in small intestine and colon, we have established

transcriptional profiles of Lgr5+ stem cells (Muñoz et al., 2012;

van der Flier et al., 2009). One of the genes that closely followed

the expression pattern of Lgr5 in intestinal crypts was Troy (en-

coded by Tnfrsf19). Troy potentially functions as a receptor for

lymphotoxin A (Hashimoto et al., 2008). It is highly homologous

to two other Tnfrsf members, Xedar and Edar. Troy knockout

mice are viable and fertile without an obvious phenotype (Shao

et al., 2005). A recent study has confirmed that Troymarks intes-
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tinal stem cells (Fafilek et al., 2013). Interestingly, Troy expres-

sion does not correlate with Lgr5 expression in nonintestinal

Lgr5+ stem cell populations (Barker et al., 2010; Jaks et al.,

2008). As Troy may mark novel Lgr5-independent sets of adult

stem cells, we generated a Troy-eGFP-ires-CreERT2 knockin

mouse line (Troy-ki), in which eGFP and CreERT2 are under the

control of endogenous Troy-regulatory sequences (Figure S1A

available online).

Expression of eGFP occurred in crypt base columnar cells, the

Lgr5+ stem cells of the small intestine (Figure S1B). In vivo line-

age tracing performed in Troy-ki mice crossed with the R26R-

LacZ Cre reporter strain resulted in typical ‘‘ribbons,’’ confirming

recently published data (Fafilek et al., 2013) (Figure S1C). As

expected, lineage tracing was not observed in Lgr5+ stem cell

compartments that were Troy negative (Troy�), i.e., in the colon

or gastric pylorus. However, tracing events occurred in the

gastric corpus, kidney, liver, lung, and brain. For here, we

focused on the gastric corpus.

Troy Is Expressed Specifically at the Base of Gastric
Corpus Units
Troy-eGFP expression was readily detectable at the base of

each gastric corpus unit (Figures 1A and 1B), faithfully recapitu-

lating the endogenous expression of Troy. Single-molecule

in situ hybridization (Itzkovitz et al., 2012) detected Troy

messenger RNA (mRNA) in chief and parietal cells at gland

bases, whereas cells of the same types, yet located higher up

toward the neck region, were Troy� (Figure S1D). Of note, the

muscle layer of the stomach also expressed Troy (Figure 1B,

white arrow). Double-immunofluorescent stainings confirmed

the expression of Troy-eGFP in chief and parietal cells at the

gland base. Troy-eGFP+ cells colabeled either with H+K+-

ATPase, a marker for parietal cells, or with gastric intrinsic factor

(Gif), a marker for chief cells in mice (Figures 1C and 1D),

whereas the third cell type present at the bottoms of corpus

glands, the enteroendocrine cell, was Troy� (Figure 1E).

Next, electron microscopy was employed to resolve the ultra-

structure of Troy+ cells. Cryo-immunogold labeling detected the

eGFP marker in both chief and parietal cells at the gland base

(Figure 1F). Quantification showed an average of 3.9 and 3.5

eGFP-gold particles/1 mm2 in chief cells and parietal cells,

respectively. No eGFP-gold label was detected in the same

cell types higher up in the gastric unit or in enteroendocrine cells

at the gland bottom (Figures S1E and S1F). The marked cells

showed characteristics of mature chief and parietal cells, i.e.,

extending basal rER cisternae and light homogeneous secretory

granules in chief cells and a central nucleus surrounded by the

intracellular canaliculus andmitochondria-filled cytoplasm in pa-

rietal cells (Karam, 1993; Karam and Leblond, 1993b).

Lineage Tracing Reveals that Troy+ Cells Act as
Multipotent Stem Cells of the Gastric Corpus
Lineage tracing initiated in 8-week-old mice induced single

LacZ+ cells at the bottoms of corpus glands 1 day post-induction

(p.i.) (Figure 2A). A slow clonal expansion over time was

apparent. Indeed, historic labeling experiments with tritiated

thymidine (3H-TdR) have indicated that proliferating cells with

chief cell characteristics exist at the gland bottom (Chen and
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Figure 2. Troy+ Cells Generate All Lineages

(A) Expression of the Rosa-LacZ reporter gene in

Troy+ cells one day p.i. and followed for 1, 3, and

6 months and 1.5 years p.i.

(B) Whole-mount LacZ staining of Troy-ki stomach

6 months p.i. Lineage tracing is evident in the

corpus; pylorus is negative.

(C) The position of LacZ+ cells quantified for 100

tracing clones at 1 day, 1month, and 3months p.i..

(D) Numbers of LacZ+ cells in 100 tracing clones

counted at 1 day, 1month, 3months, and 1.5 years

p.i. as percentage of clones with < 3, 3–15, and >

15 cells.

(E–H) Double/triple immunofluorescence stainings

for corpus lineage markers on Troy-ki;Rosa-YFP

mice: chief cells (pepsinogen C, E), mucus neck

cells (GSII, F), parietal cells (VEGFB, G), and

isthmus cells (Ki67, H).

See also Figures S2 and S3.
Withers, 1975; Willems et al., 1972). We performed triple-immu-

nofluorescent stainings for Ki67 and pepsinogen C together with

a membrane marker, and confirmed the existence of rare,

dividing chief cells at the bottoms of glands (Figure S2A). On

average, 3.2% ± 0.78% of corpus glands contained a prolifera-

tive cell at the gland base (Figure S2B). Thus, despite the fact that

the isthmus appears to be the principle zone of proliferation, a

second zone with the capability to proliferate exists at the

bottom of glands.

Eventually, lineage tracing yielded clones of LacZ+ cells span-

ning the entire length of a gland. This was rarely observed at

4 weeks of tracing yet became more frequent from 3 month on-

ward (Figures 2A and 2B). Of note, no tracing was detected in the

pyloric region, consistent with the absence of Troy-eGFP+ cells

(Figure 2B). Entirely traced gastric units persisted at least up to
Cell 155, 357–368
1.5 years, the latest time point examined

(Figure 2A). Besides the expanding

clones, a fraction of cells remained as

single LacZ+ cells at the bottoms of

glands (Figure S3A, arrows). Staining for

the parietal cell marker H+K+-ATPase on

tissue sections from 6 month tracing

experiments revealed that these nonex-

panding single LacZ+ cells were parietal

cells (Figure S3B), whereas all early ex-

panding clones contained chief cells (Fig-

ure S3C). Control noninduced Troy-ki/

R26R-LacZ did not show LacZ+ cells at

any time point (Figure S3D). Furthermore,

induction of lineage tracing according to

our standard protocol did not result in

parietal cell loss, unlike what has been

reported in other models (Huh et al.,

2012) (Figure S3E).

Quantification of clone size in tracing

clones containing only parietal cells and

clones containing chief cells (only chief

cells or mixed chief/parietal clones) was
performed. Pure parietal cell clones did not grow; the average

clone size after 1 week and 3months was 1.1 and 1.3 ± 0.1 cells,

respectively. On the other hand, clones containing chief cells

increased in size from an average of 1.9 ± 0.1 to 3.6 ± 0.8

cells/clone at 3 months. This suggested that growth of clones

originated from the chief cell population. The position of LacZ+

cells was quantified for 100 glands over a 3 month time course

(Figure 2C). At day 1 p.i., we never detected a LacZ+ cell above

position 10 from the bottom (this position is still > 10 cell posi-

tions below the lower isthmus region). Progressively, the number

of LacZ+ cells higher up in the gland increased. The clone size

was quantified in 100 glands over a 1.5 year time course p.i.

An increase in clone size could be observed (Figure 2D). The

rate of expansion was relatively slow, with an average doubling

time of clone size of around 50 days. This fitted well with the
, October 10, 2013 ª2013 Elsevier Inc. 359
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Figure 3. Mist1+ Cells Generate All Lineages

(A) One and three days following Mist1-CreERT2

induction (p.i.), typical corpus gastric units show

1–3 Rosa-mTmG reporter-positive epithelial cells,

which label with the chief cell marker GIF.

(B) One month p.i., the vast majority of Mist1 line-

age-traced cells (green) are basal, GSII (purple)

negative chief cells.

(C) Occasionally, at 1 month p.i., Mist1+ cells

generate AAA+ pit cells, GSII+ mucus neck cells,

and VEGFB+ parietal cells.

(D) At 6 months p.i., entirely marked corpus units

can be detected, encompassing the GSII-marked

mucous neck cells (staining of lumenal cells is

background), the isthmus, and the pit region. Zeiss

ApoTome (left) and multiphoton (right) technology

were used to visualize units as z stack re-

constructions from thick tissue sections.
observation that chief cells double in 2 months, as analyzed by

grain count analysis after 3H-TdR administration (Willems et al.,

1972).

Within LacZ+ ribbons that had grown beyond the isthmus, all

differentiated cell types of the gastric corpus were detected,

i.e., chief cells, neck cells, parietal cells, proliferating isthmus

cells, pit cells, and enteroendocrine cells (Figures 2E–2H and

S3F). We concluded that a Troy+ cell with the capacity to

generate all stomach epithelial cell types exists at the bottom

of glands in the adult gastric corpus.

We repeated the tracing experiments using the Cre knockin

lineMist1-CreERT2, which is expressed only inmature chief cells

(Nam et al., 2010; Shi et al., 2009). Thesemice were crossedwith

the Rosa-mTmG reporter line (Figure 3). Induction of Cre activity

led to the GFP labeling of 1–3 chief cells in the gland base (Fig-

ure 3A). Onemonth later, rare tracing events were observed (Fig-

ure 3B). Traced clones consisted mainly of chief cells and were

located at gland bottoms, typically containing at least one cell

located at the very base, overlapping with the Troy expression

domain (Figure 3B, arrow). Already within these early tracing

units, all principal differentiated cell types of the gastric epithe-
360 Cell 155, 357–368, October 10, 2013 ª2013 Elsevier Inc.
lium were detected (Figure 3C). Lineage

tracing proceeded as observed for the

Troy locus. At 6 months, tracing units

spanning entire corpus glands were

readily detectable (Figure 3D).

Troy+ Chief Cells Express Markers
of Chief Cells and Wnt-Driven Stem
Cells
We isolated Troy+ chief cells by fluores-

cence-activated cell sorting (FACS)

(described below; see Figure 6A) to

analyze their transcriptional program.

Troy+ chief cells comprised around

0.9%, whereas Troy+ parietal cells ac-

counted for 0.5% of all epithelial corpus

gland cells. Three independent sorts

were performed, and mRNA analyzed on
microarrays. On average, Troy mRNA was found to be 7.3-fold

enriched in sorted GFP+ chief cells compared to whole corpus

glands, further validating the recombinant Troy allele.

We first compared our arrays by unsupervised hierarchical

clustering to arrays representing the three main lineages of

the stomach (pit, parietal, and chief cells) (Ramsey et al.,

2007). The Troy+ arrays clustered together with the chief cell

array, whereas the pit and parietal cell arrays separated in a

different tree (Figure 4A). The overall chief cell signature was

therefore maintained in the Troy+ subpopulation. Troy+ chief

cells showed enrichment for the chief cell markers Gif and

Mist1 (Figure 4B). We also detected enrichment in genes previ-

ously detected in small intestinal or pyloric stem cells, i.e., Lgr5,

Ascl2, Lrig1, and Rnf43/Znrf3 (Barker et al., 2007; Koo et al.,

2012; van der Flier et al., 2009; Wong et al., 2012). In addition

to the Wnt target genes Lgr5, Ascl2, and Rnf43/Znrf3, several

other well-characterized Wnt target genes were expressed,

i.e., Axin2, EphB2, and Cd44 (Van der Flier et al., 2007) (Fig-

ure 4B). Overall, 113 genes were found to be significant and

more than 2-fold enriched in Troy+ chief cells compared to

whole corpus glands (Table S1).



The detection of active Wnt signaling in the adult gastric

corpus was surprising, as this pathway has until now only been

associated with the pyloric region (Mills and Shivdasani, 2011).

The enrichment of the Wnt signature and intestinal stem cell

marker genes in Troy+ chief cells was first confirmed by quanti-

tative PCR (qPCR) (Figure 4C). Next, we compared the levels

of Wnt activity between corpus glands, pylorus, and small intes-

tine by performing qPCR of Axin2 (Figure 4D). The overall level of

Wnt activity was highest in the small intestine, 10-fold lower in

the pylorus, and lowest in corpus glands. The intestinal and

pyloric stem cell marker Lgr5 was detected at similar levels in

small intestine and corpus, while being highest in the pyloric

region. Axin2-LacZ mice (Lustig et al., 2002) showed strong

LacZ positivity at the bases of pyloric glands. In addition, these

mice revealed Axin2+ cells in the corpus (Figure 4E). As the

Lgr5-eGFP-ires-CreERT2 mouse (Barker et al., 2007) did not

show Lgr5 expression in the corpus region, contrary to our array

and qPCR data, we examined expression in an independent

Lgr5 reporter, the Lgr5-DTR:eGFP mouse (Tian et al., 2011). In

this line, Lgr5 expression was readily detectable at the bases

of corpus glands (Figure 4F).

We used gene set enrichment analysis (GSEA) to statistically

test whether Troy+ chief cells express only a few marker genes

(Figures 4B and 4C) or—more broadly—the signature of intesti-

nal/pyloric stem cells, of chief cells, and of the Wnt pathway.

GSEA revealed significant enrichment of all four gene sets in

Troy+ chief cells (Figures S4A–S4D). Gene sets for parietal and

pit cells were negatively correlated with those for Troy+ chief

cells (Figures S4E and S4F). In summary, the transcriptional pro-

gram of Troy+ chief cells combines chief cell-specific genes with

genes previously described as Wnt-dependent stem cell genes.

Single Troy+ Chief Cells Can FormLong-LivedOrganoids
that Differentiate toward Mucus Neck and Pit Cells
We have previously established a long-term culture system that

allows unlimited expansion from single Lgr5+ pyloric stem cells

(Barker et al., 2010). To test whether similar epithelial organoid

cultures can be established from the corpus epithelium, we

attempted to culture freshly isolated, entire corpus units. Within

a few hours after seeding, the units disaggregated. Subse-

quently, rare cells typically located at the bottom of the gland

units started to proliferate and form cystic structures (Figure 5A).

To investigate whether the cultures were derived from Troy+

cells, we induced tracing in vivo in Troy-ki crossed with Rosa-

YFP Cre reporter mice 3 days before the isolation of glands.

We then followed the expression of YFP in the developing orga-

noids in vitro. Initially, YFP and GFP signals overlapped

(Figure 5B). In the course of a week, the YFP-tracing clones

continuously expanded, contributing significantly to the cell

mass of growing organoids (Figure 5C).

We next tested whether single Troy+ cells isolated from gastric

units of the corpus were also capable of generating organoids.

Two populations of Troy+ cells, different in scatter properties,

were observed with FACS (Figure 6A). Stainings for lineage

markers on sorted cells showed that the ‘‘small cell’’ population

(gate A) consisted of chief cells, whereas the population contain-

ing larger cells (gate B) represented parietal cells (Figure 6B).

Troy+ chief cells consistently grew out into organoids (colony-
forming efficiency 5.4%) (Figure 6C). We followed a single sorted

chief cell over a period of 6 month, by weekly passaging at a 1:6

ratio (Figure 6D). No change in growth behavior was apparent

over the culture period. Similarly, single sortedMist1+ chief cells

could initiate organoid growth (Figures S5A and S5B). In

contrast, Troy+ parietal cells died within 1–2 days of culture (Fig-

ure 6C). Immunohistochemistry (IHC) demonstrated a high prolif-

erative activity of Troy+-derived organoids (Figure 6E). Double

stainings revealed the presence of proliferative chief cells (Fig-

ure 6F). Besides chief cells, we noted a distinct population of

cells expressing the epitope for GSII, a marker for mucus neck

cells (Figure 6G). A similar expression pattern of mucous neck,

chief, and proliferation markers has been described in a two-

dimensional (2D) chief cell culture (Tashima et al., 2009).

A small proportion of Troy� cells (0.4%) was also able to

generate corpus organoids (Figure 6C). To exclude contamina-

tion of Troy� by Troy+ cells, we examined Troy�-derived org-

anoids from Troy-ki/Rosa-YFP mice (Figure 6H). FACS-isolated

single Troy� and Troy+ cells were induced in vitro with tamoxifen

right after initiation of culture. No yellow fluorescent protein (YFP)

was detected in Troy�-derived organoids, whereas YFP was

expressed throughout Troy+-derived organoids. Phenotypically,

Troy�-derived organoids showed a more cystic growth behavior

with fewer buddings during the first four passages (Figure 6I).

Troy mRNA expression was hardly detectable in Troy�-derived
organoids (Figure S5C). During subsequent passages, growth

characteristics of Troy�- and Troy+-derived organoids became

indistinguishable. Of note, only 2/3 of initially growing Troy�-
derived organoids could be propagated for more than three pas-

sages, whereas all Troy+-derived organoids grew without

constraints.

To further test the differentiation capacity of the Troy+-derived

organoids, we removed several mitogenic growth factors (Fgf10,

Noggin, and Wnt3a) from the culture medium (termed ERG

medium). Microarraying of organoids derived from a single

Troy+ chief cell grown in normal (termed ENRGFW) medium re-

vealed the expression of markers of intestinal and pyloric stem

cells (i.e., Lgr5, Ascl2, Rnf43, and Troy), chief cells (i.e., Mist1,

Gif, and Pgc) as well as proliferative cells (i.e., Ccnb2 and Ki67)

(Figures S5D and S5F) (Barker et al., 2007; Koo et al., 2012;

van der Flier et al., 2009). Upon withdrawal of the mitogenic fac-

tors, a profound upregulation of markers for pit cells (i.e.,

Muc5ac and Gkn1) was detected (Figures S5E an S5G), indi-

cating that Troy+ chief cells have the capability to generate pit

cells, the second mucus-secreting cell lineage in the gastric

corpus. We did not detect expression of markers for parietal or

enteroendocrine lineages.

Troy+ Stem Cells Are Activated by Depletion of the
Proliferating Isthmus Compartment
Compared to the rate of tracing from Lgr5+ cells in the pylorus,

tracing from the Troy+ cells followed much slower kinetics.

Although occasional tracings spanning entire gastric units could

be found within 1 month p.i., most tracings progressed slowly

(Figures 2A and S3C). Proliferating chief cells were rare in the

bottom part of glands (Figures S2A and S2B), whereas the

isthmus region was constantly cycling (Figure 7A). Troy+ stem

cells therefore appeared largely dispensable for physiological
Cell 155, 357–368, October 10, 2013 ª2013 Elsevier Inc. 361
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Figure 5. Lineage Tracing from In Vivo to In Vitro Reveals Troy+ Cells

as the Origin of Corpus Organoids

(A) Freshly isolated corpus unit 4 hr after seeding. The unit already starts to

degenerate. Note the small cystic structure at the bottom of the gland (arrow).

(B) Tracing was induced in Troy-ki/Rosa-YFP reporter mice 3 days before

isolation of corpus glands. Two days after seeding, GFP and YFP signal still

overlap, indicating that the tracing clone was still restricted to the Troy+

population.

(C) One week after seeding, the YFP clones had expanded and occupied large

parts of the organoid.
renewal of the corpus epithelium, rather acting like a ‘‘reserve’’

stem cell population.

To test this hypothesis, we used 5-fluoruracil (5-FU) to selec-

tively kill the proliferative cells in the gastric corpus. This

approach has been successfully employed in the bone marrow
Figure 4. Transcriptional Profile of Troy+ Chief Cells

(A) Unsupervised hierarchical clustering joins the Troy+ chief cell arrays with a chi

arrays cluster in a separate tree (data taken from Gene Expression Omnibus dat

(B) Log2 ratio of selected genes comparing the Troy+ chief cell arrays to arrays fro

chief cells, digestive tract stem cells, and Wnt target genes.

(C) qPCRs performed on a separately sorted set of Troy+ chief cells and compare

(B) in Troy+ chief cells. Data are represented as mean ± standard error of the me

(D) Comparison of the expression level of the Wnt target gene Axin2 and the stem

represented as mean ± SEM of three qPCRs.

(E) LacZ staining of the Axin2-LacZ reporter mouse documents expression of Axi

(F) Endogenous eGFP expression in the Lgr5-DTR:eGFP reporter mouse visualiz

See also Figure S4 and Table S1.
(Lerner and Harrison, 1990). We induced tracing by tamoxifen

administration followed by injection of a single dose of 5-FU

3 days later in the treatment (but not the control) group (Fig-

ure 7K). A single dose of 150 mg/kg was enough to completely

abolish proliferation in the corpus epithelium (Figure 7D) 2 days

post 5-FU injection, whereas Troy+ cells, consistent with their

slowly cycling nature, appeared unaffected (Figures 7B and

7E). We did not detect any significant change in the composition

of the other lineages (Figure S3E). Apoptosis was mainly

observed in the isthmus region (Figures 7C and 7F).

The first sign of a contribution of Troy+ chief cells to regenera-

tion after 5-FU was seen after 7 days. The percentage of glands

with proliferating, Ki67+ cells at the gland bottom increased

3-fold from 3.2% ± 0.8% to 10.5% ± 0.9% (Figure S2B). Cell-

cycle dynamics at the gland bottom were further analyzed with

a double thymidine-analog label-retention experiment. Adminis-

tration of BrdU (2 weeks of labeling followed by a 3 week chase)

andEdU (three timeswithin6 hrbefore sacrifice) resulted inBrdU-

retaining cells at the gland bottoms (Figure S2C). These cells

could be induced to proliferate again upon 5-FU damage, result-

ing in BrdU;Edu double-positive cells (Figure S2C, right panel).

Dividing gland bottom cells therefore can re-enter the cell cycle.

Four weeks after 5-FU treatment, accelerated expansion of

LacZ+ clones was evident (Figures 7G–7J). The number of

tracing events that reached the gastric lumen increased 6-fold

after 5-FU treatment, as compared to the untreated controls

(Figure 7H, iii and 7I). Quantification of the size of tracing units

clearly showed a shift toward larger units in 5-FU-treated mice

(Figure 7J).

DISCUSSION

In this study, we assess Troy as a marker of cells that contribute

to tissue renewal in the gastric corpus. We find that Troy is ex-

pressed by a small subset of chief cells and parietal cells located

at the gland base. Under steady-state conditions, these cells

phenotypically fulfill all requirements of differentiated cells. It

was recognized 40 years ago that rare cells with chief cell char-

acteristics and located at the bottom of corpus glands can incor-

porate radiolabeled thymidine (Chen andWithers, 1975; Willems

et al., 1972). Indeed, when Troy+ chief cells are cultured in vitro,

they vigorously proliferate, while initially maintaining a chief cell-

specific gene expression profile. Thus, albeit fully mature, Troy+

chief cells have the capacity to undergo cell division. This phe-

nomenon is not without precedent. Mature hepatocytes, for

instance, are also capable of re-entering the cell cycle upon
ef cell array prepared from laser-captured chief cells, while pit and parietal cell

a set GSE5018; Ramsey et al., 2007).

m whole corpus glands. Troy+ chief cells show enrichment of marker genes for

d to corpus glands (set to 1) confirm enrichment of all marker genes depicted in

an (SEM) of three qPCRs.

cell marker Lgr5 between small intestine, gastric corpus, and pylorus. Data are

n2 in a few gland bottom cells in the gastric corpus (nuclear red counter stain).

es Lgr5 expression at the bottoms of gastric corpus glands.
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Figure 6. Single Troy+ Cells Generate Gastric Organoids In Vitro

(A) Two different populations of Troy-eGFP+ cells can be distinguished by FACS (gate A and gate B).

(B) Sorted ‘‘gate A’’ Troy-eGFP+ cells stain with chief cell marker pepsinogen C. Gate B Troy-eGFP+ cells express parietal cell marker H+K+-ATPase.

(C) Colony formation efficiency of Troy+ chief and parietal cells as well as Troy� cells. The number of organoids was counted at day 7 after seeding. Data are

represented as mean ± SEM of 180 seeded wells.

(D) Representative example of a single sorted and cultured Troy+ chief cell. Organoids were passaged weekly and grown for > 6 months.

(E) Organoids are highly proliferative. Edu: proliferative cells; cell borders marked by E-cadherin.

(F) Dividing (Ki67+) chief cells (GIF+) occur frequently.

(G) Mucus neck cells (GSII+) cells form a coherent distinct domain.

(H) Organoids from single sorted Troy-GFP+ and Troy-GFP� cells from Troy-ki/Rosa-YFPmice were induced by Tamoxifen during the first 16 hr of culture. Troy-

GFP+-derived organoids were homogenously YFP+, whereas Troy-GFP�-derived organoids were YFP�.
(I) Troy-GFP+ consistently showed a more complex growing behavior then Troy-GFP�-derived organoids.

See also Figures S5 and S6.
partial hepatectomy and resume cell division (Fausto, 2000; Mi-

chalopoulos and DeFrances, 1997). Adult Schwann cells have

recently been shown to possess a degree of plasticity. When in-

fected with leprosy bacilli, differentiated Schwann cells are
364 Cell 155, 357–368, October 10, 2013 ª2013 Elsevier Inc.
induced to convert toward a mesenchymal progenitor/stem-

like phenotype (Masaki et al., 2013).

Troy+ chief cells eventually produce all epithelial lineages pre-

sent in the corpus in vivo and can generate stomach organoid



Figure 7. Troy+ Chief/Stem Cells Activated by Depletion of Cycling Isthmus Cells

(A–F) 5-FU treatment ablates proliferating cells in the isthmus. Control (A–C) and 5-FU-treated (D–F) mice were analyzed for Ki-67 (A and D, for proliferating cells),

GFP (B and E, for Troy+ cells), and cleaved caspase 3 (C and F, for apoptotic cells). 5-FU induces apoptosis of cycling isthmus cells.

(G and H) Accelerated expansion of Troy initiated lineage tracing upon tissue damage. Control (G) and 5-FU-treated (H) mice were analyzed 1 month p.i. Repre-

sentative examples of Troy tracings (i and ii) and whole-mount pictures from the gastric lumen (iii) are shown. Circles indicate LacZ+ glands reaching the lumen.

(I) The number of tracings that reach the lumen was counted 1 month p.i. in 5-FU-treated versus untreated mice and shows a 6-fold increase (p < 0.0001, t test).

Data are represented as mean ± SEM of ten sections.

(J) The number of LacZ+ cells in 100 tracing clones counted 1 month after 5-FU treatment. Percentages of clones with one, two, or more than two cells are

represented.

(K) Time scheme of 5-FU experiment. Troy+ cells were labeled on day 0 by tamoxifen induction. Proliferative cells were subsequently ablated by 5-FU treatment

3 days later, and tissues analyzed at 1 month p.i.
cultures that can be differentiated toward the mucus-producing

cell lineages of the neck and pit in vitro. Their slowly cycling

nature as well as their potential to be activated upon selective

killing of the highly proliferative isthmus cells are reminiscent of

quiescent/’’reserve’’ tissue stem cells (Li and Clevers, 2010).

Troy+ chief cells are unique among chief cells in expressing a

large number of Wnt target genes. This implies that a source of

Wnt is located near the gland bottom, much like in the pylorus,

small intestine, and colon. It will be interesting in the future to

dissect the factors that build the niche for Troy+ chief cells. Be-

sides the underlying mesenchyme, a potential niche cell candi-

date are the Troy+ parietal cells intermingled between the

Troy+ chief cells at the gland bottom.

How do these Troy+ stem cells compare to previously identi-

fied gastric stem or progenitor cells in the corpus? In contrast

with Troy+ cells, Sox2+ stem cells are scattered within and below

the isthmus and do not express known differentiation markers
(Arnold et al., 2011). We observed that almost all epithelial cells

within the normal stomach as well as in the organoids express

Sox2 (Figure S6). We also do see clear expression of Sox2 in

Troy+ chief cells in our array data with no difference compared

to whole corpus glands (p = 0.41). Within the isthmus, Tff2-

expressing cells have been demonstrated to represent progeni-

tors of chief and parietal cells, but not of mucous-secreting pit

cells and enteroendocrine cells (Quante et al., 2010). Besides

the immediate labeling of parietal cells, Tff2-driven lineage

tracing results in the labeling of mucous neck cells and—

later—in the labeling of chief cells. This delay agrees with the

view that chief cells can be generated by transdifferentiation of

mucous neck cells (Goldenring et al., 2011). Although this has

not been unequivocally proven by lineage tracing of mucous

neck cells, substantial indirect evidence exists to support this

concept (Goldenring et al., 2011). This evidence is based on find-

ings that, first, nucleotide analogs after administration are initially
Cell 155, 357–368, October 10, 2013 ª2013 Elsevier Inc. 365



seen in mucous neck cells and only afterward in chief cells

(Karam and Leblond, 1993b). Second, the deletion of the chief

cell transcription factor Mist1 or its upstream transcriptional

regulator Xbp1 results in the accumulation of cells with mixed

chief-neck cell characteristics, whereas neck cells are normal,

indicating a block in transdifferentiation (Bredemeyer et al.,

2009; Huh et al., 2010; Ramsey et al., 2007). The current finding

might constitute a reversion of this process, a retransformation

into mucous neck cells and then into isthmus cells.

In accordance with our observation of Troy+ chief cell activa-

tion upon 5-FU treatment is the fact that chief cells at the bottom

of glands can be activated upon the specific loss of parietal cells

(Bredemeyer et al., 2009; Nomura et al., 2004). Such loss leads

to the generation of a metaplastic cell lineage derived from chief

cells, called SPEM (spasmolytic polypeptide-expressing meta-

plasia) (Nam et al., 2010). This activation of chief cells is another

example of the capacity of mature chief cells to re-enter the cell

cycle. The generation of the SPEM cell lineage can also be seen

as a reverse transformation of chief cells toward mucous neck

cells, as the SPEM lineage expresses markers of both lineages

(Capoccia et al., 2013). Chief cells thus react upon damage

with proliferation and with changes in their differentiation state.

Our lineage-tracing-based observations of stem cell-like

behavior of chief cells might thus constitute a physiological

equivalent of the SPEM process.

What might explain this unusual phenomenon? The proposed

location of the more active, ‘‘workhorse’’ stem cell population in

the isthmus is unique compared to other stem cell niches in the

gastrointestinal tract. The stem cells of the pylorus, small intes-

tine, and colon all reside at the bottoms of epithelial invagina-

tions, farthest away from the potentially harmful contents of the

lumen. The isthmus is thus less well protected against damaging

agents. A quiescent stem-like cell, such as the Troy+ chief cell at

the bottom, might serve as back-up to a vulnerable, active stem

cell niche located closer to the lumen.

Taken together, Troy+ chief cells at gland bottoms can serve

as quiescent stem-like cells in the epithelium of the gastric

corpus. As has been proposed for other self-renewing tissues

(Li andClevers, 2010), the gastric corpus thus appears to contain

two stem cell populations: an actively dividing population

located in the isthmus (that remains to be specifically identified)

and a small population of ‘‘reserve’’ stem-like chief cells, marked

by Troy, at the gland base. The unique property of the Troy+ cell

as a fully differentiated cell with the capability to act as amultipo-

tent stem cell represents a surprising example of plasticity in

epithelial stem cell biology.
EXPERIMENTAL PROCEDURES

Details on procedures can be found in the Extended Experimental Procedures.

Mice and Treatments

Troy-kimicewere generated by homologous recombination in embryonic stem

cells targeting an eGFP-ires-CreERT2 cassette at the translational start site of

Tnfrsf19 (Figure S1A). Cre-recombinase was activated in Troy-ki+/ki;RosaLacZ

reporter+/Rep mice by injecting intraperitoneally 5 mg/20 g mouse weight

tamoxifen (Sigma, T5648). For 5-FU treatment, mice were injected with

150 mg/kg of 5-FU (Sigma, F6627) by intraperitoneal injection.Mist1-CreERT2

mice (Shi et al., 2009) were crossed to the Rosa-mTmG reporter line (Muzum-
366 Cell 155, 357–368, October 10, 2013 ª2013 Elsevier Inc.
dar et al., 2007). Tamoxifen (1 mg/20 g; Sigma) was injected intraperitoneally

every other day for a week (three injections total) to induce GFP induction.

Confocal Analysis of eGFP Expression in Near-Native Tissue

Sections

Vibratome sections were prepared from Troy-ki and Lgr5-DTR:eGFP stom-

achs and analyzed by confocal microscopy for eGFP expression.

Single-Molecule mRNA In Situ Hybridization

Single-molecule mRNA in situ hybridization was performed as described

before (Raj et al., 2008). Probe libraries consisted of typically 48 probes with

20 bp of length complementary to the coding sequence.

Detection of b-Galactosidase Activity and Quantification

Detection of b-galactosidase was performed by X-Gal staining. One hundred

gastric units were counted, and the positions of LacZ+ cells from the bottom

of glands were noted 1 day, 1 month, and 3 months p.i. Quantification of

LacZ+ clone size was performed in 100 gastric units at 1 day, 1 month,

3months, and 1.5 years p.i. For the number of tracings that reached the lumen,

LacZ+ clones in ten adjacent sections were counted.

IHC and Confocal Imaging

Paraffin and cryosections were prepared according to standard protocols. For

primary and secondary antibody details, see the Extended Experimental Pro-

cedures. Mist1-CreERT2 tracings were imaged with either Apotome 2 optical

sectioning on a Zeiss Axiovert or a custom-built two-photon microscope (Kao

et al., 2010).

Immunoelectron Microscopy

GFP expression was detected using cryo-immuno gold staining (Peters et al.,

2006).

Gastric Unit Isolation and FACS

Gastric units were isolated by incubation with EDTA, and single cells prepared

by trypsinization. Troy-eGFP+ large and small cells as well as Mist1-eGFP+

cells (after induction of Mist1-CreERT2;Rosa-mTmG mice) could be readily

differentiated by flow cytometry and gating on FL3 and GFP (Figure 6A) or

Tomato-Red and GFP (Figure S5A), respectively.

Gastric Corpus Organoid Culture

Whole gastric glands, FACS-isolated single Troy-eGFP+ chief or parietal cells,

and Mist1-eGFP+ cells were cultured in Matrigel using EGF, Gastrin, FGF10,

Noggin, Wnt3a, and R-spondin supplemented culture medium (ENRGFW

medium) and passaged weekly. Differentiation toward the pit cell lineage

was induced by growing the organoids in Fgf10-, Noggin-, and Wnt-free

medium (ERG medium). Tamoxifen was added to the culture medium to

induce in vitro lineage tracing. YFP and eGFP were subsequently visualized

and recorded in live organoids with confocal microscopy (Leica, SP5).

BrdU and EdU Labeling

BrdU labeling was administered with osmotic pumps. Edu was injected 6, 4,

and 2 hr before sacrifice. Paraffin sections were stained with an anti-BrdU anti-

body, EdU detected by a Click-iT reaction, and sections visualized by confocal

microscopy.

Microarray Analysis

Expression profiling was performed on Affymetrix chips with sorted Troy+ chief

cells (gate A in Figure 6), whole corpus glands, and organoids grown in

either ENRGFW or ERG medium and analyzed with the R2 web application

(http://r2.amc.nl).
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