
Novel orthogonal methods to uncover the complexity
and diversity of nuclear architecture
Sjoerd JD Tjalsma and Wouter de Laat

Available online at www.sciencedirect.com

ScienceDirect
Recent years have seen a vast expansion of knowledge on

three-dimensional (3D) genome organization. The majority of

studies on chromosome topology consists of pairwise

interaction data of bulk populations of cells and therefore

conceals heterogenic and more complex folding patterns.

Here, we discuss novel methodologies to study the variation in

genome topologies between different cells and techniques that

allow analysis of complex, multi-way interactions. These

technologies will aid the interpretation of genome-wide

chromosome conformation data and provide strategies to

further dissect the interplay between genome architecture and

transcription regulation.
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Introduction
The structural organization of the genome influences

transcription by providing a framework for communica-

tion between regulatory sequences and genes that are

linearly separated in the genome [1]. Research on the

structure-function relationship of chromosomes particu-

larly benefitted from the development of the original

chromosome conformation capture (3C) method [2] and

its next-generation sequencing-based variants that

enabled more systematic and higher resolution analysis

of chromatin contacts across entire genomes [3]. 3C

methodologies rely on the pairwise analysis of proximity

ligated chromatin fragments. In these technologies, after

crosslinking of nuclei with formaldehyde, chromatin is

digested using a restriction enzyme. The ends of the

resulting fragments are then ligated, and depending on

the assay, the ligation junctions are analyzed in a targeted

or genome-wide manner. The frequency of ligation of one
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fragment to another fragment is then taken as a proxy for

their pairwise contact frequency. Derivatives of 3C

include 4C (one locus versus all others) [4,5], 5C (covering

interactions within a selected region) [6,7], and Hi-C

(high-throughput, genome-wide) [8–10] (Figure 1a).

Numerous capture methods exist designed to enrich

3C libraries for targeted analysis of selected loci, includ-

ing Capture-C [11,12] and capture Hi-C [13]. Chromatin

Interaction Analysis by Paired-End Tag Sequencing

(ChIA-PET) [14], Hi-ChIP [15], and PLAC-seq [16]

are extensions of Hi-C which combine a chromatin immu-

noprecipitation (ChIP) step with proximity ligation,

thereby enriching for contacts between genomic frag-

ments bound by proteins such as transcription factors

or architectural proteins. Although often proposed as

cheaper, targeted, alternatives to Hi-C, it is important

to realize that these methods introduce biases because

protein occupancy and epitope availability differ between

genomic sites. They are designed to find ligation products

between sequences bound by the investigated protein,

but do not allow assessing the significance of these

interactions, nor investigating whether the interactions

rely on the protein. In a different strategy, the CAP-

TURE system utilizes biotinylated dCas9 to pull down

fragments of interest, thereby in parallel identifying

interacting DNA elements and isolating proteins binding

the locus [17,18]. The latter, distinguishing proteins

bound to a given 1 kb locus from those associated with

the rest of the genome, is a formidable task in

human cells, given that the noise (rest of the genome)

is in 3 � 106 excess to the signal (the locus under investi-

gation) [19].

The rapid expansion of 3C-based technologies and their

application to many biological systems has revealed

important insights into the role of chromatin conforma-

tion on multiple scales. Hi-C and 5C datasets were critical

in showing the organization of the genome in chromo-

some territories [9], A and B compartments (representing

active and inactive chromatin, respectively) [9] and

Topologically Associating Domains (TADs) [20–22].

More fine-scale interactions such as enhancer-promoter

loops, first revealed by 3C and 4C studies [23], are

corroborated by Hi-C: in many contexts, these

interactions are observed [10,24,25].

Although numerous studies have now revealed principles

of genome-wide organization at the chromosome and

compartment level as well as more detailed topologies

of locus-specific folding, limitations of classical 3C-based
www.sciencedirect.com
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Figure 1
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Strategies for bulk and single-cell Hi-C.

Chromatin is crosslinked in the nucleus (in situ). After permeabilization of the nucleus and digestion using a restriction enzyme, chromatin is

processed depending on the method. (a) In situ Hi-C [10]. (b) Single-cell Hi-C [28]. Tagmentation: combined fragmentation of chromatin fragments

and adapter ligation. (c) Single-nucleus Hi-C [92] and Dip-C [32�]. (d) Single-cell combinatorial indexed Hi-C [33].
assays are the population-based study of cells and the

analysis of pairwise contacts. This conceals two crucial

factors for the interpretation of the biological relevance of

chromatin folding: the heterogeneity of 3D chromatin

structure between different cells, and the complex fold-

ing patterns of individual loci. Data obtained from
www.sciencedirect.com 
3C-based methods represents contact frequencies from

cells in a population and does not reveal the conformation

in a specific cell, or high-resolution time scales of these

interactions. Furthermore, pairwise data does not reveal

whether higher-order structures exist and whether multi-

ple sites compete for or cooperate in such structures. Still,
Current Opinion in Genetics & Development 2021, 67:10–17
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these issues are vital for understanding the functional

implications of chromatin folding and therefore novel

technologies have been developed to dissect the more

complex nature of 3D chromatin structure.

An increasingly detailed view of genome-wide
chromatin organization
In order to study heterogeneity in chromatin organization,

multiple strategies for the generation of three-dimen-

sional contact maps of individual cells have been

described. The first single-cell Hi-C strategies rely on

crosslinking and proximity ligation of chromatin in bulk,

followed by isolation of single cells and in situ Hi-C in

individual reactions [26–28] (Figure 1b), or alternatively

perform the entire procedure on isolated nuclei [29]. To

increase resolution, single-nucleus Hi-C [30,31] and Dip-

C [32�] employ whole genome amplification to prevent

loss of material (Figure 1c), which allows high-resolution

three-dimensional reconstruction of haplotype-phased

human genomes [32�]. In a different strategy, single-cell

combinatorial indexed Hi-C (sci-Hi-C) circumvents the

need to physically isolate individual cells by barcoding

individual cells in consecutive dilution steps, allowing

very high-throughput generation of single-cell Hi-C

libraries [33,34] (Figure 1d).

With single-cell Hi-C, several principles of chromatin

folding were further refined. Confirming bulk Hi-C stud-

ies, the genome was found to be organized into chromo-

some territories in single cells [26,30], and active chroma-

tin domains colocalize to the interfaces of these territories

[26]. Previously observed in cell populations purified by

cell cycle phase [35], phasing of single-cell chromatin

structures revealed massive rewiring of chromatin archi-

tecture during the cell cycle [27], a phenomenon which is

often underappreciated in bulk 3C assays. Intriguingly,

various levels of chromatin folding, including compart-

mentalization, insulation, and looping, display distinct

dynamics during the cell cycle, suggesting these

processes rely on independent mechanisms [27]. From

a biological perspective, the use of single-cell Hi-C also

opens the way for the study of low-cell systems, such as

early mammalian embryos, and can reveal features that

were previously concealed in bulk Hi-C strategies

[30,36,37].

The benefits of single-cell conformational information

come at a cost: because of low efficiency in ligation and

purification of already limited amount of material, single-

cell Hi-C maps contain a lower density of chromatin

contacts than comparable population-based assays. Topo-

logical variation observed between cells may therefore

not only have a biological (e.g. cell cycle stage differ-

ences) but also a technical cause. Therefore, it is required

to compare single-cell Hi-C maps to structures inferred

from bulk Hi-C. For TADs, this indeed shows an enrich-

ment for intradomain versus interdomain interactions in
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single cells [26]. Still, many interactions occur across

TAD borders, suggesting that within single cells, both

intra-TAD interactions as well as TAD borders itself are

highly dynamic structures and do not form fixed entities

and loops in the DNA [26,30]. This suggests that TADs

are properties that emerge in population Hi-C by the

averaging of all possible contacts, which have a higher

chance of existing within the TAD region [38–40].

Although single-cell Hi-C studies have revealed hetero-

geneity in chromatin folding in individual cells, due to the

limited retrieval of contacts and resolution, it remains

difficult to study complex folding patterns and quantify

finer-scaled topologies. Recently, the development of

Micro-C has increased resolution of chromosome confor-

mation maps to the nucleosome scale, by replacing

restriction enzyme digestion of crosslinked chromatin

with MNase digestion [41,42�,43�]. Indeed, Micro-C is

more sensitive for ultra-fine scale interactions (up

to 200 bp) than conventional Hi-C. These highly

refined maps reveal a prevalence of enhancer-promoter

interactions and gene promoter-associated stripes, which

possibly result from dynamic processes associated with

transcription and cohesin-mediated loop extrusion

[44,45]. Although the Micro-C protocol has not yet been

adapted for single cell analysis, and a higher theoretical

resolution does not necessarily circumvent the technical

problem of limited retrieval of contacts, this technology

offers a high potential for further refining the global

fine-scale picture of chromatin organization.

Beyond pair-wise interactions
3C assays, including single-cell Hi-C, use counting of

pairwise contacts to quantify for each specific locus the

contact frequency with other genomic fragments. In the

cell nucleus, every genomic fragment is surrounded by

many other fragments, but in pairwise 3C-based assays a

given fragment in a given cell can only be detected to

interact with one other fragment. This competitive nature

of proximity ligation implies that results of 3C assays are

relative: the ligation events of a given fragment reflect the

competition for ligation between all fragments, with in
situ physical distance as a strong, but not total, determi-

nant [3]. Therefore, in a population data set, it cannot be

concluded whether multiple interactions centered on a

single genomic site are neutral with respect to each

pairwise interaction, whether they are occurring in a

cooperative hub, or whether they are present in a

mutually exclusive manner in different cells.

In addition to analyses designed to extract sparse multi-

way interactions from 4C-seq data [46] or Hi-C obtained

using high-frequency cutting restriction enzymes [47],

several technologies have been specifically developed to

study such events. Chromosome-walks (C-walks) is based

on dilution and shotgun sequencing of high-molecular

weight products obtained after proximity ligation [48]
www.sciencedirect.com
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(Figure 2a). This strategy identified synergistic hub

formation, but also suggested that many three-way

interactions are neutral and predictable from pairwise

contact frequencies. Other methods introduce long-read

sequencing to map genome-wide multi-contact chroma-

tin structure, by applying 3C-based template to PacBio

sequencing (MC-3C) [49] or Nanopore sequencing (Pore-

C) [50�] (Figure 2c). Intriguingly, MC-3C revealed that

the order of fragments of a ligation string is non-random

and can be used to infer interaction surfaces of genomic

domains, confirming that mixing of chromosome territory

and compartment interfaces is relatively rare [49].

Although genome-wide multi-contact technologies give

insights into complex higher-order chromatin topologies,

these methods do not yield data of sufficient resolution to

study functionally relevant structures at individual loci,

such as enhancer-promoter interactions. Two locus-spe-

cific multi-way interaction mapping technologies are MC-

4C, which applies Nanopore sequencing to viewpoint-

specific PCR-amplified 4C template [51�,52] (Figure 2c),

and Tri-C, which enriches for multi-contact ligations

present in 3C concatemers using sonication and capture

of viewpoints selected for having small DNA fragments

[53�,54] (Figure 2d). While finding mutually exclusive

contact pairs is relatively easy, distinguishing random

from preferred 3-way interactions by these methods

is not trivial and requires carefully defining pairwise

background contact frequencies. Both approaches show
Figure 2
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evidence for synergistic chromatin hubs containing

multiple promoters or enhancers. As these methods

provide single-allele topologies, they enable the study

of topologies that occur in a low percentage of cells, which

might be overlooked by population based 3C assays.

Several ligation-free methods have been developed

which are also informative of multi-way chromatin inter-

actions. SPRITE [55�] and ChIA-DROP [56�] are both

based on barcoding of crosslinked chromatin complexes.

For SPRITE, barcoding is established after crosslinking

and fragmentation by repeated rounds of splitting of

chromatin complexes, tagging with barcodes, and pooling

[55�] (Figure 2e). SPRITE identifies active and inactive

gene hubs, which can be linked to nuclear speckles and

the nucleolus, respectively. Refinements of the SPRITE

protocol additionally enable mapping of RNA localization

[57] or uncover single-cell multi-contact structural maps

[58]. ChIA-DROP employs a microfluidics platform to

load crosslinked chromatin complexes into unique bar-

code-containing droplets, finding high conformational

heterogeneity within TADs [56�] (Figure 2f). The addi-

tion of a ChIP step, similarly to ChIA-PET, makes ChIA-

DROP a promising method to study transcription factor-

based regulation of transcription-associated chromatin

hubs. Finally, Genome Architecture Mapping (GAM),

which is based on co-segregation of genomic loci in

laser-dissected nuclear slices, also detects simultaneous

interactions of more than two genomic loci, which are
)
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) MC-4C [51�]. (d) Tri-C [53�]. (e) SPRITE [55�]. (f) ChIA-DROP [56�].
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especially prevalent for highly active loci including strong

enhancer (clusters) [59].

Visualizing single-allele topologies using
microscopy
Orthogonal to sequencing studies, microscopy-based

assays have the potential to bridge the gap between

single-cell and high-resolution multi-loci interaction

studies. Historically, microscopy studies have been highly

important in revealing nuclear biology. For example,

DNA FISH has been used extensively to study localiza-

tion of loci in single cells and to validate 3C-based

observations [21,60,61]. However, microscopy experi-

ments typically allow analysis of a limited number of

loci. Recently, high-throughput multiplexed sequential

DNA FISH approaches have succeeded in observing the

folding of stretches of chromatin at increasing resolutions

[62,63,64�,65–67]. By applying this, genomic regions are

covered at resolutions of up to two kilobases allowing

detailed reconstruction of chromatin folding in thousands

of single cells. For TADs, these methods provide evi-

dence that cell-type specific TAD-like globular domain

structures exist in single cells [63,66]. Additionally,

refinements of sequential FISH approaches such as

optical reconstruction of chromatin architecture (ORCA)

[64�] and Hi-M [68] allow the tracing of 3D chromatin

folding with simultaneous detection of nascent mRNA.

With ORCA, enhancer-promoter interactions were shown

to be predictive of gene activation, although interactions

might be too heterogeneous to suggest stable loops, and

rather point to a model in which enhancers scan topologi-

cal domains to stochastically activate target genes [64�].
As these microscopy-based assays have recently been

adapted for genome-scale analyses [69], these tools will

be useful to probe the complex folding pattern of loci of

interest in thousands of individual cells, thereby enabling

the study of linking genome structure to transcriptional

output in single cells.

Discussion
Recent years have shown the development of tools increas-

ingly capable at dissecting the complex nature of chromatin

conformation capture libraries. Both in single-cell genomic

mapping and microscopy studies, it has been revealed that

chromatin folding in single cells is more heterogeneous and

dynamic than immediately appreciable from population-

based analyses. Multi-contact chromatin conformation

assays have started to shed light on chromatin interactions

beyond pairwise contacts. Furthermore, ligation-free

approaches have been developed and in general

have shown high similarity to 3C-based methods

[55�,59,70,71]. The introduction of Micro-C technologies

leads to a further enhancement of resolution of genome-

wide 3D chromatin structure [42�,43�].

Although it has now become clearer that 3D chromosome

architecture is flexible in nature, to fully understand how
Current Opinion in Genetics & Development 2021, 67:10–17 
this intersects with gene expression, the next step will be

to study the dynamics of these processes. Systematically

combining technologies such as ORCA with high-resolu-

tion multi-contact chromatin conformation maps will

shed light on how complex folding patterns are organized

in single cells. Furthermore, the increased possibilities for

live-cell imaging of genomic loci and associated transcrip-

tion [72–79] will enable the assessment of the direct

impact of interactions between architectural (CTCF-

bound) sites on TAD formation, and between enhancer

and promoter elements on transcription activation.

The combination of these tools with the application of

selected depletion of architectural and transcription-

associated factors provides approaches to functionally

validate and refine the picture of the direct impact of

chromatin conformation on gene expression, such as used

to study the role of the cohesin and mediator complexes [

80–84]. Finally, it will be revealing to integrate the

information 3D genome folding with other hallmarks of

nuclear biology, such as the association of genomic

domains with the nuclear lamina [85,86], speckles

[87,88] and RNA [89], radial organization [90], and meth-

ylation [91]. Integration of these technologies will further

enable the delineation of the impact of topological

structures on nuclear biology and gene expression.
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