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Dynamics of lineage commitment revealed by
single-cell transcriptomics of differentiating
embryonic stem cells
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Gene expression heterogeneity in the pluripotent state of mouse embryonic stem cells

(mESCs) has been increasingly well-characterized. In contrast, exit from pluripotency and

lineage commitment have not been studied systematically at the single-cell level. Here we

measure the gene expression dynamics of retinoic acid driven mESC differentiation from

pluripotency to lineage commitment, using an unbiased single-cell transcriptomics approach.

We find that the exit from pluripotency marks the start of a lineage transition as well as a

transient phase of increased susceptibility to lineage specifying signals. Our study reveals

several transcriptional signatures of this phase, including a sharp increase of gene expression

variability and sequential expression of two classes of transcriptional regulators. In summary,

we provide a comprehensive analysis of the exit from pluripotency and lineage commitment

at the single cell level, a potential stepping stone to improved lineage manipulation through

timing of differentiation cues.
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In vitro differentiation is a key technology to enable the use of
embryonic and induced pluripotent stem cells as disease
models and for therapeutic applications1, 2. Existing directed

differentiation protocols, which have been gleaned from in vivo
development, are laborious and produce heterogeneous cell
populations3. Protocol optimization typically requires costly and
time-consuming trial-and-error experiments. To be able to design
more efficient and specific differentiation regimens in a sys-
tematic way it will be necessary to gain a better understanding of
the decision-making process that underlies the generation of cell
type diversity4.

Lineage decision-making is fundamentally a single-cell pro-
cess5 and the response to lineage specifying signals depends on
the state of the individual cell. A substantial body of work has
revealed lineage biases related to, for example, cell cycle phase or
pre-existing subpopulations in the pluripotent state4, 6–8. The
commitment of pluripotent cells to a particular lineage, on the
other hand, has not yet been studied systematically at the single-
cell level. We consider a cell to be committed, if its state cannot be
reverted by removal of the lineage specifying signal.

Here we set out to characterize the single-cell gene expression
dynamics of differentiation, from exit from pluripotency to
lineage commitment. Using single-cell transcriptomics we find
that retinoic acid drives the differentiation of mouse embryonic
stem cells to neuroectoderm—and extraembryonic endoderm—
like cells. Between 24 h and 48 h of retinoic acid exposure, cells
exit from pluripotency and their gene expression profiles gradu-
ally diverge. By pseudotime ordering we reveal a transient post-
implantation epiblast-like state. We also study the influence of the
external signaling environment and identify a phase of high
susceptibility to MAPK/Erk signaling around the exit from
pluripotency. We employ a minimal gene regulatory network
model to recapitulate the dynamics of the lineage response to
signaling inputs. Finally, we identify two classes of transcription
factors which have likely distinct roles in the lineage decision-
making process.

Results
Retinoic acid driven lineage transition. Mouse embryonic stem
cells (mESCs) are a well-characterized model system to study
in vitro differentiation. Here, we focused on mESC differentiation
driven by all-trans retinoic acid (RA), which is widely used in
in vitro differentiation assays9 and has important functions in
embryonic development10. E14 mESCs were grown feeder free in
2i medium11 plus LIF (2i/L) for several passages to minimize
heterogeneity before differentiation in the basal medium (N2B27
medium) and RA (Fig. 1a). Within 96 h the cells underwent a
profound change in morphology from tight, round, homogeneous
colonies to strongly adherent, morphologically heterogeneous
cells (Fig. 1a). To characterize the differentiation process at the
population level we first measured gene expression by bulk RNA-
seq at 10 time points during 96 h of continuous RA exposure
(Supplementary Fig. 1). Genes that are absent in the pluripotent
state but upregulated during differentiation can reveal the identity
of differentiated cell types. To find such genes we clustered all
genes by their temporal gene expression profiles using k-means
clustering (Methods, Supplementary Fig. 1a). By testing for
reproducibility through repeated clustering (stability analysis12,
see Methods) we determined that there were 6 robust gene
clusters. The two clusters that showed a continuous increase in
expression over the time course (clusters 5 and 6 in Supple-
mentary Fig. 1a), were enriched with genes that have functions in
development and differentiation (Supplementary Fig. 1b). In
particular, established neuroectoderm and extraembryonic
endoderm (XEN) markers belonged to these clusters.

Mesodermal markers, on the other hand, were not up-regulated.
(Supplementary Fig. 1c, d). This observation is in agreement with
earlier reports showing that RA induces neuroectodermal and
XEN lineages while suppressing mesodermal gene
expression10, 13, 14.

We next set out to identify the final cell types present after 96 h
of RA exposure. The up-regulation of both ectodermal and XEN
markers seemed to indicate that cells adopted these two fates.
Since population level measurements are not able to resolve
population heterogeneity, we turned to the recently developed
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Fig. 1 Single-cell RNA-seq revealed an RA driven lineage transition of
mESCs towards ectoderm- and XEN-like cells. a Scheme of the
differentiation protocol with phase contrast images of cells growing in 2i/L
(0 h) and after 96 h of exposure to 0.25 µM RA in N2B27 medium.
b Principal component analysis of single-cell expression profiles of mESCs
and cells after 96 h of RA exposure. Principal components were calculated
across all cells and time points. Cells were placed in the space of the first
two principal components (PC 1 and PC 2). Each data point corresponds to
a single cell. Two robust clusters identified by k-means clustering and
stability analysis are shown in red (ectoderm) and blue (XEN), respectively.
mESCs are shown in orange. c t-SNE mapping of single-cell expression
profiles. The single-cell RNA-seq data (SCRB-seq) for all cells and time
points were mapped on a one-dimensional t-SNE space, which preserved
local similarity between expression profiles, while reducing dimensionality.
Each data point corresponds to a single cell. Data points for individual time
points are shown in violin plots to reflect relative frequency along the t-SNE
axis. The color of each data point indicates Rex1 expression (relative to
maximum expression across all cells). For the 96 h time point, two robust
clusters (found by k-means clustering and stability analysis) are indicated
with red or blue edges, respectively. d Single-cell gene expression variability
quantified as the variance over the mean (Fano factor). The Fano factor was
calculated either for the whole population or subpopulations of cells defined
by k-means clustering using 2,3 or 4 clusters. Clustering was carried out
repeatedly and the Fano factors obtained for separate clusterings were
averaged
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Single Cell RNA Barcoding and Sequencing method15 (SCRB-seq,
Supplementary Fig. 2). We quantified the transcriptional profiles
of over 2000 single cells, sampled at 9 time points during
differentiation, typically spaced 12 h apart. To visualize the
heterogeneity of gene expression profiles and find subpopulations
that emerge during differentiation, we used principal component
analysis (PCA) and k-means clustering of the cells (Fig. 1b,
Supplementary Fig. 3a, b). Repeated k-means clustering of the
cells (stability analysis12, see Methods) indicated that the
population was homogeneous at 0 h and two robust clusters
were present at the end of the differentiation time course (96 h).
To reveal the identity of the two observed clusters, we turned to
the composition of the first two principal components. The first
principal component (PC 1) was primarily composed of
established markers for the XEN lineage (Sparc, Col4a1, Lama1,
Dab2), while PC 2 comprised markers of neuro-ectodermal
development (Prtg,Mdk, Fabp5, Cd24) (Supplementary Fig. 3a, b).
Accordingly, we identified one cluster as XEN-like and the other
one as as ectoderm-like (Fig. 1b). Hierarchical clustering
supported our interpretation of the PCA results (Supplementary
Fig. 3c). In particular, we observed that genes from gene cluster 5
(Supplementary Fig. 1a), which includes ectoderm markers, were
more broadly expressed in the ectoderm-like cells. By contrast,
genes from cluster 6, which includes XEN markers, were largely
restricted to XEN-like cells.

To confirm the existence of two cell types by an independent
method, we next sought to find surface markers that would allow
us to identify and purify the cell types. Cd24, which is among the
genes with the highest loadings in PC2, is an established marker
for neuroectodermal lineages16. Pdgfra is the earliest known
marker of the primitive endoderm lineage in vivo17. Antibody
staining of these two markers showed two well-separated
subpopulations at 96 h (Supplementary Fig. 4a): an ectoderm-
like subpopulation (CD24 + /PDGFRA-) and a XEN-like sub-
population (CD24−/PDGFRA + ). The frequencies of these two
subpopulations were robust across multiple biological replicates
(Supplementary Fig. 4b) and in accordance with the single-cell
RNA-seq results. We then purified ectoderm-like and XEN-like
cells after 96 h of RA exposure and cultured them in the same
medium (N2B27 supplemented with EGF and FGF2). After
continued culture, the two subpopulations showed markedly
different morphologies (Supplementary Fig. 4c) and distinct gene
expression patterns, as measured by bulk RNA-seq (Supplemen-
tary Fig. 4d, f). Ectoderm-like cells expressed neuro-ectodermal
and neural crest markers and were similar in their expression
profile to neural progenitor cells and neural crest cells in vivo.
XEN-like cells expressed primitive endoderm markers and
resembled an embryo-derived XEN cell line and yolk sac tissue.
Taken together, these results provide evidence that the observed
cell clusters corresponded to stable neuroectoderm-like and XEN-
like cell types with likely in vivo correlates.

Exit from pluripotency between 24 h and 48 h of RA exposure.
Having established the identity of the differentiated cell types we
next sought to study the exit from pluripotency in detail. At the
population level, we detected a gene expression response to dif-
ferentiation conditions within only 6 h, as well as a second wave
of gene expression changes between 24 h and 36 h (Supplemen-
tary Fig. 1e). While the immediate response was a direct effect of
the switch to RA containing media, as evident from the upre-
gulation of direct RA targets, we hypothesized that the second
wave of changes indicated the exit from pluripotency. In support
of this hypothesis we found that pluripotency markers were
strongly down-regulated between 24 h and 48 h (Supplementary
Fig. 1c, d). Cell morphology and cell cycle phase lengths

(Supplementary Fig. 5a–c) also changed significantly during the
same time interval, in agreement with the observed expression
dynamics. As a functional assay we used replating of the cells at
clonal density in 2i/L medium. 90% of the cells could not grow in
this selective medium anymore by 36 h of RA exposure (Sup-
plementary Fig. 5d). Taken together, our population level gene
expression measurements and functional assays suggested that
cells exited pluripotency between 24 h and 48 h of RA exposure.

Gradual divergence of gene expression profiles. To visualize
gene expression dynamics around the exit from pluripotency at
the single–cell level we used t-distributed stochastic neighbor
embedding18 (t-SNE) of our SCRB-seq data set. t-SNE maps gene
expression profiles to a low-dimensional space and places similar
expression profiles in proximity to each other. Here we used t-
SNE to map the expression profiles of individual cells throughout
the time course on a single axis (Fig. 1c). We assessed the plur-
ipotency status of individual cells by the expression level of the
established pluripotency marker Rex119. t-SNE showed that gene
expression changed homogeneously throughout the population
for the first 12 h of RA exposure, which was likely a direct effect
of the RA containing medium. At this stage Rex1 expression was
high throughout the population. The subsequent steep increase in
single-cell variability of gene expression at 24 h (Fig. 1d) indicated
that gene expression profiles started to become more hetero-
geneous during the exit from pluripotency. Simultaneously, Rex1
expression started to decline in a subset of cells, confirming the
exit from pluripotency at the single-cell level. To pinpoint the
time when distinguishable cell types first appeared during the
differentiation time course, we calculated gene expression varia-
bility for individual cell clusters formed by k-means clustering
(Fig. 1d), instead of the whole population. Starting at 48 h,
within-cluster variability using 2 clusters was reduced compared
to population variability, signifying the emergence of the two cell
types. Clustering into 3 or 4 clusters did not reduce the variability
much further. Taken together, t-SNE mapping and variability
analysis showed that cells exited pluripotency and started to
diverge in gene expression between 24 h and 48 h of RA exposure.

To further quantify the divergence of gene expression profiles
we classified cells based on their similarity (Pearson correlation)
with the average profiles of either mESCs at 0 h or the two
differentiated cell types at 96 h (Fig. 2a–c). Cells which were more
similar to a differentiated cell type than to mESCs first appeared
between 24 h and 48 h of RA exposure, which matched the
dynamics visible in the t-SNE map (Fig. 1c). Importantly, average
expression profiles of the three classes were similar around the
exit from pluripotency and only diverged more quickly afterwards
(Fig. 2d). These observations suggested that the cells adopted the
final cell fates only gradually, potentially via distinct transitory
states.

Initial differentiation into post-implantation epiblast. We next
wanted to zoom in further on the initial lineage decision, right
after the exit from pluripotency, to reveal potential intermediate
cell states. To achieve this goal, we had to remove possible
obfuscating effects related to the asynchrony of differentiation.
The transient coexistence of all three classes of cells (Fig. 2c) and
the heterogeneous expression of Rex1 (Fig. 1c) around the exit
from pluripotency had indicated that differentiation was indeed
asynchronous. Confounding effects due to asynchronous differ-
entiation can be mitigated with the help of pseudo-temporal
ordering of cells20. Here we defined a pseudo-time based on the
Pearson correlation with mESCs or the differentiated cell types at
96 h (Fig. 3a, b). This pseudo-time thus reflects the progress of
differentiation of an individual cell along the ectoderm- or XEN-
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like lineage. Pseudo-temporal ordering reduced the co-existence
of cell types to a small period in pseudo-time (Fig. 3c) and was
thereby able to clarify expression dynamics. Furthermore, it
revealed that pluripotency factors were down-regulated already
before the branch point, where differentiated cell types could first
be distinguished (Fig. 3d, e). During the same time, markers of
post-implantation epiblast21 (e.g. Pou3f1, Fgf5) were up-
regulated. This intermediate period might represent a phase of
homogeneous lineage priming or subtle population heterogeneity
that we cannot resolve given the technical noise of our single-cell
RNA-seq method. After the branch point, several neuroecto-
dermal markers (like Pax6, Sox11 or Nes) were up-regulated in
the ectoderm-like branch. Established XEN markers (e.g. Gata6,
Dab2), on the other hand, were restricted to the XEN-like branch,
as to be expected.

Gene expression dynamics in pseudo-time seemed to suggest a
transient state in which the cells resembled the post-implantation
epiblast. To further clarify the relationship of RA differentiation
with in vivo development we used PCA to compare our data set
to RNA-seq measurements of pre- and peri-implantation
tissues21 (Fig. 4a and Supplementary Fig. 6). This analysis
revealed that mESCs were most similar to pre-implantation
epiblast (E4.5), as has been shown previously22. During
differentiation the cells first moved closer to the E5.5 epiblast
around 48 h before separating into two subpopulations (Fig. 4a).
At 96 h, the XEN-like subpopulation was closest to E4.5 primitive
endoderm. The occurrence of these XEN-like cells is thus likely
due to a trans-differentiation from E4.5 or even E5.5 epiblast–like
cells. The initial lineage decision in our system is therefore
between continued differentiation along the epiblast lineage and
trans-differentiation to a primitive endoderm-like state.

To confirm the single-cell RNA-seq results with an indepen-
dent method we sorted cells based on PDGFRA and CD24
expression at 48 h, 72 h and 96 h and profiled the expression of
the sorted subpopulations by bulk RNA-seq (Fig. 4b). At 48 h
only few cells expressed PDGFRA but the majority expressed
CD24. Most importantly, in PDGFRA negative cells the
expression of post-implantation epiblast markers increased with
CD24 expression. By 96 h the expression of post-implantation
epiblast markers had largely disappeared. XEN markers, on the
other hand, were expressed exclusively in PDGFRA positive cells
at 72 h and 96 h. To determine cell identities in the bulk
expression data set in an unbiased way we used the KeyGenes
algorithm23 together with pre- and peri-implantation tissues21 as
training set (Fig. 4c). KeyGenes identified mESCs as E4.5 epiblast,
in agreement with our PCA (Fig. 4a) and previous results22.
Notably, at 48 h PDGFRA negative/CD24 low cells were classified
as E4.5 epiblast, while PDGFRA negative/CD24 high cells were
identified as E5.5 epiblast. CD24 thus indicated the adoption of a
post-implantation epiblast-like state, in agreement with previous
findings24. PDGFRA positive cells, on the other hand, were
consistently identified as E4.5 primitive endoderm. Bulk RNA-seq
of sorted subpopulations and KeyGenes analysis thus confirmed
that cells either continued to differentiate along the epiblast
lineage or adopted a XEN-like cell type.

Regulation by the external signaling environment. Having
characterized the gene expression dynamics of the exit from
pluripotency and the subsequent lineage transition, we next
wanted to identify effectors of the lineage decision. Notably,
mESCs lost their ability to differentiate into a XEN-like lineage
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when they were cultured, prior to differentiation, in serum and
LIF conditions (without feeders) instead of 2i/L (Supplementary
Fig. 7a, b). The ability of RA to drive ectodermal differentiation
seemed unaffected under these conditions, as reported before25.
Since culture conditions had such a strong impact on the devel-
opmental potential of mESCs we wanted to explore the con-
tribution of specific signaling pathways on the cellular decision.
We differentiated mESCs with RA in the presence of a MEK
inhibitor (MEKi, PD0325901), which abrogates MAPK/Erk sig-
naling; a GSK3 inhibitor, which effectively stimulates Wnt sig-
naling (GSK3i, CHIR99021), LIF, which activates the JAK/Stat
pathway or an FGF receptor inhibitor (FGFRi, PD173074).
(Supplementary Fig. 7c–h). The first 2 of these molecules are
components of the defined 2i medium and are known to prevent
differentiation while stabilizing the pluripotent state. The pre-
sence of GSK3i or LIF led to an overall reduction of differentiated
cells (Supplementary Fig. 7c), consistent with their role in stabi-
lizing pluripotency. Addition of MEKi alone, however, led to a
specific reduction of the XEN-like subpopulation (Supplementary
Fig. 7c–e), in agreement with previous results26, 27. This effect was

unlikely due to interference with RA signaling since increasing
RA concentration did not reverse the effect (Supplementary
Fig. 7f). In contrast to the MEK inhibitor, the FGF receptor
inhibitor not only suppressed the XEN-like population but also
greatly reduced the ectoderm-like population (Supplementary
Fig. 7g, h). This observation is in agreement with earlier studies
that reported a requirement for FGF signaling in mESC differ-
entiation28 and lineage segregation in the early mouse blas-
tocyst29. Taken together these experiments clearly demonstrate
that RA driven XEN-specification requires the same signaling
pathways as other differentiation regimens and XEN-specification
in vivo, despite the pleiotropic nature of RA.

Phase of high susceptibility to external signal inputs. We next
wanted to establish when mESCs are sensitive to RA signaling
and how long the signal would have to be applied to drive a
complete lineage transition. Having observed that gene expres-
sion responds to differentiation conditions within 6 h (Supple-
mentary Fig. 1e), we hypothesized that a short pulse of RA might
be sufficient to induce XEN specification. To test this hypothesis
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we applied a precisely defined pulse of RA by first exposing the
cells to RA for a defined period of time and then switching to a
highly potent pan-RA receptor antagonist30 (Fig. 5a). These
experiments showed that, contrary to our expectation, RA had to
be applied for at least 24 h for XEN-like cells to appear. Longer
pulses resulted in a gradual increase of the XEN-like fraction. A
36 h long pulse of RA resulted in 20% XEN-like cells at the 96 h
time point, roughly half of what we found after uninterrupted RA
exposure (Fig. 5a). This indicated that even after 36 h of RA
exposure and significant down-regulation of the pluripotency
network XEN specification continued to depend on RA-signaling.
Timed abrogation of MAPK/Erk signaling by MEKi resulted in a
similar response as an RA pulse (Fig. 5b). At least 24 h of

uninterrupted MAPK/Erk signaling was necessary for XEN-like
cells to occur. Longer durations of MAPK/Erk signaling resulted
in an increase in the XEN-like subpopulation. This effect pla-
teaued after 48 h, which suggested that XEN-like cells then
became independent of MAPK/Erk signaling and thus stably
committed. We also wanted to establish when cells lost their
ability to respond to RA signaling. To this end we first differ-
entiated the cells in basal (N2B27) medium and started RA
exposure after a defined time period (Fig. 5c). When RA exposure
was delayed by up to 12 h, we did not observe any difference in
the lineage distribution at the 96 h time point. For longer delays
of RA exposure, we found that the fraction of XEN-like cells
declined. This observation demonstrated that the cells quickly lost
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their susceptibility to RA after the exit from pluripotency. Taken
together, these signaling experiments revealed a short transient
phase after the exit from pluripotency, during which cells were
maximally susceptible to external signaling cues to inform their
lineage decision.

A minimal gene regulatory network of lineage bias. Interest-
ingly, our experiments revealed a difference in the lineage
response dynamics between the RA pulse and RA delay. While
cells abruptly lost their ability to become XEN-like after only 12 h
in N2B27 (Fig. 5c), the RA pulse had to be applied for at least 24 h
to cause XEN-specification and longer pulses elicited a gradually
increasing response (Fig. 5a). This asymmetry could be related to
the fact that N2B27 on its own drives differentiation towards the
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neuroectoderm lineage31. Correspondingly, we consistently found
that the majority of cells became ectoderm-like when there was
no RA present (Fig. 5a–c). To explore the role of an intrinsic
epiblast or ectoderm bias we developed a simple phenomen-
ological model based on a minimal gene regulatory network
(GRN)27, 32. Briefly, the GRN is comprised of two lineage-specific,
auto-activating expression programs that mutually repress each
other (Fig. 5d, Supplementary Fig. 8a). This GRN can produce
two stable attractors that correspond to two differentiated cell
types. Here, we added repression of both lineages by the plur-
ipotency network to model the pluripotent state. Consistent with
our data, we assumed that the pluripotency program is turned off
after 12 h. To model the ectoderm bias we assumed that auto-
activation of the ectoderm program was stronger than auto-

activation of the XEN program in the absence of RA. In the
presence of RA auto-activation of both programs was taken to be
equal. Due to the great importance of gene expression noise in
lineage decision-making5, 4, we also incorporated noise in our
model (Methods). Stochastic simulations of the 3-state GRN
reproduced the asymmetry between RA pulses and delays
(Fig. 5e). The frequency of XEN-like cells decreased sharply when
the delay in RA signaling was extended beyond the exit from
pluripotency. The RA pulse, on the other hand, had to be applied
for a longer period of time to cause XEN-specification and the
response was more gradual. This behavior can be explained by the
fact that in the absence of RA cells are quickly drawn to the
ectoderm attractor after the exit from pluripotency. When RA is
added after a delay, the cells are already in the proximity of the
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ectoderm attractor and cannot escape it anymore, which causes
the lack of XEN cells. Notably, the asymmetry between the
response curves was reduced by gene expression noise. Noise
allowed the cells to switch between the basins of attraction of the
two attractors (Supplementary Fig. 8b), thereby equalizing the
intrinsic difference between the two attractors. Taken together,
our stochastic simulations showed that an intrinsic ectoderm bias
can explain the difference in the response dynamics between an
RA signal delay and an RA pulse.

Two classes of transcriptional regulators. Having revealed a
highly dynamic susceptibility to signaling cues, we were won-
dering if the expression of transcriptional regulators was equally
dynamic. To that end we focused on transcriptional regulators
that show lineage specific expression when the two lineages can
be first discerned robustly, around 48 h (see Methods for the list
of GO terms used to define transcriptional regulators). Since these
regulators were typically lowly expressed, they were not well-
represented in the SCRB-seq data set. Therefore, we collected
another single-cell RNA-seq data set using SMART-seq233 at four
early RA differentiation time points (0 h, 12 h, 24 h and 48 h). We
first identified XEN-like and ectoderm-like cells at the 48 h time
point (Supplementary Fig. 9a). The remaining cells were likely
mostly undifferentiated cells as several pluripotency factors were
differentially expressed in this population (Supplementary
Fig. 9b). In the cells classified as XEN- or ectoderm-like we found
50 transcriptional regulators to be differentially expressed
between the two lineages (Fig. 6a, Supplementary Fig. 9b). 22 of
those genes (dubbed “early”) were present already in mESCs.
These early regulators were broadly co-expressed in individual
cells at the beginning of the time course (Fig. 6b and Supple-
mentary Fig. 9c). Compared to canonical pluripotency factors,
early regulators showed a smaller level of co-expression with each
other in the pluripotent state, in particular if they belonged to
different lineages (Fig. 6b, c). Individual mESCs thus expressed
varying ratios of XEN and ectoderm specific early regulators.
Over time, co-expression of XEN and ectoderm specific early
regulators declined but they never became completely mutually
exclusive (Supplementary Fig. 9c). Hence, we speculated that
other transcriptional regulators might be up-regulated in lineage
biased cells and take over lineage specification from the early
regulators. Indeed, 28 of the identified differentially expressed
regulators (dubbed “late”) were, by definition, not significantly
expressed at the beginning of the time course (Fig. 6a, Supple-
mentary Fig. 9b). These late regulators were overall positively
correlated with early regulators of the same lineage and anti-
correlated with regulators of the opposing lineage (Fig. 6d and
Supplementary Fig. 9c). This correlation pattern suggested that
early regulators might have a role in lineage biasing, whereas late
factors could be involved in lineage commitment.

To confirm the sequential expression of early and late
regulators, we next focused on four transcription factors, chosen
based on their reported function for the specification of ectoderm
(Gbx234 (early), Pax635 (late)) and extraembryonic endoderm
(Tbx336 (early), Gata637 (late)). Notably, Tbx3 and likely also
Gbx2 are direct targets of RA38, 39. In agreement with their
reported roles we found these 4 factors to be differentially
expressed in ectoderm-like and XEN-like cells, respectively, in
our SCRB-seq data set (Supplementary Fig. 9d). To quantify
correlation patterns with high precision we used single-molecule
FISH (smFISH40) due to its superior sensitivity and precision
compared to single-cell RNA-seq (Supplementary Fig. 10a). We
measured the expression of the early factors (Fig. 7a, c) or the late
factors (Fig. 7b, d) together with the pluripotency factor Nanog
and quantified co-expression at all time points (Supplementary

Fig. 10b–d). In agreement with the SMART-seq2 data, early
factors were broadly co-expressed in the pluripotent state and a
smaller subpopulation of co-expressing cells persisted during
differentiation (Fig. 7c, Supplementary Fig. 10c). Importantly,
mESCs expressed the early factors at highly variable ratios: 30% of
mESCs did not express the early ectoderm factor Gbx2 at a
significant level, while almost all cells expressed the early XEN
factor Tbx3 (Fig. 7e). smFISH further confirmed that late factors
were only sporadically expressed before the exit from pluripo-
tency but strongly up-regulated in separate subpopulations
thereafter. These subpopulations likely corresponded to lineage-
committed cell states (Fig. 7d and Supplementary Fig. 10d, e).
Interestingly, a simultaneous measurement of the early ectoderm
factor Gbx2 and the late ectoderm factor Pax6 revealed their
positive correlation throughout the time course, even before the
exit from pluripotency (Fig. 7f). A possible explanation for such a
correlation might be a lineage-biasing role for Gbx2. All in all, the
smFISH measurements clearly confirmed differences in the
expression dynamics and correlation patterns of early and late
transcriptional regulators.

Discussion
In summary, we leveraged a recently developed high-throughput
single-cell transcriptomics method to dissect the exit from plur-
ipotency and dynamics of lineage commitment in RA driven
differentiation of mESCs with high temporal resolution. We
characterized the influence of the external signaling environment
and explained the dynamics of the signaling response with a
minimal gene regulatory network. We finally identified potential
transcriptional regulators of lineage decision and commitment.

In particular, we showed that after 96 h of RA exposure mESCs
had differentiated into neuroectoderm-like and XEN-like cells. By
purification and continued culture we showed that these cell types
are stable and not just transient expression fluctuations. In
agreement with previous results22 we found mESCs cultured in
2i/L to be transcriptionally most similar to E4.5 epiblast in vivo
(Fig. 4a–c). At E4.5 the lineage decision between primitive
endoderm and epiblast has already occurred, so a priori it would
not be expected that mESCs should be able to generate XEN cells.
The potential to create XEN-like cells could be explained by a
subpopulation of cells in the pluripotent state that resembles an
earlier developmental stage. In our single-cell RNA-seq data set
we could not find evidence for such pre-existing heterogeneity
(Fig. 4a). Alternatively, RA might have caused the dedifferentia-
tion of the whole mESC population to an earlier developmental
stage after which the cells could follow the in vivo bifurcation
between E4.5 epiblast and primitive endoderm. While the whole
population indeed initially moved closer to the E3.5 inner cell
mass during the first 24 h, cells then moved towards E5.5 epiblast
before discernible XEN-like cells appeared (Supplementary
Fig. 6). Hence, most likely XEN-like cells are created by trans-
differentiation from E4.5 or E5.5 epiblast-like cells and mESCs
initially decide between progression along the epiblast lineage and
the XEN-like cell type right after the exit from pluripotency. The
epiblast lineage then further develops to neuroectoderm-like cells
by 96 h. A recently published study by Klein et al. used single-cell
RNA-seq to characterize mESC differentiation by LIF with-
drawal41 and also found a small XEN-like subpopulation. That
and other studies42, 27 show that XEN-like cells occur more
generally in in vitro differentiation of mESCs and are not an
idiosyncratic artefact of exposure to RA. We also found that
mESCs grown in 2i/L (but not in serum and LIF) efficiently
generate XEN cells under RA exposure (Supplementary
Fig. 7a, b). Similarly, Schröter et al. have observed, for a different
differentiation assay, that pre-culture in 2i/L greatly increases the
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number of XEN-like cells generated from mESCs27. Together
with those results our observations thus support a model in which
mESCs grown in 2i/L functionally correspond to a slightly earlier
developmental stage than mESCs grown in serum and LIF42.

Despite the artificial nature of the lineage transition described
here, we observed several similarities with the epiblast/primitive
endoderm bifurcation in vivo. A recent study by Saiz et al. in the
mouse embryo43 showed that epiblast and primitive endoderm
are specified asynchronously from a pool of progenitor cells,
which also happened in our experiments (Fig. 2c). Furthermore,
in the absence of primitive endoderm inducing signals, all cells of
the inner cell mass become epiblast-like in vivo29, 43–45. In our
experiments the majority of mESCs adopted the epiblast/ecto-
dermal lineage in the absence of RA, in agreement with the
literature31, 46. Saiz et al. observed that MEKi prevented the
specification of primitive endoderm, in agreement with an earlier
report by Nichols et al47. The experiments by Saiz et al. also
revealed that the susceptibility to MEKi disappeared gradually
between E3.5 and E4.5. Our experiments with MEKi showed
similar dynamics (Fig. 5b). Thus, both in vivo and in vitro, cells
seem to gain competence to respond to XEN specifying signals
over time. In vitro, the susceptibility to signaling inputs is thought
to be contingent on the down-regulation of pluripotency factors
and the exit from pluripotency46, 48, a notion which is supported
by our study (Fig. 5a–c). Our results thus clearly reveal a window
of opportunity right after the exit from pluripotency, which might
be exploited to guide lineage decisions with maximal efficacy.

Using a minimal GRN to model the lineage decision, we also
showed that an inherent epiblast/ectoderm bias can cause the
observed asymmetry between an RA delay and an RA pulse
(Fig. 5d). A similar GRN has been used successfully before in a
report by Schröter et al., studying induction of the XEN lineage by
exogenous Gata4 expression27. Importantly, our model does not
strictly require an ectoderm bias. An initial bias for progression
along the epiblast lineage (and continued differentiation to
ectoderm under RA) would be sufficient. This interpretation is in
line with previous results that reported expression of non-
ectodermal markers during early stages of differentiation in
N2B2749. Notably, in our model, gene expression noise was able
to reduce the asymmetry between the RA regimens, because gene
expression trajectories could switch more easily between the
basins of attraction of the two lineage attractors (Supplementary
Fig. 8b). The impact of noise in the context of lineage decisions
was recently addressed in a publication by Marco et al50. In that
study the authors focused on the ability of noise to destabilize
committed cell states. Here we showed that noise can also impact
commitment dynamics and even mask an intrinsic lineage bias.
This result suggests that gene expression noise could be exploited
to influence lineage decision-making in vitro.

Our study further identified early-expressed lineage specific
transcriptional regulators that are heterogeneously expressed in
the pluripotent state and thus have a potential role in biasing the
lineage decision. Importantly, the two factors we studied in detail,
Gbx2 and Tbx3, were previously determined to be part of an
essential pluripotency network51–55. It has been suggested before
that some pluripotency genes are also involved in lineage
specification25, 48, 49. Thomson et al. showed that Sox2 and Oct4
promote the neuroectodermal and mesendodermal lineage,
respectively48. Malleshaiah et al. reported similar functions for
Nac1 and Tcf3, respectively25. Future research will have to show
whether Gbx2 and Tbx3 have similar roles for the epiblast/neu-
roectoderm and XEN lineage, respectively. In fact, for Tbx3 Lu
et al. recently demonstrated a dual function in self-renewal and
XEN specification36. The observed correlation between Gbx2 and
Pax6 suggests a function of Gbx2 in epiblast or neuro-ectoderm
specification. The long-tail distribution of Gbx2 in mESCs hints at

infrequent transcriptional bursting and possibly distinct sub-
populations56. The causal relationship between Gbx2 and Pax6
and the functional relevance of the Gbx2 high subpopulations will
be explored in a future study. Late-expressed lineage specific
transcription factors, like Pax6 and Gata6, which were not
expressed in the pluripotent state, have a role in lineage com-
mitment. They can thus serve as bona fide lineage markers.

Transient phases of susceptibility to lineage cues, such as the
one characterized in this study, might be valuable windows of
opportunity for the control of lineage decisions. We speculate that
exit from a pluripotent cell state necessarily coincides with a
phase of instability and increased gene expression variability, as
demonstrated recently for lineage decisions in the hematopoietic
system57, 58. Based on our results we would like to propose ten-
tative transcriptional signatures of such phases (Fig. 8): 1. down-
regulation of pluripotency factors (Fig. 1c), 2. a sudden increase
in single-cell gene expression variability (Fig. 1d), 3. slowly
diverging lineage specific expression patterns (Fig. 2d), 4. co-
expression of early-expressed (thus potentially lineage-biasing)
transcriptional regulators (Fig. 6b), 5. sporadic expression of late-
expressed (thus potentially lineage-committing) transcriptional
regulators (Fig. 7d). We hope that these results will be a stepping
stone towards finding more efficient ways to guide lineage
decisions.

Methods
Cell culture. All cell lines were grown routinely in modified 2i medium11 plus LIF
(2i/L): DMEM/F12 (Life technologies) supplemented with 0.5x N2 supplement,
0.5x B27 supplement, 0.5mM L-glutamine (Gibco), 20 µg/ml human insulin
(Sigma-Aldrich), 1 × 100U/ml penicillin/streptomycin (Gibco), 0.5x MEM Non-
Essential Amino Acids (Gibco), 0.1 mM 2-Mercaptoethanol (Sigma-Aldrich), 1 µM
MEK inhibitor (PD0325901, Stemgent), 3 µM GSK3 inhibitor (CHIR99021,
Stemgent), 1000 U/ml mouse LIF (ESGRO). Cells were passaged every other day
with Accutase (Life technologies) and replated on gelatin coated tissue culture
plates (Cellstar, Greiner bio-one).

E14 cells were provided by A. van O., V6.5 cells were provided by R.J. Both cell
lines were regularly tested for mycoplasma infection.
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Fig. 8 Transcriptional signatures of the lineage decision phase
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Differentiation. Prior to differentiation cells were grown in 2i/L for at least 2
passages, with the exception of the experiment shown in Supplementary Fig. 7a,b:
here cells were grown in knockout DMEM (Thermofisher) supplemented with 10%
ES cell screened FBS (Sigma), 1 × 100U/ml penicillin/streptomycin (Gibco),
0.1 mM 2-Mercaptoethanol (Sigma-Aldrich) and 1000 U/ml mouse LIF (ESGRO)
for 3 passages prior to differentiation. For all differentiation experiments cells were
seeded at a density of 2.5 × 105 cells per 10 cm dish and grown over night (12 h).
After washing cells twice with PBS, differentiation was carried out in basal N2B27
medium (2i/L medium without the inhibitors, LIF and the additional insulin)
supplemented with all-trans retinoic acid (RA, Sigma-Aldrich). RA concentration
was 0.25 µM unless stated otherwise. Spent medium was exchanged with fresh
medium after 48 h.

For the RA pulse experiments (Fig. 5a) cells were first differentiated with 0.25
µM RA for the indicated amounts of time, washed three times with PBS and
cultured in basal medium with 2.5 µM of the RA receptor antagonist AGN 193109
(sc-210768, Santa Cruz Biotechnology). At this concentration this antagonist
completely inhibits signaling through all-trans retinoic acid30.

For the differentiation under perturbation of various signaling pathways
(Supplementary Fig. 7c) we used the MEK inhibitor PD0325901 (Stemgent,
standard concentration 1 µM or dilutions thereof), GSK3 inhibitor CHIR99021
(Stemgent, standard concentration 3 µM or dilutions thereof) or mouse LIF
(ESGRO, 1000 U/ml). For the experiments with MEK inhibition shown in Fig. 5b
and Supplementary Fig. 7d,e we used PD0325901 at a concentration of 0.5 µM. For
differentiation under inhibition of FGF signaling, shown in Supplementary Fig. 7g,
h we used the FGF receptor inhibitor PD173074 (Sigma-Aldrich) at a
concentration of 1 µM.

Multiple biological replicates of the differentiation of E14 cells with RA were
performed, where replicates were characterized with different methods to cross-
validate the results: SCRB-seq (1 replicate), SMART-seq2 (1 replicate), smFISH (3
replicates where 2 replicates used the same probe set), antibody staining (3
replicates). Morphologies similar to the ones shown in the representative images in
Fig. 1a and Supplementary Fig. 5b were observed in at least 5 independent
biological replicates of the experiment.

Long-term culture of differentiated cells. Cells that were differentiated for 96 h
with RA were sorted into ectoderm-like (CD24A + /PDGFRA-) and XEN-like
(PDGFRA + /CD24-) and replated on poly-D-lysine and laminin coated tissue
culture dishes in basal (N2B27) medium complemented with 20 ng/ml mouse EGF
(E5160, Sigma) and 10 ng/ml mouse FGF2 (SRP4038-50UG, Sigma). Ectoderm-like
cells were propagated by dissociation with Accutase (Life Technologies) and
replating under identical conditions every 3–4 days. Floating aggregates of XEN-
like cells were propagated in suspension in uncoated plastic petri dishes. Aggregates
were not dissociated but the medium was refreshed typically every 4 days.
Morphologies similar to the ones shown in the representative images in Supple-
mentary Fig. 4c were observed in 3 independent biological replicates of the
experiment.

Antibody staining and FACS sorting. We used the following antibodies: APC Rat
Anti-Mouse CD24 (BD Bioscience, 562349), PE Rat Anti-Mouse CD24 (BD
Bioscience, 553262), Anti-Mouse CD140a (PDGFRA) FITC (eBioscience,17-1407),
Anti-Mouse CD140a (PDGFRA) APC (eBioscience,17-1401), all at a dilution of
1:1000. Cells growing in 6-well plates were washed once with PBS and then
incubated in a volume of 500 µl of basal (N2B27) medium with antibodies for
30 min at 37 °C, in the dark. Subsequently, cells were washed once with PBS, 300 µl
Accutase (Life Technologies) was added and cells were gently dissociated by
pipetting up and down. After adding 600 µl of basal medium the cell suspension
was loaded on a flow cytometer (LSR II, BD Bioscience) or cell sorter (FACSAria
III, BD Bioscience). Cells growing in 10 cm dishes were first dissociated and
incubated in 1 ml medium with the same incubation conditions and antibody
concentrations as for adherent cells. After staining in solution, cells were spun
down, the supernatant was removed and cells were resuspended in 1 ml of basal
medium before flow cytometry or sorting.

Sorting gates for positive and negative populations were set by comparison to
the signal measured in undifferentiated mESCs. For the experiments shown in
Fig. 4b, c cells were sorted according to quartiles of CD24 signal at 48 h or terciles
of CD24 signal at 72 h.

Colony formation assay. Cells were differentiated with or without RA as described
above for various amounts of time and then replated at a density of 5 × 104 cells/
well in a gelatinized 6-well tissue culture plate in 2i/L. Colonies were grown for 2
additional days, washed twice with PBS and then imaged in PBS. Remaining
colonies were counted automatically by a custom made image analysis script
written in MATLAB. The number of surviving colonies was normalized to the first
data point (replating of untreated cells growing in 2i/L).

Measurement of cell cycle phases. Cells growing on gelatinized tissue culture
dishes were washed twice with PBS, detached with Accutase (Life technologies) and
resuspended in full medium. Formaldehyde was added to the cell suspension to a
final concentration of 4%. Cells were incubated for 12 min at room temperature

while being rotated and then spun down for 3 min at 90 x g. Subsequently cells
were permeabilized at least over night in 70% ethanol. Cells were stained with
Hoechst 33342 in PBS for 1 h and fluorescence measured on a flow cytometer (LSR
II, BD Biosciences). The Dean-Jet-Fox model59 was fit to histograms of the
fluorescence signal to determine the relative lengths of the cell cycle phases
reported in Supplementary Fig. 5c.

Single cell isolation for SCRB-seq. For each differentiation time point cells were
harvested and medium removed by spinning for 5 min at 90 x g. RNA was sta-
bilized by immediately resuspending the pelleted cells in RNAprotect Cell Reagent
(Qiagen) and RNaseOUT Recombinant Ribonuclease Inhibitor (Life Technologies)
at a 1:1000 dilution. Just prior to fluorescence-actived cell sorting (FACS), the cells
were diluted in PBS and stained for viability using Hoechst 33342 (Life Technol-
ogies). 384-well SBS capture plates were filled with 5 μl of a 1:500 dilution of
Phusion HF buffer (New England Biolabs) in water and individual cells were then
sorted into each well using a FACSAria II flow cytometer (BD Biosciences) based
on Hoechst DNA staining. After sorting, the plates were immediately sealed, spun
down, cooled on dry ice and then stored at −80°C.

SCRB-Seq of isolated single cells. Frozen cells were thawed for 5 min at room
temperature and cell lysis was enhanced by a treatment with proteinase K (200 μg/
mL;Ambion) followed by RNA desiccation to inactivate the proteinase K and
simultaneously reduce the reaction volume (50 °C for 15 min in sealed plate, then
95 °C for 10 min with seal removed).

To start, diluted ERCC RNA Spike-In Mix (1 μl of 1:107; Life Technologies) was
added to each well and the template switching reverse transcription reaction was
carried out using Maxima H Minus Reverse Transcriptase (Thermo Scientific), our
universal adapter E5V6NEXT (1 pmol, Eurogentec):

5′-iCiGiCACACTCTTTCCCTACACGACGCrGrGrG-3′
where iC: iso-dC, iG: iso-dG, rG: RNA G, and our barcoded adapter

E3V6NEXT (1 pmol, Integrated DNA Technologies):
5′-/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCT[BC6]

N10T30VN-3′
where 5Biosg= 5′ biotin, [BC6]= 6 bp barcode specific to each cell/well, N10=

Unique Molecular Identifiers. Following the template switching reaction, cDNA
from 384 wells was pooled together, and then purified and concentrated using a
single DNA Clean & Concentrator-5 column (Zymo Research). Pooled cDNAs
were treated with Exonuclease I (New England Biolabs) and then amplified by
single primer PCR using the Advantage 2 Polymerase Mix (Clontech) and our
SINGV6 primer (10 pmol, Integrated DNA Technologies):

5′-/5Biosg/ACACTCTTTCCCTACACGACGC-3′
Full length cDNAs were purified with Agencourt AMPure XP magnetic beads

(0.6x, Beckman Coulter) and quantified on the Qubit 2.0 Flurometer using the
dsDNA HS Assay (Life Technologies). Full-length cDNA was then used as input to
the Nextera XT library preparation kit (Illumina) according to the manufacturer’s
protocol, with the exception that the i5 primer was replaced by our P5NEXTPT5
primer (5 μM, Integrated DNA Technologies):

5′-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACG
CTCTTCCG *A*T*C*T*-3′

where * = phosphorothioate bonds.
The resulting sequencing library was purified with Agencourt AMPure XP

magnetic beads (0.6x, Beckman Coulter), size selected (300–800 bp) on a E-Gel EX
Gel, 2% (Life Technologies), purified using the QIAquick Gel Extraction Kit
(Qiagen) and quantified on the Qubit 2.0 Flurometer using the dsDNA HS Assay
(Life Technologies). Libraries were sequenced on Illumina Hiseq paired-end flow
cells with 17 cycles on the first read to decode the well barcode and UMI, a 9 cycle
index read to decode the i7 Nextera barcode and finally a 46 cycle second read to
sequence the cDNA.

RNA-seq on bulk samples. Bulk RNA-seq samples comprise complete popula-
tions at 10 time points during RA differentiation (Supplementary Fig. 1) as well as
various sorted subpopulations (Fig. 4b, c) and long term cultured ectoderm- and
XEN-like cells (Supplementary Fig. 4d, e). Cells were collected in RNAprotect,
lysed in QIAzol (Qiagen) and total RNA was extracted and purified using Direct-
zol RNA MiniPrep (Zymo Research). DGE libraries were prepared from 10 ng of
extracted total RNA, using the protocol described above for SCRB-seq with the
exception of using more concentrated E3V6NEXT and E5V6NEXT (10 pmol).

SCRB-seq and bulk RNA-seq read alignment. All second sequence reads were
aligned to a reference database consisting of all mouse RefSeq mRNA sequences
(obtained from the UCSC Genome Browser mm10 reference set: http://genome.
ucsc.edu/), the mouse mm10 mitochondrial reference sequence and the ERCC
RNA spike-in reference sequences using bwa version 0.7.4 with non-default
parameter “-l 24”. Read pairs for which the second read aligned to a mouse RefSeq
gene were kept for further analysis if 1) the initial six bases of the first read all had
quality scores of at least 10 and corresponded exactly to a designed well-barcode
and 2) the next ten bases of the first read (the UMI) all had quality scores of at least
30. Digital gene expression (DGE) profiles were then generated by counting, for
each microplate well and RefSeq gene, the number of unique UMIs associated with
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that gene in that well. Python scripts implementing the alignment and DGE
derivation are available from the authors upon request.

SMART-seq sample preparation and read alignment. The single-cell SMART-
seq2 libraries were prepared according to the SMART-seq2 protocol33, 60 with
some modifications61. Briefly, total RNA from single cells sorted in lysis buffer was
purified using RNA-SPRI beads. Poly(A) + mRNA from each single cell was con-
verted to cDNA which was then amplified. cDNA was subjected to transposon-
based fragmentation that used dual-indexing to barcode each fragment of each
converted transcript with a combination of barcodes specific to each single cell.
Barcoded cDNA fragments were then pooled prior to sequencing. Sequencing was
carried out as paired-end 2 × 25 bp with 8 additional cycles for each index.
Alignment of the reads and calculation of gene expression was done through the
Tuxedo pipeline (Tophat, Cuffquand, Cuffnorm)62. Gene expression was expressed
as reads per kilobase exon model per million mapped reads (RPKM).

Computational analysis bulk RNA-seq experiments. The bulk RNA-seq results
were normalized by the total amount of reads per time point. Only those genes
with non-zero mean were considered for further analysis. For k-means clustering of
the temporal profiles we first determined the number of robust clusters. Stability
analysis12 indicated that there were 6 robust clusters (Supplementary Fig. 1a). We
then performed gene ontology enrichment analysis using the DAVID bioinfor-
matics resource63 the results of which are summarized in Supplementary Fig. 1b.
Only the clusters of monotonically upregulated genes (clusters 5 and 6) showed
significant enrichment for GO terms related to development, morphogenesis and
differentiation. The heat maps of bulk RNA-seq data depict expression relative to
Gapdh expression (Supplementary Fig. 1c). To quantify global changes in gene
expression we calculated the L2 norm (Euclidean norm) for individual time points
including all genes with non-zero average expression across all time points. Dif-
ferences in the L2 norm between time points are reported in Supplementary Fig. 1e.

To reveal the identity of sorted subpopulations (Fig. 4c) the KeyGenes
algorithm23 was used with a panel of pre-/peri-implantation tissues21 as training
set. Since there were 3 replicates per tissue in the training set, leave-one-out cross-
validation had to be used instead of 10-fold cross-validation.

Expression in the long term cultured ectoderm- and XEN-like cells was
compared to these tissue expression data sets from the literature: neural progenitor
cells64, neural crest cells65, yolk sac66 and a XEN cell line67.

Differential expression between mESCs and ectoderm-like or XEN-like cells at
96 h (Supplementary Fig. 4e) was identified by an MA-plot based method using
biological replicates for all three conditions68.

Computational analysis SCRB-seq experiments. A histogram of the total
number of UMIs detected per cell is shown in Supplementary Fig. 2a. To reduce the
influence of technical noise we discarded cells with less than 2000 UMIs (red
vertical line in Supplementary Fig. 2). This cutoff nearly minimized the upper
bound of the counting error per gene (Supplementary Fig. 2b) estimated by

ε ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<UMI>

p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
#cells

p

while not significantly reducing the number of detected genes (13,720, Supple-
mentary Fig. 2c)—defined as the number of genes, which had more than one UMI
in more than one cell. Due to this cutoff 2451 out of 3456 measured cells were used
for further analysis (Supplementary Fig. 2e), where these are the numbers of cells
analyzed at each time point:

Time [h] 0 6 12 24 36 48 60 72 96

# cells 282 335 285 291 334 277 273 235 137

In individual cells with more than 2000 total UMIs 850 genes were detected on
average.

For all further analyses, except the calculation of Fano factors, the data was
normalized in the following way to account for differences in efficiency of
transcript recovery between wells: UMI counts were divided by the total number of
UMI counts per cell and then multiplied by the median of total UMI counts across
all cells growing in 2i/L. For the calculation of Fano factors (Fig. 1d) UMI counts
were down-sampled to 2000 UMI counts per cell. This down-sampling procedure
ensured that the contribution of counting error to the Fano factors was equal for all
cells from all time points. To include only those genes, which exhibited significant,
biological variability, we considered the coefficient of variation (CV) of individual
genes over all time points with respect to the mean expression level as well as the
CVs of ERCC spike-ins with known abundance (Supplementary Fig. 2f). The
increase in variability with decreased average expression reflected higher technical
and counting noise for lowly expressed genes. We used the 829 genes, which had
the 5% highest ratios of CV and the moving average of the CV for principal
component analysis, k-means clustering and t-SNE mapping (see below).

To further characterize the performance of SCRB-seq we first compared SCRB-
seq data averaged over cells for individual time points with bulk RNA-seq and
found them to be strongly correlated (Supplementary Fig. 2g, Pearson correlation

ρ= 0.75). We compared 100 randomly selected pairs of cells growing in 2i/L and
found that SCRB-seq measurements of individual cells were strongly correlated
(Supplementary Fig. 2h, Pearson correlation ρ= 0.63). By analysis of UMI counts
of ERCC spike-in RNA we determined that UMI counts scaled approximately
linearly with the spiked-in transcripts—the slope of a linear fit to the log-log plot of
spike ins vs. UMI counts was 0.78. The efficiency of transcript recovery as
determined from the offset of that linear fit was about 0.9% (Supplementary
Fig. 2i).

For principal component analysis (PCA) we considered genes, which belonged
to the upregulated clusters (clusters 5 and 6, Supplementary Fig. 1a) and were
among the most variable genes (Supplementary Fig. 2f). Prior to PCA expression
profiles of individual genes were converted to z-scores using the average expression
over all time points and the moving average of the coefficient of variation
(Supplementary Fig. 2f) to preserve biological variability. PCA was performed with
all cells across all time points and expression profiles of individual cells were then
projected on the principal components thusly determined. The genes with the
highest loadings in the first two principal components are listed in Supplementary
Fig. 3a and their loadings are represented graphically in Supplementary Fig. 3b.

To discover clusters of cells we used k-means clustering including all 829 most
variable genes with (1—Pearson correlation) as the distance metric. Cluster-wise
assessment of stability12 was used to determine the robustness of clusters. In
particular, we calculated the Jaccard similarities between clusters found in
bootstrapped samples. Clusterings resulting in Jaccard similarities close to 0.5 were
considered unstable. In this way two stable clusters were found for the 96 h time
point. For earlier time point cells were classified according to similarity with the
clusters found at 96 h or mESCs at 0 h. In particular, we first calculated the mean
expression profiles of mESCs, as well as the XEN-like and ectoderm-like
subpopulations at 96 h. Then Pearson correlation was calculated between those
average profiles and expression profiles of individual cells at earlier time points. A
cell was classified as a particular cell type when the correlation with this particular
cell type exceeded the correlation with all other cell types.

Gene expression of individual genes in the SCRB-seq data set was represented
in color by normalizing to the maximum expression per time point, linear
histogram stretching (1st to 99th percentile) and subsequent linear mapping to a
custom colormap (Supplementary Fig. 9d).

For t-distributed stochastic neighbor embedding (t-SNE) we considered genes,
which were among the most variable genes (Supplementary Fig. 2f). Prior to t-SNE
mapping profiles of individual genes were converted to z-scores using the average
expression over all time points and the moving average of the coefficient of
variation (Supplementary Fig. 2f) to preserve biological variability. One-
dimensional t-SNE maps were computed using the MATLAB Toolbox for
Dimensionality Reduction (v0.8.1—March 2013) (18, L.J.P. van der Maaten, http://
lvdmaaten.github.io/drtoolbox/). Expression of Rex1 was represented in color by
normalizing to the maximum expression, linear histogram stretching (0th to 95th
percentile) and subsequent linear mapping to a custom colormap.

The Fano factor reported in Fig. 1d is the Fano factor of individual genes
averaged over all significantly variable genes. For this calculation down-sampled
SCRB-seq data was used (see above). To determine the Fano factor of possible
subpopulations, cells were first clustered by k-means clustering. Then the Fano
factor was calculated separately for each cluster and averaged over all clusters. This
procedure was carried out repeatedly and the resulting Fano factors were again
averaged.

Hierarchical clustering of the SCRB-seq data (Supplementary Fig. 3) was
performed using standard MATLAB routines. The particular clustering method
was complete-linkage clustering using (1—Pearson correlation) as the distance
metric.

For pseudotime ordering of cells a correlation-based pseudotime was defined by
τ= Rpluri—0.5*(Rect + Rxen), where are Rpluri, Rect and Rxen are the Pearson
correlations of an individual expression profile with the average expression of
mESCs, ectoderm-like cells at 96 h and XEN-like cells at 96 h, respectively.

For comparison with expression in in vivo tissue21 we performed PCA on
standardized in vivo data using the 829 most variable genes defined above. We then
projected our standardized SCRB-seq data on the plane spanned by the first two
principal components.

Computational analysis SMART-seq2 experiments. Only cells with at least
200000 reads per cell were used, resulting in the following numbers of cells ana-
lyzed at the respective time points:

Time [h] 0 12 24 48

# cells 82 86 89 82

For all further analyses the data was normalized in the following way to account
for differences in the total number of reads between samples: RPKM for individual
genes were divided by the total number of RPKM per cell and then multiplied by
the median of total RPKM across all cells growing in 2i/L. Cells with high
expression of Cd24 or Pdgfra were classified as shown in Supplementary Fig. 9a.
Out of the 82 cells measured by SMART-seq2 at 48 h, 10 were considered XEN-like
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(Pdgfra high) and 29 ectoderm-like (Cd24 high). To compute p-values for gene
expression differences in these subpopulations we used a null model that assumes
that all cells were essentially identical and gene expression differences were only
due to biological and technical noise. We repeatedly sampled 10 or 29 cells,
respectively, with replacement from the pool of cells which did not express Pdgfra
or Cd24 and calculated the average expression level for each gene. The distribution
of average expression levels for each gene thusly obtained was then fit with a
normal distribution. The p-value was then calculated using this normal distribution
and the average expression level observed in the Cd24 or Pdgfra high cells.

To account for multiple hypothesis testing we used the Benjamini-Hochberg
procedure and set the false discovery rate to 0.05. Additionally, we required a
minimal fold-change of 2 and an absolute expression level bigger than 1
normalized RPKM for a gene to be accepted as differentially expressed Finally, we
considered only genes which were defined as transcriptional regulators by gene
ontology (GO) term annotation (GO:0003700, GO:0044212, GO:0045944,
GO:0006355, GO:0000981). We considered a gene to be expressed / not expressed
in the pluripotent state when it was robustly expressed (normalized RPKM> 5) in
at least 50% / less than 5% of the cells at 0 h.

We combined the transcriptional regulators identified in this way with
pluripotency network factors51 to arrive at a set of transcription factors which are
likely relevant for the lineage decision studied here. For the calculation of co-
expression (Fig. 6b, c) we considered a gene to be expressed at normalized RPKM
values over 1.

Single-molecule FISH. Cells growing in gelatinized tissue culture dishes were
washed twice with PBS, detached with Accutase (Life technologies) and resus-
pended in full medium. Formaldehyde was added to the cell suspension to a final
concentration of 4%. Cells were incubated for 12 min at room temperature while
being rotated and then spun down for 3 min at 90 x g. Subsequently cells were
permeabilized at least over night in 70% ethanol. For hybridization and imaging
cells were attached to chambered cover slides (Nunc Lab-Tek) coated with poly-l-
lysine.

In the case of intact colonies, adherent cells were fixed for 15 min with 4%
formaldehyde by adding formaldehyde to the growth medium and subsequently
permeabilized in 70% ethanol.

Oligonucleotide libraries with 20-nt probes for Nanog, Gbx2, Tbx3, Gata6 and
Pax6 were designed and fluorescently labeled as previously described40. Briefly, a
home-made MATLAB script was used to design probes with close to 45% GC
content. The probes were then checked for low-complexity sequences and binding
to other than the desired transcript by BLAST (https://blast.ncbi.nlm.nih.gov/Blast.
cgi). Suitable probes were ordered from Biosearch Technologies and fluorescently
labeled using a 3’-amine modification of the oligos and amine reactive dyes (GE
healthcare). The hybridization buffer used for smFISH contained 2 × SSC buffer, 25
or 40% formamide, 10% Dextran Sulphate (Sigma), E. coli tRNA (Sigma), Bovine
Serum Albumin (Ambion) and Ribonucleoside Vanadyl Complex (New England
biolabs). 50–75 ng of the desired probes were used per 100 µl of hybridization
buffer. (The mass refers only to pooled oligonucleotides, excluding fluorophores,
and is based on absorbance measurements at 260 nm). Probes were hybridized for
16–18 h at 30 °C, after which we washed cells twice for 30 min at 30 °C in wash
buffer (2 × SSC, 25% formamide (for all probes except Gbx2 and Tbx3) or 40%
formamide (for Gbx2 and Tbx3)), supplemented with Hoechst 33,342. For
microscopy, we filled the hybridization chamber with a mounting solution
containing 1 x PBS, 0.4% Glucose, 100 μg/ml Catalase, 37 μg/ml Glucose Oxidase,
and 2 mM Trolox. Imaging was done exactly as described previously69. Images
were taken on a NIKON Ti-E inverted fluorescence microscope equipped with a
Roper scientific PIXIS 1024B camera and a 100x oil immersion objective
(numerical aperture 1.49). Custom filters (Omega Optical) were used for imaging
TMR and Alexa 594 and a standard filter (Chroma) for Cy5. Exposure times ranges
between 1 and 3 s and the distance between planes in a z-stack was 0.3 μm Home-
made MATLAB scripts were used for image analysis. Cells positive for one of the
assayed genes were classified as shown in Supplementary Fig. 10b.

Quantification of the flow cytometry experiments. The distribution of cells in
the space of CD24 and PDGFRA expression was modeled by the sum of 4 bivariate
normal distributions. This model has in principle 19 free parameters (8 for the
means, 8 for the standard deviations and 3 for the size of the relative contribu-
tions). To ensure robust fitting to the date we reduced the number of parameters to
9 by keeping the standard deviations constant and only allowing 4 different values
for the means.

p x; y; f1; f2; f3; μ
low
x ; μlowy ; μhighx ; μhighy ; σx ; σy

� �
¼ f1 � N x; y; μlowx ; μlowy ; σx ; σy

� �
þ f2 � N x; y; μlowx ; μhighy ; σx; σy

� �

þ f3 � N x; y; μhighx ; μlowy ; σx ; σy
� �

þ 1�
X3
i¼1

fi

 !
� N x; y; μhighx ; μhighy ; σx ; σy
� �

N(x, y, µx, µy, σx, σy) is a bivariate normal distribution in x and y (PDGFRA and
CD24 expression, respectively) with mean (µx, µy) and standard deviation (σx, σy).
This model was fit to a reference data set (typically untreated control cells after 96 h
of RA exposure) by maximizing the log-likelihood −log(p). To subsequently
calculate the size of the fractions fi for a particular sample we first calculated the
probabilities that the expression values (x, y) found in a particular cell were drawn
from one the 4 normal distributions N(x, y, µx, µy, σx, σy). The cell was then
ascribed to the distribution from which it was most likely drawn.

Stochastic simulation of the lineage transition. We simulated the differentiation
process using a discretized version of the Langevin equation describing the system
(Euler method):

dX ¼ aX
Xn

θn þ Xn
þ b

θn

θn þ En
� kX

� �
Δþ

ffiffiffiffiffiffiffi
DΔ

p
N 0; 1ð Þ

dE ¼ aE
En

θn þ En
þ b

θn

θn þ Xn
� kE

� �
Δþ

ffiffiffiffiffiffiffi
DΔ

p
N 0; 1ð Þ

X and E indicate the expression levels of the XEN and ectoderm programs
respectively. N(0, 1) indicates a Wiener process with mean 0 and standard
deviation 1. D sets the strength of gene expression noise and Δ determines the size
of the time step. After initializing X and E randomly between 0 and 0.1 we first
equilibrated the system for 100 iterations. Subsequently, we propagated the system
for 200 additional iterations. To relate the simulation to experimental time scales,
the end point of the simulation was taken to be at 96 h. To model the exit from
pluripotency the degradation parameter k was switched from a high value (k= 10)
to a low value (k= 1) after 12 h (25 iterations), which allowed X and E to increase.
To model timed application of RA the auto-activation parameter for the XEN
program aX was switched at various points in time (no RA: aX= 0; RA: aX= 0.5).
For each condition we generated 10,000 trajectories and counted the number of
trajectories that ended at the XEN or ectoderm attractor (see Supplementary
Fig. 8b). The relative frequency of trajectories ending at the XEN attractor is
reported in Fig. 5e.

Used parameters.
n= 4
θ= 0.5
Δ= 0.05

pluripotency: k= 10
differentiation: k= 1

aE= 0.5
no RA:, aX= 0
RA: aX= 0.5

In Supplementary Fig. 8b
low noise: D= 0.0001
high noise: D= 0.01

Code availability. The MATLAB scripts used for data analysis and simulations are
freely available on request from the corresponding author.

Data availability. All raw and processed data is freely available from the GEO
repository (https://www.ncbi.nlm.nih.gov/geo/) under accession number
GSE79578.
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