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SUMMARY

Variability in gene expression contributes to pheno-
typic heterogeneity even in isogenic populations.
Here,we used the stereotyped,Wnt signaling-depen-
dent development of the Caenorhabditis elegans
Q neuroblast to probe endogenous mechanisms
that control gene expression variability. We found
that the keyHoxgene that orientsQneuroblastmigra-
tion exhibits increased gene expression variability in
mutants in which Wnt pathway activity has been
perturbed. Distinct features of the gene expression
distributions prompted us on a systematic search
for regulatory interactions, revealing a network of
interlocked positive and negative feedback loops.
Interestingly, positive feedback appeared to coop-
erate with negative feedback to reduce variability
while keeping the Hox gene expression at elevated
levels. A minimal model correctly predicts the
increased gene expression variability across mu-
tants. Our results highlight the influence of gene
network architecture on expression variability and
implicate feedback regulation as an effective mecha-
nism to ensure developmental robustness.

INTRODUCTION

Gene expression is inherently variable, even among isogenic

cells situated in identical environments (Raj and van Oudenaar-

den, 2008; Raj et al., 2008; Eldar and Elowitz, 2010; Balázsi

et al., 2011; Li and Xie, 2011). On the one hand, variability in

gene expression may confer beneficial phenotypic diversity.

For example, it may serve as a ‘‘bet-hedging’’ strategy for

isogenic microbial populations to ensure survival in fluctuating

environments (Thattai and van Oudenaarden, 2004; Kussell
and Leibler, 2005; Wolf et al., 2005; Acar et al., 2008; Beaumont

et al., 2009; Eldar et al., 2009) or as a ‘‘symmetry-breaking’’

mechanism to induce multiple cell fates from a single progenitor

cell type (Wernet et al., 2006; Chang et al., 2008; Kalmar et al.,

2009). On the other hand, excessive variability in gene expres-

sion could disrupt normal development and tissue maintenance,

leading to aberrant phenotypes (Aranda-Anzaldo and Dent,

2003; Chung and Levens, 2005; Henrichsen et al., 2009; Raj

et al., 2010). The remarkable robustness of numerous physiolog-

ical events implies that endogenous mechanisms must exist to

effectively control variability in gene expression (Nijhout, 2002;

Félix and Wagner, 2008; Boettiger and Levine, 2013).

In a simple model of constitutive gene expression, the equilib-

rium level of messenger RNA (mRNA) transcripts is expected to

follow a Poisson probability distribution. A distinct feature of the

Poisson distribution is that the ratio between the variance and

the mean, termed the Fano factor, equals exactly one, regard-

less of the detailed parameters. For genes under transcriptional

regulation, substantial deviations from the Poisson behavior

have been theoretically proposed (Kepler and Elston, 2001;

Friedman et al., 2006; Shahrezaei and Swain, 2008) and experi-

mentally observed in a series of studies (Golding et al., 2005; Cai

et al., 2006; Raj et al., 2006; Zenklusen et al., 2008). Such devi-

ation has often been attributed to transcriptional bursting, where

the promoter transitions stochastically between its active and

inactive states. In addition, fluctuation in the abundance of the

upstream regulators can also propagate to increase the vari-

ability of the target gene expression (Hooshangi et al., 2005;

Pedraza and van Oudenaarden, 2005; Rosenfeld et al., 2005;

Dunlop et al., 2008).

Pioneering theoretical and synthetic biology studies have

highlighted the potential of regulatory networks in controlling

gene expression variability. Negative feedback, a common

mode of regulation, has been shown to suppress variability in

synthetic gene expression systems (Becskei and Serrano,

2000; Austin et al., 2006). Positive feedback has been

extensively studied for its ability to induce multimodal or
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Figure 1. Using Single-Cell Transcript

Counting to Study the Control of mab-5

Expression

(A) Schematic representation of the activation of

MAB-5 expression in QL in response to the pos-

terior-to-anterior gradient of EGL-20/Wnt.

(B) Model of Wnt signaling based on published

studies. Question marks and gray edges indicate

lack of definitive evidence.

(C) Final position of QL descendants in wild-type

and various Frizzled loss-of-function mutants.

Unless otherwise noted, compound mutants carry

the same alleles as single mutants.

(D) Detection of mab-5 transcripts using smFISH

over the course of QL migration. Upper: QL at

different stages of its migration. V5 is a stationary

cell used as spatial reference. Lower: smFISH

staining of mab-5 transcripts in the same cells as

shown above. Yellow arrowheads: single mab-5

transcripts; white arrowheads: transcription cen-

ters in the nucleus. Scale bar represents 2.5 mm.

(E) mab-5 transcription dynamics in single QL

neuroblasts in wild-type animals. Upper: normal-

ized total MD for worms collected at different time

points after hatching. Black dots mark the mean,

and blue bars span 2.5–97.5 percentiles. Lower:

number of mab-5 transcripts per cell plotted

against MD. The histogram to the right is gener-

ated using data points to the left with MD > 8.

Black lines are generated by fitting to a sigmoidal

function. Red curves are generated by fitting with

two Gaussian distributions.

(F) mCherry transcription dynamics in the

POPTOP strain.

See also Figure S1.
‘‘switch-like’’ behavior in both synthetic and endogenous sys-

tems (Becskei et al., 2001; Xiong and Ferrell, 2003; Ozbudak

et al., 2004; Acar et al., 2005; Weinberger et al., 2005; To and

Maheshri, 2010). In contrast to the simplicity of synthetic circuits,

endogenous genes are embedded in densely connected net-

works with mixed feedback loops and multilayered cascades

(Milo et al., 2002; Davidson, 2010; Hirsch et al., 2010). Whether

and how regulatory networks regulate gene expression vari-

ability endogenously remain to be explored.

Caenorhabditis elegans provides an excellent model for study-

ing the endogenous control of gene expression variability. Its

highly stereotyped development (Sulston and Horvitz, 1977)

implicates underlying mechanisms that robustly control tran-

scriptional variability. Here, we study specifically the stereotyped

migratory decision of the C. elegansQ neuroblast. Two Q neuro-

blasts, QL and QR, are born at bilaterally symmetrical positions

in the C. elegans embryo but migrate oppositely along the ante-
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rior-posterior axis upon hatching (Fig-

ure 1A). In the left Q neuroblast (QL),

expression of the Hox gene mab-5/

Antennapedia is necessary and sufficient

to ensure the posterior migration of the

QL descendants. In the right Q neuroblast

(QR), however, the absence of mab-5
expression drives the cell to migrate toward the anterior (Salser

andKenyon, 1992; Harris et al., 1996). In wild-type animals,mab-

5 expression in QL is dependent on the canonical Wnt signal

transduced through the posteriorly produced Wnt ligand, EGL-

20 (Figures 1A and 1B; Whangbo and Kenyon, 1999; Coudreuse

et al., 2006). Two out of the four C. elegans Frizzled type Wnt re-

ceptors, MIG-1 and LIN-17, are required formab-5 expression in

QL (Harris et al., 1996). The other Frizzled homologs,mom-5 and

cfz-2, have also been implicated in the regulation of themigration

of QL descendants (Zinovyeva et al., 2008). Interestingly, Friz-

zled mutants exhibit varying degrees of partially penetrant

migratory defects, where a fraction of QL descendants reverse

to migrate anteriorly (Zinovyeva et al., 2008; Figures 1C and

S1A available online). Whether this phenotypic heterogeneity

originates at or downstream from mab-5 expression is unclear.

By combining single-cell transcript counting with genetic

manipulation, we identified a strong link between the variability



inmab-5 expression and the penetrance of the migratory pheno-

type. We observed a complex relationship between the vari-

ability and the mean levels of mab-5 expression, implicating

feedback regulation. A systematic search for regulatory interac-

tions revealed a network of positive and negative feedback loops

between the Frizzled receptors and theWnt signaling pathway. A

minimal network model captures the variability inmab-5 expres-

sion across mutants and provides mechanistic insights on how

the wild-type network achieves robustness. Our results demon-

strate, in a developmentally relevant context, the contribution of

a regulatory network to controlling gene expression variability.

RESULTS

Wnt Signaling Activates mab-5 Expression to a Stable
Range in Wild-Type QL
To explore the putative relation between mab-5 expression and

the phenotypic heterogeneity in the Wnt pathway mutants, it is

necessary to quantitatively comparemab-5 expression between

wild-type and mutants. We started by characterizing mab-5

expression in the wild-type QL neuroblasts (Figures 1D and

1E). Using single molecule fluorescent in situ hybridization

(smFISH, Raj et al., 2008), we counted mab-5 transcripts at

various stages of QL migration (Figure 1D). The total migratory

distance (MD) of QL and QR (Figure 1E, top, and Figure S1B)

was used as an indicator of migratory stage. Data from many

single QL cells were combined to obtain a population profile of

mab-5 expression dynamics (Figure 1E, bottom).

Before the onset of migration, mab-5 transcripts were present

at low levels in QL (Figures 1D and 1E, MD = 0–2). Thereafter,

QL began to polarize, and mab-5 transcripts started to appear in

the cytoplasm. Concurrently, nascent transcripts began to cumu-

late in the nucleus as bright transcription centers (TCs, Figures 1D

and S1C). The frequent appearance of paired TCs likely indicates

heightened transcriptional activity on both alleles (Raj et al., 2006).

After a period of initial variability, mab-5 expression converged

to around 50–60 transcripts per cell (MDR 8, Figure 1E). The vari-

ability in mab-5 expression stabilized to a Fano factor of 2.4.

This value is greater than the average measurement of 1.6 in

Escherichia coli (Taniguchi et al., 2010) yet is over 10-fold lower

than those reported for mammalian mRNAs (Raj et al., 2006).

Although Wnt signaling has been suggested as the main

activator of mab-5 transcription (Korswagen, 2002), whether it

acts directly within QL remains uncertain. We probed the cell-

autonomous role of Wnt signaling by blocking it either globally

or Q cell specifically using a dominant-negative form of POP-1/

TCF (DN-pop-1) (Korswagen et al., 2000). In both mutants, we

observed a more than 95% reduction in mab-5 transcripts in

QL (Figure S1D), confirming a cell-autonomous role of Wnt

signaling in activating mab-5 expression.

The above finding suggests thatmab-5 expression may serve

as an endogenous readout of Wnt pathway activity in QL. To

confirm this possibility, we first compared the transcription

dynamics of mab-5 to that of a mCherry transgene driven by a

pes-10 minimal promoter with seven POP-1 binding sites

(POP-1 and TCF Optimal Promoter [POPTOP]; Green et al.,

2008). The dynamics of mCherry transcripts closely resembled

that of mab-5 (Figures 1E and 1F). Furthermore, mutation of a
conserved TCF bindingmotif in themab-5 promoter (K. Cadigan,

personal communication) led to a significant reduction in re-

porter transgene expression (Figures S1E and S1F). Taken

together, these observations motivate the use of mab-5 tran-

script level as an endogenous readout of Wnt signaling in QL.

Three Frizzled Receptors Are Expressed in QL and
Exhibit Distinct Expression Dynamics
Becausemutation of different Frizzled paralogs leads to different

penetrance in migratory phenotype (Figures 1C and S1A), we

speculated that, apart from their difference in functional efficacy,

individual Frizzled paralogs may be expressed at different levels

in QL. To test this, we used paralog-specific smFISH to quantify

the expression of the four Frizzled receptors in QL. QL-specific

expression was detected for mig-1, lin-17, and mom-5, but not

for cfz-2 (Figures 2A and S2A). In addition to difference in

average abundance, these paralogs also differed in their tempo-

ral patterns of expression. mig-1 transcripts decreased from an

average of 27 copies per cell to less than 10 over the course of

migration. lin-17, on the opposite, rose from less than 10 copies

per cell to an average of 34. mom-5 was expressed at less than

10 copies per cell throughout QLmigration (Figure S2A). Outside

QL, the four Frizzleds also exhibited distinct global expression

patterns (Figure S2B).

Intuitively, a positive correlationmay be expected between the

expression of a receptor and that of its signaling target. A nega-

tive correlation was, however, observed between the abundance

ofmig-1 transcripts and that ofmab-5 (Figure 2B, Pearson’s R =

�0.67, p < 0.001). Compared to mig-1, mutation of lin-17 leads

to a weaker migratory defect (Figure 1C). However, a strong

positive correlation was observed between lin-17 and mab-5

transcripts at the single-cell level (Pearson’s R = 0.91, p <

0.001). No significant correlation was observed between mom-

5 andmab-5 (Pearson’s R = 0.02, p > 0.5). Together, the distinct

transcriptional and correlation profiles suggest that divergent

transcriptional regulatory programs exist upstream of the Friz-

zled receptors.

Frizzled Mutants Exhibit Different Degrees of Variability
in mab-5 Expression
Having assessed mab-5 and Frizzled expression in the wild-

type, we next asked howmab-5 expression is affected by muta-

tions in the Frizzled receptor genes. Previously, reduction in

MAB-5 antibody staining has been reported in mig-1 and lin-17

single mutants (Harris et al., 1996). In agreement, we observed

a strong reduction in mab-5 transcripts in QL in most of mig-

1(e1787) single mutants (Figure 3A). A small fraction of QLs,

however, retained significant levels of mab-5 expression (20

transcripts per cell or higher). Cell-to-cell heterogeneity was

also evident in the lin-17(n671) single mutant. Individual QLs

exhibited between very low to a near-wild-type amount of

mab-5 transcripts. The mom-5(gk812) mutant, unlike the wild-

type, exhibited high variability in mab-5 expression beyond the

initial phase of QL migration (MD > 5, note cells with <25 copies

of mab-5). In comparison, mab-5 levels in the cfz-2(ok1201)

mutant were indistinguishable from the wild-type.

Homozygous mutation in two or more of the three Frizzled

receptors (mig-1, lin-17, and mom-5) resulted in nearly
Cell 155, 869–880, November 7, 2013 ª2013 Elsevier Inc. 871



Figure 2. Three Frizzled Paralogs Are

Dynamically Transcribed in QL

(A) smFISH staining and single-cell transcript

counts for the four C. elegans Frizzled paralogs

over the course of QL migration.

(B) Single-cell correlation between Frizzled and

mab-5 transcript counts. Shades of dots indicate

corresponding MD value.

See also Figure S2.
complete loss of mab-5 expression in QL (Figure 3A). In

contrast, heterozygotes of these mutants exhibited similar

average mab-5 levels as the wild-type. Interestingly, hetero-

zygotes of the Frizzled triple mutant (triple het) showed

increased variability in mab-5 expression, where a small frac-

tion of late-stage QLs contained less than 20 mab-5 transcripts

(Figure 3A). This observation, together with those from the

single mutants, indicates that partial reduction of Frizzled re-

ceptor function could disrupt the reliable activation of mab-5

transcription in QL.

Motivated by the recent discovery that variability in gene

expression underlies partial penetrance (Raj et al., 2010), we

questioned whether variability inmab-5 transcript level is predic-

tive of the phenotypic penetrance of different mutants. We

hypothesized that mab-5 expression must exceed a certain

threshold to prevent the QL descendants from migrating anteri-

orly. Under this hypothesis, we searched (Figure S3C) and found

threshold values of around 25 transcripts per cell (Figure 3C) to

yield accurate predictions of the phenotypic penetrance. mom-
872 Cell 155, 869–880, November 7, 2013 ª2013 Elsevier Inc.
5 single and compound mutants were

not included in this analysis due to

the mab-5-independent requirement of

mom-5 for anterior migration (Zinovyeva

et al., 2008). Thus, upregulating mab-5

expression above a certain threshold

may be critical in driving robust migratory

decisions of the QL descendants.

Perturbing EGL-20 and MAB-5
Function Increases Variability in
mab-5 Expression
To test whether the increase in mab-5

variability is unique to the Frizzled mu-

tants, we next perturbed the input to the

Wnt pathway, the EGL-20/Wnt gradient.

We used the vps-29 (tm1320) mutant in

which destabilization of the retromer

complex leads to a shortened and

reduced EGL-20 gradient (Coudreuse

et al., 2006). In these mutants, mab-5

expression was reduced to below 25

transcripts per cell in around 10% of

QLs (Figure 3B). The variability in mab-5

expression was again predictive of the

phenotypic penetrance: about 13% of

the QL descendants were misplaced

anteriorly (Figure 3C).
Conversely, we tested the effect of EGL-20 overexpression by

expressing an EGL-20 transgene under the control of a heat

shock promoter (Whangbo and Kenyon, 1999). The increased

EGL-20 concentration (Figure S3B), however, did not signifi-

cantly increase the average level ofmab-5 expression (Figure 3B,

Mann-Whitney test, p > 0.1). Rather, mab-5 expression in late-

stage QLs appeared less variable (F test p < 0.05) than the

wild-type. Although increased variability is frequently accompa-

nied by reduced expression levels, this was not the case in the

smg-1(e1228); mab-5(e1239) mutant (see Supplemental Infor-

mation for motivations to use the smg-1(e1228) background).

Instead, an increase in averagemab-5 level coincided with an in-

crease in cell-cell variability (F test p < 0.001) (Figure 3B).

A Complex Relationship Exists between mab-5

Variability and Average Expression Level
To quantitatively compare the variability inmab-5 expression, we

next calculated the Fano factor of mab-5 transcript levels for

both wild-type and mutants.



Figure 3. Wnt Signaling Mutants Exhibit

Different Variability in mab-5 Expression

(A) Dynamic and steady-statemab-5 expression in

Frizzled single and compound mutants.

(B) Dynamic and steady-statemab-5 expression in

mutants with altered EGL-20/Wnt gradient or loss

of MAB-5 function.

(C) Correlation between mab-5 transcript levels

and the migratory phenotype of QL descendants

in various Wnt pathway mutants. Same mutant

alleles as listed in (A) and (B).

(D) Fano factor versus the steady-state mean of

mab-5. Wild-type is marked in red. Gray broken

line: Fano factor = 1. Error bars are 95% confi-

dence intervals (CI).

See also Figure S3.
In most strains, Fano factors were initially high and decreased

to stable values over the course of migration (Figure S3D).

Plotting the steady-state Fano factor against the average tran-

script level revealed several interesting features (Figure 3D).

First, Fano factor varied greatly across strains (range: 0.95–

11.5). Thus, constitutive transcription with Poisson dynamics is

insufficient to explain our observations. Alternatively, a model

of bursty transcription would predict Fano factor to increase (if

burst size is modulated) or decrease (if burst frequency is modu-

lated) monotonically with the mean (Raser and O’Shea, 2004).

However, the observed relation could not be summarized in a

simple monotonic function (Figure 3D). Furthermore, whereas

mutant QLs with reduced mab-5 expression exhibited variable

numbers of TCs (between 0 and 2) per nucleus, suggestive of

bursty transcription (Figure S3E), the smg-1;mab-5 mutant,

which consistently exhibited two TCs per nucleus and high
Cell 155, 869–880,
mab-5 synthesis rate (Figures S3F and

S3G), nonetheless showed increased

variability in mab-5 levels. As common

models could not fully explain the com-

plex relationship between mab-5 vari-

ability and average expression level,

other mechanisms, likely upstream of

mab-5 transcription, may play a role to

influence mab-5 expression variability.

All Three Frizzleds Are
Transcriptional Targets of the Wnt
Pathway
As mab-5 expression consisted of

distinct high and low subpopulations in

a number of mutants (e.g., the mig-1

single mutant and the triple heterozy-

gotes), a feature attainable in systems

with positive feedback (Becskei et al.,

2001), we wondered whether feedback

regulation exists within the Wnt pathway

in QL. Although Wnt signaling is con-

ventionally viewed as a feedforward

cascade, evidence from nonnematode

species suggests that feedback regula-
tion exists and may play a role in Wnt pathway regulation (Cadi-

gan et al., 1998; Sato et al., 1999; Willert et al., 2002).

To test whether Frizzled receptors are transcriptional targets of

the Wnt pathway, we blocked Wnt signaling both globally and Q

cell specifically. In both cases, we observed a more than 2-fold

difference in the transcript levels of all three Frizzled genes (Fig-

ure 4A). In addition, the temporal dynamics of mig-1 and lin-17

transcription were lost in the mutants. Together, these observa-

tions indicate a role of feedback regulation in determining the

levels and temporal dynamics of Frizzled expression (Figure 2A).

By ranking various Wnt signaling mutants by their average

mab-5 levels, we established a mutant series in which Wnt

signaling level in QL varied in a graded manner (Figure 4B, left).

In the majority of the strains, low levels of mab-5 expression

were consistently accompanied by low levels of lin-17 and high

levels of mig-1 and mom-5 and vice versa. These observations
November 7, 2013 ª2013 Elsevier Inc. 873



Figure 4. Frizzled Paralogs, mig-1, lin-17,

and mom-5, Are Transcriptional Targets of

the Wnt Pathway

(A) Dynamic and steady-state (MD > 8) Frizzled

transcript levels in mutants with global or QL-

specific blockade of EGL-20-dependent Wnt

signaling. Same wild-type data as Figure 2A.

****p < 0.0001.

(B) Normalized expression levels of Frizzleds and

mab-5 in various genetic backgrounds. Only

values significantly different from the wild-type

(FDR corrected p < 0.05) were colored. Genotypes

are indicated atop the bar graph with samemutant

alleles as indicated previously. Error bars are 95%

CI of the mean.
are again consistent with the notion of Frizzled receptors as tran-

scriptional targets of Wnt signaling.

An exception to the above trend was found in the smg-1;

mab-5 mutants in which an increase in mab-5 levels was

observed with a concurrent increase in lin-17 and a decrease

in mom-5 (Figure 4B, right). This exception suggests that func-

tional MAB-5 is required for the feedback regulation of lin-17

and mom-5. Meanwhile, the fact that mig-1 expression remains

unaltered in mab-5 mutants suggests that the transcriptional

feedback on mig-1 is likely mab-5 independent. Thus, both

mab-5-dependent feedback and mab-5-independent feedback

appear to exist in the Wnt signaling pathway in QL.

Interlocked Positive and Negative Feedback Loops Exist
within the Wnt Pathway
We next sought to incorporate the feedback interactions into a

network model of the Wnt pathway. With feedback, perturbation
874 Cell 155, 869–880, November 7, 2013 ª2013 Elsevier Inc.
to a single gene can propagate to affect

many genes in the network, making it

difficult to deduce the immediate targets

of the perturbed gene. We tackled this

general challenge in network inference

by employing Modular Response Anal-

ysis (MRA, Bruggeman et al., 2002; Kho-

lodenko et al., 2002) (Figure 5A). This

algorithm is robust to unknown network

components and reports only inter-

actions between ‘‘closest neighbors’’ to

avoid redundant reference to the same

network structure.

Applying MRA to the average tran-

scription profiles, we obtained a complex

network of interlocked feedback loops

(Figures 5B, 5C, and S4A–S4C). At the

receptor level, positive feedback target-

ing lin-17 and negative feedback target-

ingmig-1 andmom-5 are coupled by their

shared dependence on Wnt signaling.

Downstream of the Wnt pathway, mab-5

not only mediates feedback to the Friz-

zleds but also negatively regulates its

own transcription.
As Hox genes are master regulators with many transcriptional

targets, wewonderedwhethermab-5, anAntennapedia-like Hox

gene, regulates the expression of the Frizzled receptors and of

itself by directly binding to the cis-regulatory regions of the

respective genes. Previous chromatin immunoprecipitation

sequencing (ChIP-seq) analysis (Niu et al., 2011) on L3 stage

larvae has identified MAB-5 binding regions in the promoters

and sometimes intronic regions of the above genes. To assess

whether the same regions are also bound by MAB-5 during the

time of Q neuroblast migration, we performed ChIP-qPCR on

synchronized L1 animals, pulling down the GFP tag on the

MAB-5::GFP fusion protein. Among the sequences tested,

enrichment of MAB-5::GFP binding was specifically observed

in the third intron of mab-5 (Figure 5D). To confirm this, we built

transgenic strains expressing mCherry under the control of both

mab-5 promoter and intronic sequences (Figure 5E, Supple-

mental Information). Interestingly, elimination of the MAB-5



Figure 5. Inferring the Regulatory Network

within the Wnt Pathway Using the MRA

Algorithm

(A) Schematic of the work flow for implementing

the MRA algorithm.

(B) Inferred connectivity matrix. Network compo-

nents listed on top of the matrix represent putative

regulators, and those listed on the right represent

putative regulatory targets. Only significant

(p value with Bonferroni correction < 0.05) in-

teractions are colored based on the inferred

interaction strengths.

(C) Revised Wnt pathway model based on the

inference results.

(D) ChIP-qPCR reveals MAB-5::GFP binding to the

intronic regions of the mab-5 gene. Light blue: the

promoter regions, where exons and introns are

marked in black and white, respectively. Yellow:

sequences enriched for MAB binding in the L3

stage (Niu et al., 2011). Numbers in red: locations

of qPCR primers that target putative MAB-5

binding sites. Numbers in blue: locations of

primers that target putative negative control re-

gions (i.e., exonic or 30 untranslated regions). n = 3

for all putative MAB-5 binding sites, and n = 2 for

all negative control regions.

(E) Upper: schematic of the control and mutated

reporter constructs carrying regulatory and

coding sequences from the mab-5 gene. Red

crosses: sites of deletion. Lower: quantification of

mCherry smFISH signal in QL neuroblasts in

strains carrying reporters of mab-5 regulatory

sequence. Normalized pixel intensity is quan-

tified as the sum of the top 20% pixel values in

QL normalized by the average pixel intensity

of single smFISH spots in the same image.

Error bars are SDs of the mean. For each con-

dition, two independent extrachromosomal lines

(red and blue) were examined. n > 15 for each

strain.

See also Figure S4.
binding regions specifically in the third intron induced a strong

increase in mCherry expression both within (Figures 5E and

S5E) and outside (Figure S4E) QL. Thus, the results from both

approaches support a direct role of mab-5 in repressing its

own transcription. We additionally built reporter strains to test

putative MAB-5 binding motifs in the regulatory regions of lin-

17 and mom-5 (Figure S4F). However, no significant difference

in transgene expression was found upon mutation of the

selected motifs.

Positive and Negative Feedback Cooperate to Minimize
Variability
To probe whether and how network topology influences

the variability in mab-5 expression, we constructed an ordinary

differential equation (ODE) model of the inferred network

(Table S1 and Supplemental Information). We first obtained

model parameters by fitting the full 5-component model to
average gene expression profiles (Figure S5A, Table S2,

and Supplemental Information). The full model was then

reduced to a one-dimensional (1D) model by exploiting time-

scale differences (Figures 6A and S5B and Supplemental

Information).

We then extended the deterministic model to a stochastic one

and derived the expected Fano factor and mean level of the

network output. To explore the general impact of network

topology on the variability in its output, we modified the wild-

type network to explore four different classes of topologies:

those with no feedback, with negative feedback only (NFB

only), with positive feedback only (PFB only), and with inter-

locked positive and negative feedback (IFB, Figure 6B). We

then randomly varied the strengths (i.e., the half-activation

threshold) and the amount of cooperativity of each feedback

interaction between 0 to 10 times their wild-type values while

keeping other parameters fixed.
Cell 155, 869–880, November 7, 2013 ª2013 Elsevier Inc. 875



Figure 6. Modeling Reveals Synergistic

Contribution of Positive and Negative Feed-

back in Reducing Output Variability

(A) Schematic of the reduced 1D model.

(B) Analytically derived Fano factor versus mean

output values for networks with IFB, NFB only,

PFB only, and no feedback.

(C) Upper: mean output value of the interlocked

feedback network as a function of feedback

strengths. Lower: replotting of the broken and

dotted lines in the upper panel. Note difference in

mean expression level at high PFB strength.

(D) Upper: Fano factor value of the interlocked

feedback network as a function of feedback

strengths. Lower: Replotting of the broken and

dotted lines in the upper panel. Note the difference

in Fano factor value at high PFB strength.

See also Figure S5 and Tables S1 and S2.
As illustrated in Figure 6B, different classes of networks occu-

pied distinct domains of the Fano factor versus mean output

space. Low output variability and low mean output levels were

generally found in NFB-only networks, whereas the opposite

was true for PFB-only networks. This variability versus mean

trade-off was alleviated in networks with IFB. Many of the

randomly sampled IFB networks occupied the lower right quad-

rant (i.e., low variability and highmean), a region hardly accessed

by the other types of networks (see also Figure S5C).

We focused next on the IFB network and examined how

output mean and variability depend on feedback strength. We

found that output mean consistently decreased with strong

negative feedback and increased with strong positive feedback.

The effect of negative feedback was essentially compensated by

positive feedback, resulting in intermediate mean values when

both are strong (Figure 6C).

Meanwhile, output variability consistently decreased with

strong negative feedback (Figure 6D; see also Figure S5E),

which is consistent with results from synthetic circuits (Becskei

and Serrano, 2000; Austin et al., 2006). With a fixed level of

negative feedback, the extent to which variability was damp-

ened, however, depends strongly on the strength of the posi-

tive feedback. While the Fano factor decreased to around 0.6

at low positive feedback strength, it rapidly dropped to less
876 Cell 155, 869–880, November 7, 2013 ª2013 Elsevier Inc.
than 0.5 at high positive feedback

strength (Figure 6D, dotted line). As a

result, the lowest Fano factor values

were found when both positive and

negative feedback were strong. Thus,

positive feedback indirectly promotes

low variability by increasing the mean

expression level (Figure S5D).

We additionally explored the depen-

dence of output variability on the

timescales at which the two types of

feedback operate. Consistent with pre-

vious theoretical (Hornung and Barkai,

2008) and experimental studies (Austin

et al., 2006), we found that Fano factor
generally increased with fast positive feedback and with slow

negative feedback (Figure S5F).

Model Predicts mab-5 Variability in the Mutants
Because our network model was inferred and parameterized

using average expression levels, we wondered whether it could

predict the observed variability in mab-5 expression. The

observed variability likely originates from both intrinsic and

extrinsic sources. To account for the latter, we included a param-

eter (D) to describe the effect of extrinsic fluctuations and deter-

mined its magnitude by fitting to the wild-typemab-5 distribution

(Supplemental Information). Remarkably, the revised model not

only captured the distribution of mab-5 levels in the wild-type

but also predicted the changes in mab-5 variability in various

Wnt pathway mutants (Figures 7A, 7B, and S6A). Thus, alter-

ations in network topology likely underlie the changes in mab-5

variability across themutants. Conversely, the wild-type network

may contribute strongly to the observed low variability in mab-5

expression.

Together, our results support a model in which variability in

gene expression is controlled through a network of interlocked

positive and negative feedback within the Wnt signaling

pathway. The signal-amplifying effect of the positive feedback

appears to be co-opted to ensure a strong negative feedback,



Figure 7. Model Predicts Variability in

Various Strains

(A) Model prediction of the distribution of mab-5

transcript levels in wild-type and various Wnt

signaling mutants. Network diagrams indicate

the speculated changes in network topology.

Gray arrows indicate weakened interactions, and

double arrows symbolize an increase in EGL-20

concentration. egl-20sm: egl-20 secretion mutant;

egl-20ove: egl-20 overexpression mutant.

(B) Theoretically predicted versus the experimen-

tally measured Fano factor values for the strains

shown in (A). Error bars are 95% CI of the mean.

(C) Conceptual model of the interplay between

the positive and the negative feedback in reducing

variability.

See also Figure S6.
one that is needed to effectively dampen fluctuations in gene

expression (Figure 7C). Increasing evidence of feedback regula-

tion challenges the conventional notion of signaling pathways as

linear, unidirectional cascades. It is likely the rule rather than the

exception that feedback regulation is widely exploited in devel-

opment and homeostasis to ensure robust control of gene

expression.

DISCUSSION

Regulatory Network as an Endogenous Mechanism to
Control Variability
Theoretical and synthetic studies over the past decade have

provided ‘‘proof-of-principle’’ evidence that a regulatory network

can be exploited to limit, tolerate, or amplify gene expression

variability. Two common regulatory modules, positive feedback

and negative feedback, have each been examined in detail. The

joint action of the two, however, appears more complex (Acar

et al., 2005; Brandman et al., 2005). Interlocked positive and

negative feedback has been found to play a critical role in oscil-

latory systems (Ferrell et al., 2011). Our findings suggest that

the samemotif can be adapted to ensure stable gene expression

at high levels. The versatility of the interlocked feedback motif

exemplifies the rich potential of regulatory networks in imple-

menting robust gene expression control.
Cell 155, 869–880,
Extrinsic versus Intrinsic
Mechanisms in Controlling Gene
Expression Variability
As regulatory networks often act up-

stream of the transcriptional machinery,

they serve as ‘‘extrinsic’’ mechanisms in

modulating transcriptional variability. In

contrast, mechanisms that directly affect

the assembly and release of the tran-

scription machinery, such as promoter

architecture (Boeger et al., 2008), chro-

matin organization (Weinberger et al.,

2012), and the pausing of RNA polymer-

ase II (Levine, 2011; Lagha et al., 2012),

would serve as ‘‘intrinsic’’ mechanisms.

Although both types of mechanisms
have been extensively studied, how the two interact to influence

gene expression variability is only beginning to be explored.

The results of this study implicate that extrinsic mechanisms

may act through intrinsic mechanisms to modulate gene expres-

sion variability. Among the Wnt mutants we examined, a partial

reduction in mab-5 expression was often accompanied by a

reduced and heterogeneous presence of transcription centers

(Figure S3E). Thus,mab-5 transcriptionmay be inherently bursty,

where the burst frequency and the burst size may be subject to

modulation by extrinsic factors such as the Wnt signal. By

promoting a strong Wnt signal, the regulatory network may

efficiently reduce the burstiness and thereby dampen the vari-

ability in mab-5 transcription. Mechanistically, a strong Wnt

signal may allow BAR-1/b-catenin to reliably bind to POP-1/

TCF, thus promoting robust release of polymerase II from the

mab-5 promoter region.

Cell-to-Cell Variability Carries Signatures of Network
Topology
An emerging view in the study of stochastic gene expression

argues that variability, or noise, can inform about the underlying

mechanism of regulation (Ca�gatay et al., 2009; Chalancon et al.,

2012; Munsky et al., 2012). In this study, we used average gene

expression to infer network topology and found a surprising link

between network topology and the variability in gene expression.
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In retrospect, signatures of network topology may already be

found in the variability in mab-5 expression.

For example, low variability in the wild-type and the inability

to increasemab-5 level via EGL-20/Wnt overexpression suggest

the existence of a negative feedback loop (Figures 3B and 3D).

An experiment that eliminates the putative negative feedback

was thus carried out to test this possibility (Figure 3B). Similarly,

the distinct subpopulations ofmab-5ON and OFF cells in strains

such as the mig-1 single mutant implicate the existence of

positive feedback. Furthermore, we observed at the single-cell

level a strong positive correlation between lin-17 and mab-5

levels in both the wild-type and multiple mutants in which both

genes are intact (data not shown). This strong single-cell corre-

lation may be attributed to a common upstream regulator

(Dunlop et al., 2008) or a feedback loop. Both mechanisms

turned out to exist in the inferred network (Figure 5C). Thus,

cell-to-cell variability in gene expression may carry distinct

signatures of the underlying network and serve as a useful guide

to network identification.

EXPERIMENTAL PROCEDURES

C. elegans Strains and Culture

C. elegans strains were grown at 20�C using standard culture conditions. A full

list of mutant alleles and transgenes are described in the Supplemental

Information.

Scoring QL Descendent Migration

The precise positions of the Q descendants QL.pap/QL.paa were scored by

DIC microscopy in late L1 stage larvae as described (Coudreuse et al., 2006).

Single-Molecule Fluorescence In Situ Hybridization

SmFISH was performed as described (Raj et al., 2008). Manual segmentation

of GFP-marked QL periphery was performed, followed by automated spot

counting in MATLAB-based custom-written software. Total MD was assayed

by manually marking the nuclear position of QL and QR, tracing the A-P axis

of the worm, and automatically computing the distance between QL and QR

along the A-P axis. All smFISH probe sequences are listed in Table S3.

Heat Shock Activation of hsp::egl-20

Heat shock experiments were performed on egl-20(n585) animals carrying

muIs53 [hsp::egl-20; unc-22(dn)] as described (Whangbo and Kenyon,

1999). Briefly, heat shock treatment was given to 0–0.5 hr synchronized L1

larvae in a total volume of 50 ml at 33�C for a desired length of time. Heat shock

was terminated by chilling tubes on ice for 10 s, and worms were then grown

on fresh plates at 20�C for an additional 2–2.5 hr.

ChIP-qPCR

Synchronized animals aged 3–5 hr posthatchingwere fixed in fresh 1%PFA for

30 min (Mukhopadhyay et al., 2008). Fixed samples were incubated with

400 mg/ml pronase in 0.1% SDS at 37�C for 15 min, followed by sonication

and subsequent immunoprecipitation using the EpiTectChIP One-Day Kit

(SABiosciences). Upon DNA elution, qPCR was performed immediately using

the Phusion Master Mix (NEB). All ChIP-qPCR signals were normalized to total

input DNA. qPCR primer sequences are listed in Table S4.

Cloning

mab-5 and Frizzled regulatory sequences were PCR amplified from N2

genomic DNA. To mutate putative MAB-5 binding motifs (11 bps) by base

pair substitution, we used site-directed mutagenesis followed by gateway

cloning to obtain transcriptional mCherry fusion constructs. To delete

stretches of MAB-5 binding regions (<700 bp), we used yeast-mediated ho-

mologous recombination to clone genomic sequences and the mCherry cod-
878 Cell 155, 869–880, November 7, 2013 ª2013 Elsevier Inc.
ing sequence into the pNP30 vector (kind gift of N. Paquin).Pegl-17::DN-pop-1

was made by cloning DN-pop-1 from the Phs::DN-pop-1 construct (Korswa-

gen et al., 2000). Where feasible, transgenes were integrated into the genome

as single copies using Mos1-mediated transgenesis as previously described

(Frøkjaer-Jensen et al., 2008). See also the Extended Experimental

Procedures.

Network Inference

Gene expression data from a defined window of QL migration (MD > 8) were

used for network inference. All transcript counts were normalized to the

wild-type mean, and the MRA algorithm (Kholodenko et al., 2002) was itera-

tively applied to bootstrap samples of the normalized data. The resulting

distributions of interaction strengths were used to determine the significance

of each putative interaction. See also the Extended Experimental Procedures.

Modeling

An ODE model was constructed based on the inferred network. Genetic inter-

actions were described in Hill function form. Model parameters were obtained

through nonlinear least square fitting to the gene expression data. The deter-

ministic ODE model was extended to a Langevin-type stochastic model, from

which Fano factors were analytically derived and numerically evaluated. See

also the Extended Experimental Procedures for more details.

Statistical Analysis

TheMann-Whitney test was used to compare mean expression levels, and the

F test was used to test equal variance between the wild-type and mutants.

Nonparametric bootstrap was used to derive confidence intervals on average

transcript counts and Fano factors values. The Benjamini-Hochberg proce-

dure was used to achieve a false discovery rate (FDR) of less than 0.04 for

comparison of transcript abundance; the Bonferroni correction with n = 20

was applied to the bootstrap p values of the inferred network interactions. Cor-

rected p value of less than 0.05 was considered significant.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, six

figures, and four tables and can be found with this article online at http://dx.

doi.org/10.1016/j.cell.2013.09.060.
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