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SUMMARY
Recent advances in single-cell sequencing technologies have enabled simultaneous measurement of multi-
ple cellular modalities, but the combined detection of histone post-translational modifications and transcrip-
tion at single-cell resolution has remained limited. Here, we introduce EpiDamID, an experimental approach
to target a diverse set of chromatin types by leveraging the binding specificities of single-chain variable frag-
ment antibodies, engineered chromatin reader domains, and endogenous chromatin-binding proteins. Using
these, we render the DamID technology compatible with the genome-wide identification of histone post-
translational modifications. Importantly, this includes the possibility to jointly measure chromatin marks
and transcription at the single-cell level. We use EpiDamID to profile single-cell Polycomb occupancy in
mouse embryoid bodies and provide evidence for hierarchical gene regulatory networks. In addition, we
map H3K9me3 in early zebrafish embryogenesis, and detect striking heterochromatic regions specific to
notochord. Overall, EpiDamID is a new addition to a vast toolbox to study chromatin states during dynamic
cellular processes.
INTRODUCTION

Histone post-translational modifications (PTMs) contribute to

chromatin structure and gene regulation. The addition of PTMs

to histone tails can modulate the accessibility of the underlying

DNAand form a binding platform formyriad downstream effector

proteins. As such, histone PTMs play key roles in a multitude of

biological processes, including lineage specification (e.g., Juan

et al., 2016; Nicetto et al., 2019; Pengelly et al., 2013), cell cycle

regulation (e.g., Hirota et al., 2005; W. Liu et al., 2010), and

response to DNA damage (e.g., Rogakou et al., 1998; Sanders

et al., 2004).

Over the past decade, antibody-based DNA-sequencing

methods have provided valuable insights into the function of his-

tone PTMs in a variety of biological contexts. Most studies

employ ChIP-seq (chromatin immunoprecipitation after formal-

dehyde fixation [Solomon and Varshavsky, 1985]), or strategies

based on in situ enzyme tethering such as chromatin immuno-

cleavage (ChIC) (Schmid et al., 2004), and its derivative cleavage

under targets and release using nuclease (CUT&RUN) (Skene
Molecular Cell 82, 1–1
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and Henikoff, 2017). However, the requirement of high numbers

of input cells consequently provides a population-average view,

which disregards the complexity of most biological systems. As

a result, several low-input methods have been developed that

can assay histone PTMs in individual cells, including but not

limited to Drop-ChIP (Rotem et al., 2015), ChIL-seq (Harada

et al., 2019), ACT-seq (Carter et al., 2019), single-cell ChIP-seq

(Grosselin et al., 2019), single-cell ChIC-seq (Ku et al., 2019), sin-

gle-cell adaptation of CUT&RUN (Hainer et al., 2019), CUT&Tag

(Kaya-Okur et al., 2019), CoBATCH (Wang et al., 2019), single-

cell itChIP (Ai et al., 2019), and sortChIC (Zeller et al., 2021).While

these techniques offer an understanding of the epigenetic het-

erogeneity between cells, they do not provide a direct link to

other measurable outputs. Recently, however, three methods

have been developed that jointly profile histone modifications

and gene expression: Paired-Tag (parallel analysis of individual

cells for RNA expression and DNA from targeted tagmentation

by sequencing) (Zhu et al., 2021), CoTECH (combined assay of

transcriptome and enriched chromatin binding) (Xiong et al.,

2021), and SET-seq (same cell epigenome and transcriptome
5, May 19, 2022 ª 2022 The Author(s). Published by Elsevier Inc. 1
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sequencing) (Sun et al., 2021). These techniques thus enable

linking of gene regulatory mechanisms to transcriptional output

and cellular state. Of note, all three methods rely on antibody

binding for detection of histone modifications and Tn5-mediated

tagmentation for sequencing library preparation. As can be

expected from its implementation in ATAC-seq (assay for trans-

posable-accessible chromatin using sequencing) (Buenrostro

et al., 2013), the Tn5 transposase has a high affinity for exposed

DNA in open chromatin. While approaches exist to mitigate this

bias (Kaya-Okur et al., 2020), a recent systematic analysis of

Tn5-based studies has provided preliminary indications that

accessibility artifacts persist (Zhang et al., 2021).

We recently developed scDam&T-seq, a method that mea-

sures DNA-protein contacts and transcription in single cells by

combining single-cell DamID and CEL-Seq2 (Rooijers et al.,

2019). DamID-based techniques attain specificity by tagging a

protein of interest (POI) with the E. coli Dam methyltransferase,

which methylates adenines in a GATC motif in the proximity of

the POI (Filion et al., 2010; van Steensel and Henikoff, 2000; Vo-

gel et al., 2007). The approach is especially suited for single-cell

studies, because DNA-protein contacts are recorded directly on

the DNA in the living cell, and downstream sample handling is

limited. However, Dam cannot be tethered directly to post-trans-

lationally modified proteins by genetic engineering, which has

precluded the use of DamID for studying histone PTMs.

Here, we present EpiDamID, an extension of existing DamID

protocols, based on the fusion of Dam to chromatin-binding

modules for the detection of various types of histone PTMs.

We validate the specificity of EpiDamID in population (Figure 1)

and single-cell samples (Figure 2). Subsequently, we leverage

its single-cell resolution to study the Polycomb mark

H3K27me3 and its relationship to transcription in mouse

embryoid bodies (EBs) (Figure 3) and identify distinct Poly-

comb-regulated and Polycomb-independent hierarchical TF

networks (Figure 4). Finally, we implement a protocol to assay

cell type-specific patterns of the heterochromatic mark

H3K9me3 in the zebrafish embryo and discover broad domains

of heterochromatin specific to the notochord (Figure 5).

Together, these results show that EpiDamID provides a versatile

tool that can be implemented in diverse biological settings to

obtain single-cell histone PTM profiles.

Design
The conventional DamID approach involves genetically engineer-

ing a protein of interest (POI) to the bacterial methyltransferase

Dam (Figure 1A). In this study, we adapted the DamID method

to detect histone PTMs by fusing Dam to one of the following:

(1) full-length chromatin proteins, (2) tuples of well-characterized

reader domains (Kungulovski et al., 2016, 2014; Vermeulen

et al., 2007), or (3) single-chain variable fragments (scFv) also

known as mintbodies (Sato et al., 2016, 2013; Tjalsma et al.,

2021) (Figure 1A, Methods). Similar strategies have been suc-

cessfully applied in microscopy, proteomics and ChIP experi-

ments (Sato et al., 2021, 2016, 2013; Tjalsma et al., 2021; Villase-

ñor et al., 2020). Our approach is henceforth referred to as

EpiDamID, and the construct fused to Dam as the targeting

domain. Since this approach can be applied to any existing

DamID method, EpiDamID makes all these protocols available
2 Molecular Cell 82, 1–15, May 19, 2022
to the study of chromatin modifications. This includes the possi-

bility to perform (live) imaging of Dam-methylated DNA (Altemose

et al., 2020; Borsos et al., 2019; Kind et al., 2013), tissue-specific

study of model organisms without cell isolation via Targeted

DamID (TaDa) (Southall et al., 2013), DamID-directed proteomics

(Wong et al., 2021), (multi-modal) single-cell (Altemose et al.,

2020; Borsos et al., 2019; Kind et al., 2015; Rooijers et al.,

2019; Pal et al., 2021) and single-molecule (Cheetham

et al., 2021) sequencing studies, and the processing of samples

with little material (Borsos et al., 2019; Pal et al., 2021).

RESULTS

Targeting domains specific to histone modifications
mark distinct chromatin types with EpiDamID
We categorized the various targeting domains into the following

chromatin types: accessible, active, heterochromatin, and Poly-

comb. We generated various expression constructs for each of

the different targeting domains, testing promoters (HSP, PGK),

orientations (Dam-POI, POI-Dam), and two versions of the

Dam protein (DamWT, Dam126) (Table S1). The choice of pro-

moter influences the expression level of the Dam-POI, whereas

the orientation may affect target binding. In the Dam126 mutant,

the N126A substitution diminishes off-target methylation (Park et

al., 2019; Szczesnik et al., 2019). We introduced the Dam

constructs by viral transduction in hTERT-immortalized RPE-1

cells and performed DamID2 followed by high-throughput

sequencing (Markodimitraki et al., 2020). To validate our data

with an orthogonal method, we generated ChIP-seq samples

for various histone modifications.

The DamID samples were filtered on sequencing depth and in-

formation content (IC), a metric for determining signal-to-noise

levels (Figures S1A and S1B) (STAR Methods). IC additionally

showed that tuples of reader domains fused to Dam typically

perform better than single domains (p < 0.05 for three out of

four domains, Figure S1B), in agreement with a recent study em-

ploying similar domains for proteomics purposes (Villaseñor

et al., 2020). Therefore, only data from the triple reader domains

were included in further analyses.

Visualization of all filtered samples by uniformmanifold approx-

imation and projection (UMAP) shows that EpiDamID mapping

identifies distinct chromatin types and that samples consistently

group with their corresponding ChIP-seq datasets (Figure 1B).

Genome-wide DamID signal also correlates well with ChIP-seq

signal (mean Pearson’s correlation coefficients from 0.40–0.64

for active marks, 0.58–0.61 for heterochromatin marks, and

0.56-0.60 for Polycombmarks) (Figures 1C and S1C). Importantly,

DamID samples do not group based on construct type, promoter,

Dam type, sequencing depth, or IC (Figure S1D and S1E), indi-

cating that those properties do not influence target specificity. All

targets display the expected patterns of enrichment along the

linear genome (Figure 1D, left), as well as genome-wide on-target

signal (Figure 1D, right). To further explore the specificity of con-

structs that target active chromatin, we compared signal of

Dam-H3K9ac and Dam-TAF3 at H3K9ac ChIP-seq peaks with

high and low H3K4me3 ChIP-seq levels. Dam-H3K9ac shows

enrichment inbothcategories,whileDam-TAF3 isenrichedspecif-

ically in the high-H3K4me3 category (Figure S1F). This confirms
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Figure 1. Targeting domains specific to histone modifications mark distinct chromatin types with EpiDamID

(A) Schematic overview of EpiDamID concept compared to conventional DamID.

(B) UMAP of DamID samples colored by targeting construct, and ChIP-seq samples of corresponding histone modifications. MB: mintbody; PD: protein domain;

F: full protein.

(C) UMAPs as in (B), colored by correlation with selected ChIP-seq samples (H3K9ac, H3K9me3, and H3K27me3). Correlation values reflect the Pearson’s cor-

relation coefficient of Dam-normalized samples with the indicated ChIP-seq sample. Control constructs (Dam, H3K27me3mut) are excluded from the UMAP.

DamID samples are circles; ChIP-seq samples are squares.

(legend continued on next page)
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Figure 2. Detection of histone PTMs in single mouse embryonic stem cells with EpiDamID

(A) UMAP based on the single-cell DamID readout of all single-cell samples. MB: mintbody; PD: protein domain; F: full protein.

(B–D) DamID UMAP as in (A), colored by the enrichment of counts within H3K27me3 ChIP-seq domains (B), H3K9ac ChIP-seq peaks (C), and H4K20me1 ChIP-

seq domains (D).

(E) Average signal over H3K27me3 ChIP-seq domains of CBX7 and H3K27me3 targeting domains and full-length RINGB1B protein.

(F) Average H4K20me1 signal over the TSS of the top 25% active genes (based on H3K9ac ChIP-seq signal).

(E and F) Top: in silico populations normalized for Dam; Bottom: five of the best single-cell samples (bottom) normalized only by read depth.

(G and H) Signal of various marks over the HoxD cluster and neighboring regions. ChIP-seq data is normalized for input control. DamID tracks show the Dam-

normalized in silico populations of the various Dam-fusion proteins, DamID heatmaps show the depth-normalized single-cell data of the fifty richest cells. The

HoxD cluster is indicated in red in (G) (bar) and (H) (RefSeq); additional RefSeq genes are shown (H).

See also Figure S2.
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that, while the untetheredDamprotein preferentiallymarks acces-

sible chromatin, targeting it to active regions of the genome yields

specific methylation patterns.
(D) Left: three genome browser views of ChIP-seq (gray) and DamID (colored) en

domain. Right: average DamID and ChIP-seq enrichment plots over genomic reg

Regions are the TSS (�10/+15 kb) of the top 25%H3K9ac-enriched genes for the

and H3K9me3 (bottom).

(E) Confocal images of nuclear chromatin showing DAPI (top), immunofluoresce

responding EpiDamID construct visualized with m6A-Tracer (bottom). Left: H3K9

See also Figure S1.

4 Molecular Cell 82, 1–15, May 19, 2022
Next, wequantified the spreading ofDamsignal from its binding

location to determine the resolution for all chromatin types. We

found that DamID signal decays to 50% (from 100% at peak
richment. Data represent the combined signal of all samples of each targeting

ions of interest. Signal is normalized for untethered Dam or input, respectively.

active marks (top), and ChIP-seq domains (�/+ 10 kb) for H3K27me3 (middle),

nt staining against an endogenous histone modification (middle), and its cor-

ac, right: H3K9me3. Scale bar: 3 mm.
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B Figure 3. Joint profiling of Polycomb chro-

matin and gene expression in mouse

embryoid bodies

(A) Schematic showing the experimental design.

(B) UMAP of samples based on transcriptional

readout, colored by cluster.

(C and D) UMAP of samples based on DamID

readout, colored by construct (C) and cluster (D).

(E) Transcriptomic UMAP (left) and DamID UMAP

(right), colored by expression of pluripotency

marker Dppa5a.

(F) Transcriptomic UMAP (left) and DamID UMAP

(right), colored by expression of hematopoietic

regulator Tal1.

(G) Genomic tracks of H3K27me3 and RING1B

DamID signal per cluster at the Tal1 locus.

(H) Heatmaps showing the H3K27me3 (left) and

RING1B (right) DamID signal of all identified PRC

targets for transcriptional clusters 3, 0, 1, 6, and 4.

PRC targets are ordered based on hierarchical clus-

tering.

(I) Fold-change in expression of Polycomb targets

between clusters where the gene is PRC-associ-

ated and clusters where the gene is PRC-free. The

significance was tested with a two-sided Wilcox-

on’s signed rank test (p = 2.6 3 10�185).

See also Figure S3.

ll
OPEN ACCESSTechnology

Please cite this article in press as: Rang et al., Single-cell profiling of transcriptome and histone modifications with EpiDamID, Molecular Cell (2022),
https://doi.org/10.1016/j.molcel.2022.03.009
center or domain border) across a distance that extends �1 kb

past the ChIP-seq 50% decay point (Figure S1G), implying a res-

olution of�1–2 kb, similar to earlier studies with transcription fac-

tors (Cheethamet al., 2018; Tosti et al., 2018). It was previously re-

ported that the Dam126mutant improves signal quality compared

to DamWT (Szczesnik et al., 2019). Indeed, this mutant markedly

improved sensitivity and reduced background methylation (mean

IC increase of 0.07–0.21 per construct) (Figures S1H and S1I).
We further validated the correct nuclear

localization of Dam-marked chromatin

with microscopy, by immunofluorescent

staining of endogenous histone PTMs

and DamID visualization using m6A-Tracer

protein (Kind et al., 2013; van Schaik

et al., 2020) (Figure 1E).

Together, these results show that

EpiDamID specifically targets histone

PTMs and enables identification of their

genomic distributions by next-generation

sequencing.

Detection of histone PTMs in single
mouse embryonic stem cells with
EpiDamID
We next established EpiDamID for single-

cell sequencing. To this end, we generated

clonal, inducible mESC lines for the

following targeting domains fused to

Dam: H4K20me1 mintbody, H3K27me3

mintbody, and the H3K27me3-specific

CBX7 protein domain (3x tuple). While
H4K20me1 is enriched over the gene body of active genes

(Shoaib et al., 2021), the heterochromatic mark H3K27me3 is en-

riched over the promoter of developmentally regulated genes

(Boyer et al., 2006; Riising et al., 2014). As controls, we included

an H3K27me3mut mintbody construct whose antigen-binding

ability is abrogated by a point mutation in the third complemen-

tarity determining region of the heavy chain (Y105F), and a

published mESC line expressing untethered Dam (Rooijers
Molecular Cell 82, 1–15, May 19, 2022 5
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Figure 4. Polycomb-regulated transcription factors form separate regulatory networks

(A) Heatmap showing SCENIC regulon activity per single cell. Cells (columns) are ordered by transcriptional cluster; regulon (rows) are ordered by hierarchical

clustering. The black and white bar on the left indicates whether the regulon TF is a PRC target (black) or not (white).

(B) Example of the relationship between expression and Polycomb regulation for the MSX1 regulon. Pie chart indicates the percentages of Polycomb-controlled

(blue) or Polycomb-independent (gray) target genes. Left: boxplots showing target gene expression per cluster for all target genes. Middle and right: boxplots

showing the H3K27me3 and RING1B DamID signal at the TSS per cluster for the Polycomb-controlled target genes. The expression and DamID signal ofMsx1 is

indicated with a red circle.

(C) Genomic tracks of H3K27me3 and RING1B DamID signal per cluster at the Fgf10 locus, one of the target genes of MSX1. Arrow head indicates the location of

the TSS; shaded area indicates �5kb/+3kb around the TSS.

(D) Boxplots showing the fraction of Polycomb-controlled target genes, split by whether the TF itself is Polycomb-controlled. The significance was tested with a

two-sided Mann-Whitney U test (p = 2.8 3 10�20). Error bars indicate the data range within 1.5 times the inter-quartile range.

(E) Schematic of the regulatory network, indicating the relationship between a regulon TF (white hexagon), its upstream regulators (colored hexagons), and its

downstream targets (colored hexagons/circles).

(F) Boxplots showing the fraction of Polycomb-controlled upstream regulators, split by whether the regulon TF is Polycomb-controlled. The significance was

tested with a two-sided Mann-Whitney U test (p = 6.6 3 10�19). Error bars indicate the data range within 1.5 times the inter-quartile range.

(G) Scatterplot showing the relationship between the fraction of Polycomb-controlled targets and regulators of a regulon TF. Regulon TFs that are PRC controlled

are indicated in blue; regulon TFs that are PRC independent are indicated in gray. Correlation was computed using Pearson’s correlation (p = 2.9 3 10�29).

See also Figure S4.
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et al., 2019). We performed scDam&T-seq to generate 442–

1,402 single-cell samples per construct, retaining 283–855 sam-

ples after filtering on the number of unique GATCs and IC

(10,417–45,067median unique counts per construct andmedian

IC of 2.0–2.9) (Figure S2A–S2C and Table S2). For subsequent

analyses, we also included a published dataset of Dam fused

to RING1B (Rooijers et al., 2019) as an example of a full-length

chromatin reader targeting Polycomb chromatin. All constructs

contained DamWT, as the Dam126 methylation levels were

found insufficient to produce high-quality single-cell signal

(data not shown).

Dimensionality reduction of the single-cell datasets revealed

that the samples primarily separated on chromatin type (Fig-

ure 2A). To further confirm the specificity of the constructs,

we used mESC H3K27me3 (ENCSR059MBO) and H3K9ac

(ENCSR000CGP) ChIP-seq datasets from the ENCODE portal
6 Molecular Cell 82, 1–15, May 19, 2022
(Davis et al., 2018) and generated our own for H4K20me1. For

all single cells, we computed the enrichment of counts within

H3K27me3, H3K9ac, and H4K20me1 ChIP-seq domains.

These results show a strong enrichment of EpiDamID counts

within domains for the corresponding histone PTMs

(Figures 2B–2D and S2D), indicating that the methylation pat-

terns are specific for their respective chromatin targets, even

at the single-cell level. The combined single-cell data also

showed the expected enrichment over H3K27me3 ChIP-seq

domains (Figure 2E) and active gene bodies (Figure 2F) for

the Polycomb-targeting constructs and H4K20me1, respec-

tively. Contrary to the H3K27me3 construct, H3K27me3mut

showed little enrichment over H3K27me3 ChIP-seq domains

(Figure S2E). The specificity of the signal is also evident at indi-

vidual loci in both the in silico populations and single cells

(Figures 2G, 2H, and S2F).



A C

D

B

E F

G

I

J

H

Figure 5. Notochord-specific H3K9me3 enrichment in the zebrafish embryo

(A) Schematic representation of the experimental design and workflow.

(B) UMAP based on the transcriptional readout of all single-cell samples passing CEL-Seq2 thresholds (n = 3902).

(C) UMAP based on the genomic readout of all single-cell samples passing DamID thresholds (n = 2833). Samples are colored by transcriptional cluster (left) and

Dam-targeting domain (right).

(D) Expression of the hatching gland marker he1.1 (left) and the notochord marker col9a2 (right) projected onto the DamID UMAP.

(E) Genomic H3K9me3 signal over chromosome 17. Top track: H3K9me3 ChIP-seq signal of 6-hpf embryo. Remaining tracks: combined single-cell Dam-

MPHOSPH8 data for clusters 0–2. Heatmaps show the depth-normalized Dam-MPHOSPH8 data of the 50 richest cells.

(F) Heatmap showing the cluster-specific average H3K9me3 enrichment over all domains called per ChromHMM state. Per state, domains were clustered using

hierarchical clustering.

(G) Genomic H3K9me3 signal over a part of chromosome 8 for clusters 0–2. The colored regions at the bottom of each track indicate the ChromHMM state.

(legend continued on next page)
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These results demonstrate that mintbodies and protein do-

mains can be used to map histone PTMs in single cells with

EpiDamID.

Joint profiling of Polycomb chromatin and gene
expression in mouse embryoid bodies
To exploit the benefits of simultaneously measuring histone

PTMs and transcriptome, we profiled Polycomb chromatin in

mouse EBs. We targeted the two main Polycomb repressive

complexes (PRC) with EpiDamID using the full-length protein

RING1B and H3K27me3-mintbody fused to Dam. RING1B is a

core PRC1 protein thatmediates H2AK119 ubiquitylation (de Na-

poles et al., 2004; Wang et al., 2004), and H3K27me3 is the his-

tone PTM deposited by PRC2 (Cao et al., 2002; Czermin et al.,

2002; Kuzmichev et al., 2002; M€uller et al., 2002). Both PRC1

and PRC2 have key roles in gene regulation during stem cell dif-

ferentiation and early embryonic development (see [Piunti and

Shilatifard, 2021] and [Blackledge and Klose, 2021] for recent re-

views on this topic).

To assay a diversity of cell types at various stages of differen-

tiation, we harvested EBs for scDam&T-seq at day 7, 10, and 14

post aggregation, next to ESCs grown in 2i/LIF (Figure 3A). We

used Hoechst incorporation in combination with fluorescence-

activated cell sorting (FACS) to deposit live, single cells into

384-well plates and record their corresponding cell cycle phase

(STAR Methods). In addition to RING1B and H3K27me3-mint-

body, we included the untethered Dam protein for all time points

as a control for chromatin accessibility. Collectively, we obtained

2,943 cells after filtering (Figures S3A and S3B), in a similar range

as CoTECH (�7,000 cells), higher than SET-seq (�500 cells) and

lower than Paired-Tag (�65,000 nuclei). The number of unique

genomic and transcriptomic counts per cell was similar or higher

compared to the other methods (Figures S3A and S3B). Based

on the transcriptional readout, we identified eight distinct clus-

ters across time points (Figure 3B). We integrated the EB tran-

scriptome data with the publicly available mouse embryo atlas

(Pijuan-Sala et al., 2019) to confirm the correspondence of cell

types with early mouse development and guide cluster annota-

tions (Figures S3C and S3D). This indicated the presence of

pluripotent and more differentiated cellular states, including

epiblast, endoderm, and mesoderm lineages. Notably, the

DamID readout alone was sufficient to consistently separate

cells on chromatin type (Figure 3C) and to distinguish between

the pluripotent and more lineage-committed cells (Figures 3D

and 3E). Thus, the EpiDamID profiles display cell type-specific

patterns of chromatin accessibility and Polycomb association.

Prompted by this observation, we trained a linear discriminant

analysis (LDA) classifier to assign an additional 1,543 cells with

poor transcriptional data to cell type clusters, based on their

DamID signal (Figure S3E and Table S2).

Next, we defined the set of genes that is Polycomb-regulated in

the EB system. First, we determined the H3K27me3 and RING1B

signal at the promoter regionof all genes and compared these two
(H) Gene density of all genes (top) and expressed genes (bottom) per state.

(I) Enrichment of repeats among the ChromHMM states. Example repeats are in

(J) Representative images of DAPI staining in cryosections of zebrafish embryos

See also Figures S5 and S6.
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readouts across the clusters. This confirmed good correspon-

dence between H3K27me3 and RING1B profiles (Pearson’s r =

0.60-0.82, p = 0betweenprofiles of the samecluster) (FiguresS3F

and S3G), albeit with a slightly higher signal amplitude for RING1B

(Figure S3G). This difference between RING1B and H3K27me3

may bebiological (e.g., differential binding sites or kinetics) and/or

technical (e.g., the use of a full-length protein versus a mintbody

to target Dam). Nonetheless, because of the overall similarity,

we decided to classify high-confidence Polycomb targets as hav-

ing both H3K27me3 and RING1B enrichment in at least one of the

EBclusters (excluding cluster 7 due to the relatively lownumber of

cells) or in the previous ESC dataset. We identified 9,159 Poly-

comb-regulated targets across the dataset, in good concordance

with previous work in mouse development (4,059 overlapping

genes out of a total of 5,986; p = 9.5 3 10�135, Chi-square test)

(Gorkin et al., 2020) (Figure S3H).

Next, we intersected the cluster-specific transcriptome and

DamID data to relate gene expression patterns to Polycomb

associations. Based on the role of Polycomb in gene silencing, dif-

ferential binding of PRC1/2 to genes is expected to be associated

with changes in expression levels. As exemplified in Figures 3F

and 3G, the cell type-specific expression of Tal1, a master regu-

lator in hematopoiesis, is indeed inversely related to Polycomb

enrichment. This negative association is apparent for all PRC tar-

gets that are upregulated in the hematopoietic cluster (Figures S3I

and S3J). In addition, unsupervised clustering of H3K27me3 and

RING1B promoter occupancy shows variation in signal between

target genes as well as between cell types, indicating dynamic

regulation of these targets in EBs (Figure 3H). In line with this, Pol-

ycomb targets with variable PRC occupancy are typically more

highly expressed in those clusterswhere Polycomb is absent (Wil-

coxon’s signed-rank test, p = 2.6 3 10�185, Figure 3I). Since the

negative relationship between Polycomb occupancy and tran-

scription is not perfect, we were interested to see whether an

additional layer of epigenetic regulation could further explain the

observed transcriptional changes. To this end, we integrated

our data with a publicly available scNMT-seq dataset (Argelaguet

et al., 2019), also generated in EBs (Figure S3K). This resulted in

sufficient scNMT-seq samples in four clusters to compare CpG

methylation profiles with Polycomb occupancy. The integrated

profiles indeed revealed a complementary relationship between

the two marks, where genes with either CpG methylation or

Polycomb at their promoter tend to be expressed at lower levels

(Figure S3L). This was also apparent for CpG methylation and

expression of genes with variable Polycomb enrichment between

the clusters (Figure S3M). The observed trends are in line with the

known repressive effects of both marks and their largely mutually

exclusive localizations (Brinkman et al., 2012; Hagarman et al.,

2013; Li et al., 2018).

Collectively, these data illustrate the strength of EpiDamID to

jointly capture transcription and chromatin dynamics during dif-

ferentiation, as well as the potential to integrate the results with

datasets derived from different techniques.
dicated.

at 15-somite stage. Scale bars represent 4 mm.
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Polycomb-regulated transcription factors form
separate regulatory networks
We next focused on the Polycomb targets based on their func-

tion and found that TF genes are over-represented within the

Polycomb target genes (Figure S4A), in line with previous obser-

vations (Boyer et al., 2006). Nearly half of all TF genes in the

genome (761/1,689) is bound by Polycomb in at least one clus-

ter. In addition, genes encoding TFs generally accumulate higher

levels of H3K27me3 and RING1B compared to other protein-

coding genes (Figure S4B). Consistent with an important role in

lineage specification, Polycomb-controlled TFs are expressed

in a cell type-specific pattern, as opposed to the more constitu-

tive expression across cell types for Polycomb-independent TFs

(Figures S4C and S4D). Accordingly, the Polycomb-controlled

TFs are enriched for Gene Ontology (GO) terms associated

with animal development (Figure S4E).

The high Polycomb occupancy at developmentally regulated

TF genes prompted further investigation into the role of

Polycomb in TF network hierarchies. We used SCENIC to sys-

tematically identify target genes that are associated with the

expression of TFs (Aibar et al., 2017; Van de Sande et al.,

2020). SCENIC employs co-expression patterns and binding

motifs to link TFs to their targets, together henceforth termed

‘‘regulons’’ (per SCENIC nomenclature). We identified 285 ‘‘acti-

vating’’ regulons after filtering (Figure 4A and STAR Methods).

While regulons and their activity were found independently of

RNA-based cluster annotations, regulon activity trends clearly

matched the annotated clusters (Figure 4A).

We first determined how overall regulon activity identified by

SCENIC correlates to Polycomb binding. As illustrated for the ho-

meobox TF geneMsx1, we found that regulon activity is generally

inversely related to Polycomb association of both the TF gene

(red dot) and its Polycomb-controlled targets (boxplots, 65% of

all MSX1 targets) (Figures 4B and 4C). We wondered whether

there is a general preference for Polycomb-controlled TFs to

target genes that themselves are regulated by Polycomb. Indeed,

while Polycomb-controlled TFs have a similar number of target

genes compared to other TFs (Figure S4F), the expression of

the targets is much more frequently controlled by Polycomb

than expected by chance (Mann-Whitney-U test p =

2.83 10�20, Figure 4D). This effect is even stronger when consid-

ering the subset of targets that is exclusively regulated by Poly-

combTFs (Chi-square test p = 0, Figure S4G). Similarly, upstream

TFs controlling the regulon TFs (Figure 4E) also tend to be Poly-

comb-controlled (Mann-Whitney-U test, p = 6.6 3 10�19, Fig-

ure 4F).Moreover, the fractions of Polycomb-controlled upstream

regulators and downstream targets are correlated (Pearson’s r =

0.61, p = 2.9 3 10�29, Figure 4G), indicating consistency in the

level of Polycomb regulation across at least three layers of the

TF network. This trend is especially strong for the lineage-specific

genes (Pearson’s r = 0.48, p = 9.2 3 10�8), but also holds for

other, unspecific genes (Pearson’s r = 0.41, p = 4.0 3 10�4)

(Figures S4H and S4I). These results suggest that Polycomb-

associated hierarchies exist, forming relatively separate networks

isolated from other gene regulatory mechanisms, and that this

phenomenon extends beyond lineage-specific genes alone.

Together, the above findings demonstrate that single-cell

EpiDamID can be successfully applied in complex develop-
mental systems to gather detailed information on cell type-spe-

cific Polycomb regulation and its interaction with transcriptional

networks.

Implementation of EpiDamID during zebrafish embryo-
genesis
Next, we applied EpiDamID in an in vivo system to study the het-

erochromatic mark H3K9me3 during zebrafish development. To

bypass the need for genetic engineering, we employed microin-

jection of mRNA into the zygote (Figure 5A), a strategy success-

fully applied in the mouse embryo (Borsos et al., 2019).

H3K9me3 is reprogrammed during the early stages of develop-

ment in several species (Laue et al., 2019; Mutlu et al., 2018; Ru-

dolph et al., 2007; Santos et al., 2005; Wang et al., 2018) and the

deposition of this mark coincides with decreased developmental

potential (Ahmed et al., 2010). It was previously shown that

H3K9me3 is largely absent before the maternal-to-zygotic tran-

sition (MZT) (Laue et al., 2019), but it remains unclear whether the

H3K9me3 distribution undergoes further remodeling after this

stage, and whether its establishment differs across cell types

during development.

We injected mRNA encoding the H3K9me3-specific construct

Dam-Mphosph8 and untetheredDam into the yolk at the one-cell

stage and collected embryos at the 15-somite stage (Figure 5A),

which comprises a wide diversity of cell types corresponding to

all germ layers. We generated 2,127 single-cell samples passing

both DamID and CEL-Seq2 thresholds (Figure S5A and

Table S2). Comparing the DamID data of an in silico whole-em-

bryo sample to published H3K9me3 ChIP-seq data of 6-hpf em-

bryos (Laue et al., 2019) showed good concordance (Pearson’s

r = 0.72, p = 0; Figure S5B).

Broad domains of notochord-specific H3K9me3
enrichment revealed by scDam&T-seq
Analysis of the single-cell transcriptome data resulted in 22 clus-

ters of diverse cell types (Figure 5B), which we annotated ac-

cording to expression of knownmarker genes (Figure S5C). After

dimensionality reduction based on the DamID signal, we

observed a clear visual separation of cells in accordance with

their Dam construct, and to a lesser extent with their cell type

(Figures 5C and 5D). Cluster-specific DamID profiles allowed

us to employ the LDA classifier to assign a further 705 cells

with poor transcriptional readout to a cluster (Figure S5D and

Table S2). Notably, the MPHOSPH8 samples of hatching gland

(cluster 1, he1.1 expression) and notochord (cluster 2, col9a2

expression) segregated strongly from the other cell types (Fig-

ure 5D), implying differences in their single-cell H3K9me3 pro-

files. In particular, we observed the appearance of large domains

of H3K9me3 enrichment in the notochord, and seemingly lower

levels of H3K9me3 in the hatching gland (Figures 5E and S5E).

Next, to more systematically identify and characterize regions

of differential H3K9me3 enrichment between cell clusters, we

performed ChromHMM (Ernst and Kellis, 2017, 2012). The

approach uses the H3K9me3 signal per cluster to annotate

genomic segments as belonging to different H3K9me3 states.

We included the 12 cell clusters containing > 30 cells per

construct and identified five H3K9me3 states across the

genome. These represented: A) three states of constitutive
Molecular Cell 82, 1–15, May 19, 2022 9



ll
OPEN ACCESS Technology

Please cite this article in press as: Rang et al., Single-cell profiling of transcriptome and histone modifications with EpiDamID, Molecular Cell (2022),
https://doi.org/10.1016/j.molcel.2022.03.009
H3K9me3 with different enrichment levels [A1-A3], B) noto-

chord-specific H3K9me3 enrichment, and C) constitutive deple-

tion of H3K9me3 (Figures 5F and 5G). While all 12 clusters had

the highest H3K9me3 enrichment in state A1, cells belonging

to the hatching gland (cluster 1) tended to have lower signal in

these regions compared to other cell types (Figure S5F). Noto-

chord cells (cluster 2), conversely, displayed somewhat higher

enrichment in state A1 and dramatically higher enrichment in

state B compared to the others. State A (A1-3) chromatin forms

broad domains (Figure S5G) that together comprise 27% of the

genome (Figure S5H) and, as expected for H3K9me3-associated

chromatin regions, are characterized by sparser gene density

and lower gene activity compared to the H3K9me3-depleted

state C (Figure 5H). Moreover, state A1 is strongly enriched for

zinc-finger transcription factors (Figure S5I), which are known

to be demarcated by H3K9me3 in other species (Hahn et al.,

2011; Vogel et al., 2006). The notochord-specific state B has

similar characteristics to states A1-A3 (Figures 5H, S5G, and

S5H) yet exhibits broader consecutive regions of H3K9me3

enrichment (Figures 5G and S5G) and an even lower active

gene density (Figure 5H). However, we did not find a notable in-

crease in H3K9me3 at genes downregulated in notochord (Fig-

ure S5J), implying that these domains do not play a role in

gene expression regulation.

One of the known functions of H3K9me3 chromatin is the

repression of transposable elements (Bulut-Karslioglu et al.,

2014; Liu et al., 2014; Mosch et al., 2011). Indeed, it was previ-

ously observed in zebrafish that nearly all H3K9me3 domains

in early embryos are associated with repeats (Laue et al.,

2019). We determined whether distinct repeat classes were

over-represented in each H3K9me3 ChromHMM state (Fig-

ure S6A) and found a strong enrichment of several repeat classes

in state A1, including LTR and tRNA. Further discrimination

within the classes showed a high frequency of pericentromeric

satellite repeats SAT-1 and BRSATI in state A1 (Figure 5I), in

line with the known occupancy of H3K9me3 at pericentromeric

regions. Inspection of the DamID patterns showed a clear in-

crease of signal centered on specific repeat regions in state

A1, and to lesser extents in other states (Figure S6B). In addition,

we found that state B harbors specific enrichment of certain re-

peats (Figures 5I and S6C), although further study is required to

determine whether H3K9me3 is involved in cell type-specific

repression of repetitive genomic regions in the notochord.

Altered expression of chromatin proteins and
pronounced nuclear compartmentalization in notochord
Finally, we evaluated cluster-specific expression of known chro-

matin proteins in relation to the differential H3K9me3 patterns.

Expression levels of histone methyltransferases, demethylases

and other chromatin factors did not show an upregulation of

known H3K9 methyltransferases (setdb2, setdb1a/b, suv39

h11a/b, ehmt2) nor demethylases (kdm4aa/ab/b/c, phf8) in noto-

chord (Figure S6D). However, the H3K9- and H3K36-specific de-

methylase kdm4cwas exclusively upregulated in hatching gland,

which could explain the low H3K9me3 levels in this cluster.

Notably, the notochord cluster showed significant upregulation

of lmna, the gene encoding nuclear lamina protein Lamin A/C

that associates with heterochromatin (Gruenbaum and Foisner,
10 Molecular Cell 82, 1–15, May 19, 2022
2015) and plays an important structural role in the nucleus (Don-

naloja et al., 2020; Gruenbaum and Foisner, 2015). This could be

relevant in relation to the structural role of the notochord and the

resulting mechanical forces the cells are subjected to (Corallo

et al., 2015). Tomore directly investigate chromatin state and nu-

clear organization in these embryos, we performed confocal im-

aging of H3K9me3 and DAPI stainings in notochord, brain, and

skeletal muscle. H3K9me3-marked chromatin displayed a

typical nuclear distribution in all tissues, including heterochro-

matin foci as previously reported (Laue et al., 2019) (Figure S6E).

DAPI staining showed more structure in the notochord

compared to the other tissues (Figure 5J), visible as a clear rim

along the nuclear periphery and denser foci within the nuclear

interior. This indicates a stronger separation between euchro-

matin and heterochromatin, although it remains to be elucidated

whether these features are related to the notochord-specific

H3K9me3 domains in the genome.

The implementation of EpiDamID in zebrafish embryos shows

that this strategy provides a flexible and accessible approach to

generate high-resolution single-cell information on the epige-

netic states that underlie biological processes during organismal

development.

DISCUSSION

Advantages of DamID for single-cell multi-modal omics
during embryo development
The DamID workflow involves few enzymatic steps and is thus

especially suitable for integration with other single-cell protocols

to achieve multi-modal measurements (Markodimitraki et al.,

2020).Minimal sample handling prior tomolecular processing re-

sults in a high recovery rate of collected cells (Borsos et al.,

2019); for example, scDam&T-seq with EpiDamID constructs

could be used to individually assay all cells of a single preimplan-

tation mouse embryo and examine epigenetic and transcrip-

tomic differences that may point toward cell fate commitment,

while tracking intra-embryonic variability. Further, DamID

genomic marks are stable upon deposition, offering the possibil-

ity to track ancestral EpiDamID signatures through mitosis to

study inheritance and spatial distribution of epigenetic states in

daughter cells (Kind et al., 2013; Park et al., 2019).

Comparison to other single-cell transcriptome and
chromatin profiling techniques
In the past year, three other techniques have been published that

are capable of simultaneously measuring chromatin modifica-

tions and transcription: Paired-Tag (Zhu et al., 2021), CoTECH

(Xiong et al., 2021), and SET-seq (Sun et al., 2021). One major

conceptual difference between above methods and DamID-

based techniques is the manner of capturing DNA in proximity

of the chromatin mark of interest. Strategies leveraging CUT&-

Tag obtain a readout of chromatin by targeting protein A fused

to transposase Tn5 (pA-Tn5) to antibody-bound regions and

integrating barcoded adapters into the surrounding DNA.

DamID deposits signal in living cells over time; consequently, it

represents a historic record of chromatin state over a period of

multiple hours up to a full cell cycle, while antibody-based tech-

niques provide a snapshot view. In DamID, regions that are only
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transiently bound by themark of interest will thus be represented

more strongly in the signal relative to CUT&Tag-based methods.

Another key difference is the extent to which chromatin accessi-

bility affects the data. DamID techniques are known to have an

accessibility signature due to extended exposure to free-floating

Dam protein (discussed in more detail under Limitations), which

is controlled for by performing experiments with untethered

Dam. While CUT&Tag- and CUT&RUN-based methods have re-

ported less of such an accessibility bias and do not customarily

include explicit control experiments, early results (Zhang et al.,

2021) suggest that such a bias may indeed be present. The

question of data interpretation and normalization in light of this

bias should be carefully considered among all existing single-

cell genomics techniques. With regard to the transcriptional

readout, the four techniques also employ different approaches:

Paired-Tag exclusively amplifies the nuclear fraction of mRNA,

SET-seq separates and measures total RNA in the cytoplasm,

while CoTECH and scDam&T-seq both amplify the total

mRNA. Finally, the Paired-Tag and CoTECH protocols have

been adapted for combinatorial indexing and consequently

have a higher throughput compared to scDam&T-seq and

SET-seq.

Limitations
EpiDamID requires the expression of a construct encoding for

the Dam-fusion protein in the system of interest. Thismay involve

a substantial time investment depending on the system of choice

and conditions generally need to be optimized for each Dam-

fusion protein to reach high signal quality. DamID techniques

are also limited in their resolution by the distribution of GATCmo-

tifs in the genome (median inter-GATC distance: 263 bp in

mouse, 265 bp in human). In addition, we and others (Cheetham

et al., 2018, Tosti et al., 2018, Szczesnik et al., 2019) have found

that the methylation spreads �1 kb from the site of binding (Fig-

ure S1G), thus yielding an empirical resolution of 1–2 kb. This is

sufficient to study the localization of many chromatin factors but

may be restrictive when exact binding sites are required. Finally,

due to the in vivo expression and consequent roaming of the

Dam-POI in the nucleus, spurious methylation gradually accu-

mulates in unspecific, mostly accessible, chromatin regions.

The degree of accumulated background signal differs substan-

tially between different Dam-POIs yet interferes most with pro-

teins that reside within active chromatin. This can be overcome

through computational normalization to the untethered Dampro-

tein. In the case of single-cell experiments, this requires the

grouping of similar cells into in silico populations.While this strat-

egy yields good results, it does not provide a way to eliminate the

accessibility component in individual cells, and the signal in sin-

gle cells should therefore be interpreted as convolution of on-

target and accessibility signal. Computational imputation of

accessibility signal based on transcriptional similarity between

targeted samples and Dam control samples could provide a so-

lution to this problem, similar to current single-cell transcriptional

imputation methods (see Hou et al., [2020] for an overview). We

explored one experimental strategy to reduce off-target effects

by implementing Dam mutants with decreased affinity for DNA,

which yielded promising results in population data but insuffi-

cient m6A-events for single-cell profiling. Further adaptation of
the Dam protein to engineer an enzyme with high enzymatic ac-

tivity and reduced DNA-binding affinity may further improve the

quality of EpiDamID profiles in single cells. Alternatively, molec-

ular processing could be extended to facilitate an orthogonal

accessibility readout from the same sample.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-H3K4me3 Abcam Cat#ab8580; RRID:AB_306649

Rabbit polyclonal anti-H3K9ac Abcam Cat#ab4441; RRID:AB_2118292

Rabbit polyclonal anti-H3K9me3 Abcam Cat#ab8898; RRID:AB_306848

Rabbit polyclonal anti-H3K27me3 Merck Millipore Cat#07-449; RRID:AB_310624

Rabbit polyclonal anti-H3K36me3 Active Motif Cat#61902; RRID:AB_2615073

Rabbit polyclonal anti-H4K20me1 Abcam Cat#ab9051; RRID:AB_306967

Mouse monoclonal anti-V5 Invitrogen Cat#R960-25; RRID:AB_2556564

Chicken anti-GFP Aves Labs Cat#GFP-1020; RRID:AB_10000240

Alexa Fluor 488 goat anti-chicken Invitrogen Cat#A-11039; RRID:AB_142924

Alexa Fluor 647 goat anti-Rabbit Invitrogen Cat#A-21245; RRID:AB_2535813

Bacterial and Virus Strains

One Shot� Stbl3� Chemically Competent E. coli Thermo Fisher Scientific Cat#C737303

Chemicals, Peptides, and Recombinant Proteins

Formaldehyde 37% Sigma Cat#F8775-500ml; CAS: 50-00-0

Glycine Sigma Cat#50046-250 g; CAS: 56-40-6

RNase A Promega Cat#A7973

Proteinase K Roche Cat#3115879001; CAS: 39450-01-6

Protein G beads Thermo Fisher Scientific Cat#88847

Bovine Serum Albumin Sigma Cat#A2153-50G; CAS: 9048-46-8

DMEM/F12, GlutaMAX� supplement GIBCO Cat#31331028

Fetal Bovine Serum Sigma Cat#F7524 lot BCBW6329

Penicillin/Streptomycin (10,000 U/mL) GIBCO Cat#5140122

Glasgow’s MEM GIBCO Cat#21710025

MEM non-essential amino acids solution (100x) GIBCO Cat#1140035

100 mM Sodium Pyruvate GIBCO Cat#11360039

GlutaMAX supplement (100 3 ) GIBCO Cat#5050038

TrypleE Express Enzyme GIBCO Cat#12605010

ESGRO mLIF Medium Supplement EMD Millipore Cat#ESG1107; 10,000,000 U/mL

1M B-mercaptoethanol Sigma Cat#M3148; CAS: 60-24-2

Indole-3-acetic acid sodium salt Sigma Cat#I5148; CAS: 6505-45-9

Polybrene Sigma Cat#TR-1003-G; CAS: 28728-55-4

Wizard� Genomic DNA Purification Kit Promega Cat#A1620

MyTaq Red DNA Polymerase, 5000 units Bioline Cat#BIO-21110

Lipofectamine3000 Thermo Fisher Scientific Cat#L3000008

Puromycin dihydrochloride Sigma Cat#P9620; CAS:58-58-2

50mg/mL Hygromycin B Thermo Fisher Scientific Cat#10687010; CAS: 31282-04-9

10mg/mL Blasticidin S HCl Thermo Fisher Scientific Cat#A1113903; CAS: 2079-00-7

Geneticin (G418 sulfate) Thermo Fisher Scientific Cat#11811031; CAS: 108321-42

Neurobasal medium GIBCO Cat#21103049

N2 supplement (100x) GIBCO Cat#17502048

B27 supplement (50x) GIBCO Cat#A3582801

CHIR99021 Tocris Cat#SML1046-5MG; CAS: 252917-06-9

PD0325901 Axon Medchem Cat#PZ0162-5MG; CAS: 391210-10-9

5mg/mL 4-Hydroxytamoxifen Sigma Cat#SML1666; CAS: 68392-35-8
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0.4%Trypan Blue solution Sigma Cat#T8154; CAS: 72-57-1

DAPI (4’,6-Diamidino-2-Phenylindole, Dihydrochloride) Invitrogen Cat#D1306; CAS: 28718-91-4

Hoechst 34580 Sigma Cat#63493; CAS: 911004-45-0

Propidium iodide Sigma Cat#P4864; CAS: 25535-16-4

Nuclease-free water Invitrogen Cat#1097035

Filtered Mineral Oil Sigma Cat#69794

1M Magnesium Acetate solution Sigma Cat#63052

5M Potassium Acetate solution Sigma Cat#95843

Tween 20 Sigma Cat#P1379; CAS:9005-64-5

ERCC RNA Spike-In mix 1 Ambion Cat#4456740

Igepal Sigma Cat#I8896: CAS:9036-19-5

dNTPs set (100 mM each) Invitrogen Cat#10297018

SuperScript II Thermo Fisher Scientific Cat#18064014

RNaseOUT Recombinant Ribonuclease Inhibitor Invitrogen Cat#10777019

5 3 second-strand buffer Thermo Fisher Scientific Cat#10812014

E. coli DNA ligase Invitrogen Cat#18052019

DNA polymerase I Thermo Fisher Scientific Cat#18010025

Ribonuclease H Thermo Fisher Scientific Cat#18021071

10 3 CutSmart buffer New England Biolabs Cat#B7204S

DpnI New England Biolabs Cat#R0176L

Tris pH 7.5 Roche Cat#10708976001

5M NaCl Sigma Cat#S5150

0.5M EDTA pH 8 Invitrogen Cat#15575020

T4 ligase 5 U/ml Roche Cat#10799009001

PEG8000 Merck Cat#1546605

SPRI beads CleanNA Cat#CPCR-0050

Phusion High-Fidelity PCR Master Mix HF Buffer New England Biolabs Cat#M0531S

MyTaq Red DNA Polymerase, 5000 units Bioline Cat#BIO-21110

VECTASHIELD Antifade mounting medium Vector Laboratories Cat#H-1000-10

ProLong Gold Antifade Mountant Thermo Fisher Scientific Cat#P36930

Collagenase type II from Cl. Histolyticum GIBCO Cat#17101015

Hanks’ Balanced Salt Solution without Mg2+/Ca2+ Thermo Fisher Scientific Cat#88284

Purified m6A-Tracer protein Bas van Steensel lab Van Schaik et al., 2020

Critical Commercial Assays

Qubit dsDNA HS Assay Kit Invitrogen Cat#Q33230

Wizard� Genomic DNA Purification Kit Promega Cat#A1620

Agilent RNA 6000 Pico Kit + chips Agilent Cat#50671513

Agilent High Sensitivity DNA Kit + chips Agilent Cat#50674627

mMESSAGE mMACHINE� SP6 Transcription Kit Invitrogen Cat#AM1340

Deposited Data

hTERT-RPE1 - DamID H3K9ac (mintbody) This manuscript GSE184036

hTERT-RPE1 - DamID H4K20me1 (mintbody) This manuscript GSE184036

hTERT-RPE1 - DamID POLR2F (full protein) This manuscript GSE184036

hTERT-RPE1 - DamID TAD3 (protein domain tuple) This manuscript GSE184036

hTERT-RPE1 - DamID CBX7 (protein domain tuple) This manuscript GSE184036

hTERT-RPE1 - DamID H3K27me3 (mintbody) This manuscript GSE184036

hTERT-RPE1 - DamID RING1B (full protein) This manuscript GSE184036

hTERT-RPE1 - DamID CBX1 (protein domain tuple) This manuscript GSE184036
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

hTERT-RPE1 - DamID CBX1 (full protein) This manuscript GSE184036

hTERT-RPE1 - DamID MPHOSPH8 (protein

domain tuple)

This manuscript GSE184036

hTERT-RPE1 - DamID untethered Dam This manuscript GSE184036

hTERT-RPE1 - DamID H3K27me3MUT (Y105F) This manuscript GSE184036

hTERT-RPE1 - ChIP-seq H3K4me3 This manuscript GSE184036

hTERT-RPE1 - ChIP-seq H3K9ac This manuscript GSE184036

hTERT-RPE1 - ChIP-seq H3K36me3 This manuscript GSE184036

hTERT-RPE1 - ChIP-seq H4K20me1 This manuscript GSE184036

hTERT-RPE1 - ChIP-seq H3K27me3 This manuscript GSE184036

hTERT-RPE1 - ChIP-seq H3K9me3 This manuscript GSE184036

F1 hybrid mESC - scDam&T-seq H3K27me3

(mintbody)

This manuscript GSE184036

F1 hybrid mESC - scDam&T-seq CBX7 (protein

domain tuple)

This manuscript GSE184036

F1 hybrid mESC - scDam&T-seq untethered Dam This manuscript GSE184036

F1 hybrid mESC - scDam&T-seq H3K27me3MUT (Y105F) This manuscript GSE184036

F1 hybrid mESC - scDam&T-seq RING1B (full protein) Rooijers et al., 2019 GSE108639

F1 hybrid mESC - ChIP-seq H4K20me1 This manuscript GSE184036

ES-E14TG2a.4 - ChIP-seq H3K27me3 ENCODE ENCSR059MBO

ES-E14 - ChIP-seq H3K9ac ENCODE ENCSR000CGP

F1 hybrid EB - scDam&T-seq H3K27me3 (mintbody) This manuscript GSE184036

F1 hybrid EB - scDam&T-seq RING1B (full protein) This manuscript GSE184036

F1 hybrid EB - scDam&T-seq untethered Dam This manuscript GSE184036

EB - scNMT-seq Argelaguet et al., 2019 ftp://ftp.ebi.ac.uk/pub/databases/

scnmt_gastrulation

Mouse Gastrulation Atlas - scRNA-seq Pijuan-Sala et al., 2019 https://github.com/MarioniLab/

EmbryoTime course2018

Zebrafish 15-somite embryo - scDam&T-seq

MPHOSPH8

(protein domain tuple)

This manuscript GSE184036

Zebrafish 15-somite embryo - scDam&T-seq

untethered Dam

This manuscript GSE184036

hTERT-RPE1 – unprocessed microscopy data This manuscript https://doi.org/10.17632/

sp7hsw68c4.1

Experimental Models: Cell Lines

human TERT-immortalized RPE-1 ATCC Cat#CRL-4000

HEK293T ATCC Cat#CRL-3216

BRL 3A ATCC Cat#CRL-1442

F1 hybrid mESC Joost Gribnau lab Cast/EiJ x 129SvJae; RRID:

CVCL_XY63

F1 hybrid ESC EF1a-Tir1-IRES-neo Rooijers et al., 2019 N/A

F1 hybrid mESC EF1a-Tir1/AID-Dam-scFv-H4K20me1 This manuscript N/A

F1 hybrid mESC EF1a-Tir1/AID-Dam-scFv-H3K27me3 This manuscript N/A

F1 hybrid mESC EF1a-Tir1/AID-Dam-scFv-H3K27me3

MUT(Y105F)

This manuscript N/A

F1 hybrid mESC EF1a-Tir1/AID-Dam This manuscript N/A

F1 hybrid mESC EF1a-Tir1/AID-Dam-(PD-CBX7)3 This manuscript N/A

F1 hybrid mESC EF1a-Tir1/AID-Dam-RING1B This manuscript N/A
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F1 hybrid mESC Tir1-TIGRE/Rosa26 knock-in

AID-Dam-scFv-H3K27me3

This manuscript N/A

F1 hybrid mESC Tir1-TIGRE/Rosa26 knock-in

AID-Dam

This manuscript N/A

F1 hybrid mESC Tir1-TIGRE/knock-in AID-Dam-

RING1B

This manuscript N/A

Experimental Models: Organisms/Strains

Danio rerio T€upfel long fin EZRC or ZIRC ZDB-GENO-990623-2

Oligonucleotides

‘‘AdRt’’ for adaptor ligation, top:

CTAATACGACTCACTATA

GGGCAGCGTGGTCGCGG

CCGAGGA

Vogel et al., 2007 N/A

‘‘AdRb’’ for adaptor ligation, bottom:

TCCTCGGCCGCG

Vogel et al., 2007 N/A

‘‘AdR_PCR’’ for m6A-PCR:

GGTCGCGGCCGAGGATC

Vogel et al., 2007 N/A

RandomhexRT primer: GCCTTGGCACCCGAG

AATTCCANNNNNN

Follow Illumina design N/A

RNA PCR primer 1: AATGATACGGCGACCACCGAGAT

CTACACGTTCAGAGTTCTACAGTCCG*A

Follow Illumina design N/A

RNA PCR index primer (example):

CAAGCAGAAGACGGCATACGAGATCGTGATGT

GACTGGAGTTCCTTGGCACCCGAGAATTCC*A

Follow Illumina design N/A

Tir1-50 Fw: cctctgctaaccatgttcatg This manuscript N/A

Tir1-5 Rev:tccttcacagctgatcagcacc This manuscript N/A

Tir1-30 Fw:gggaagagaatagcaggcatgct This manuscript N/A

Tir1-30 Rev:accagccacttcaaagtggtacc This manuscript N/A

Dam Fw:ttcaacaaaagccaggatcc This manuscript N/A

Dam Rev:gacagcggtgcataaggcgg This manuscript N/A

sgRNA RING1B:

gctttttattcctagaaatgtctc

This manuscript N/A

sgRNA scFv-H3K27me3:

gtccagtctttctagaagatgggc

This manuscript N/A

sgRNA ROSA26: gtccagtctttctagaagatgggc This manuscript N/A

Ring1Bki fw-gaacaacaagcgcatctggc This manuscript N/A

Ring1Bki rev:tcctcccctaacctgcttttgg This manuscript N/A

Ring1Bwt fw:tcctcccctaacctgcttttgg This manuscript N/A

Ring1Bwt+ rev:gccttgcctgcttggtttg This manuscript N/A

scFv-H3K27me3ki fw:gaactccatatatgggctatg This manuscript N/A

scFv-H3K27me3ki rev:cttggtgcgtttgcgggga This manuscript N/A

Primers for SORT-seq / CEL-Seq2 Markodimitraki et al., 2020 N/A

Adapters for DamID2, top and bottom oligonucleotides Markodimitraki et al., 2020 N/A

Recombinant DNA

pCCL.sin.cPPT.DLNGFR.Wpre Bas van Steensel lab (Amendola et al., 2005)

pCCL.PGK-Dam-(PD-CBX1)3x This manuscript N/A

pCCL.HSP-Dam-(PD-CBX1)2x This manuscript N/A

pCCL.HSP-CBX1-Dam This manuscript N/A

pCCL.PGK-(PD-CBX7)3x This manuscript N/A

pCCL.HSP-(PD-CBX7)3x This manuscript N/A

(Continued on next page)

ll
OPEN ACCESSTechnology

Molecular Cell 82, 1–15.e1–e14, May 19, 2022 e4

Please cite this article in press as: Rang et al., Single-cell profiling of transcriptome and histone modifications with EpiDamID, Molecular Cell (2022),
https://doi.org/10.1016/j.molcel.2022.03.009



Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

pCCL.PGK-Dam This manuscript N/A

pCCL.HSP-Dam This manuscript N/A

pCCL.PGK-Dam126 This manuscript N/A

pCCL.PGK-Dam-scFv-H3K27me3 This manuscript N/A

pCCL.PGK-Dam126-scFv-H3K27me3 This manuscript N/A

pCCL.HSP-Dam-scFv-H3K27me3 This manuscript N/A

pCCL.PGK-scFv-H3K27me3-Dam This manuscript N/A

pCCL.HSP-scFvH-3K27me3-Dam This manuscript N/A

pCCL.PGK-Dam-scFv-H3K27me3MUT(Y105F) This manuscript N/A

pCCL.PGK-Dam126-scFv-H3K27me3MUT(Y105F) This manuscript N/A

pCCL.PGK-scFv-H3K27me3MUT-Dam This manuscript N/A

pCCL.PGK-Dam-scFv-H3K9ac This manuscript N/A

pCCL.PGK-Dam-scFv-H4K20me1 This manuscript N/A

pCCL.PGK-Dam126-scFv-H4K20me1 This manuscript N/A

pCCL.HSP-Dam-scFv-H4K20me1 This manuscript N/A

pCCL.HSP-scFv-H4K20me1-Dam This manuscript N/A

pCCL.HSP-Dam-(PD-MPHOSPH8)3x This manuscript N/A

pCCL.PGK-Dam-POLR2F This manuscript N/A

pCCL.HSP-Dam-RING1B This manuscript N/A

pCCL.PGK-Dam-(PD-TAF3)3x This manuscript N/A

pCCL.HSP-Dam-(PD-TAF3)3x This manuscript N/A

pCCL-EF1a-Tir1-IRES-puro This manuscript N/A

pCCL-EF1a-Tir1-IRES-neo Rooijers et al., 2019 N/A

pCCL-hPGK-AID-Dam-scFv-H4K20me1 This manuscript N/A

pCCL-hPGK-AID-Dam-scFv-H3K9ac This manuscript N/A

pCCL-hPGK-AID-Dam-scFv-H3K27me3 This manuscript N/A

pCCL-hPGK-AID-Dam-scFv-H3K27me3MUT This manuscript N/A

pCCL-hPGK-AID-Dam-(PD-CBX7)3x This manuscript N/A

pCCL-hPGK-AID-Dam-RING1B This manuscript N/A

pHomRING1B-BSD-p2A-HA-mAID-Dam This manuscript N/A

pHomROSA26-ER-mAID-V5-Dam-scFv_H3K27me3-

P2A-BSD-Hom

This manuscript N/A

pHomROSA26-ER-mAID-V5-Dam-P2A-BSD-Hom This manuscript N/A

p225a-ROSA26spCas9-RNA This manuscript N/A

p225a-RING1BspCas9-gRNA This manuscript N/A

pX330-EN1201 Zeng et al., 2008 Addgene plasmid #92144

pEN396-pCAGGS-Tir1-V5-2A-PuroR-TIGRE Nora et al., 2017 Addgene plasmid #92142

SP6-GFP-T2A-HA-AID-Dam-V5-pA This manuscript N/A

SP6-HA-AID-Dam-V5-(MPHOSPH8-PD)3x-pA This manuscript N/A

Software and Algorithms

Tophat2 (v. 2.1.1) Kim et al., 2013 https://ccb.jhu.edu/software/tophat/index.shtml

DeepTools (v. 3.3.2) Ramı́rez et al., 2016 https://deeptools.readthedocs.io/en/develop/

MACS2 (v. 2.1.1.20160309) Zhang et al., 2008 N/A

Information Content This manuscript https://github.com/KindLab/EpiDamID2022

MUSIC Harmanci et al., 2014 N/A

Seurat (v. 3.2.2) Stuart et al., 2019 https://satijalab.org/seurat/

Harmony (v. 1.0) Korsunsky et al., 2019 https://portals.broadinstitute.org/harmony/

articles/quickstart.html
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SCENIC (v. 0.11.2) van de Sande et al., 2020 https://github.com/aertslab/pySCENIC

ChromHMM (v. 1.22) Ernst and Kellis., 2012, 2017 https://ernstlab.biolchem.ucla.edu/ChromHMM/

LDA classifier This manuscript https://github.com/KindLab/EpiDamID2022

Pipeline for DamID and scDam&T-seq data Rooijers et al., 2019 https://github.com/KindLab/scDamAndTools

Bowtie2 (v. 2.3.3.1) Langmead and Salzberg, 2012 http://bowtie-bio.sourceforge.net/bowtie2/

index.shtml

Imaris 9.3 Bitplane https://imaris.oxinst.com/packages

Other

Bioruptor sonicator Diagenode N/A

2100 Bioanalyzer platform Agilent N/A

BD FACSJazz Cell Sorter system BD Biosciences N/A

BD FACSInflux Cell Sorter system BD Biosciences N/A

Nanodrop II liquid handling platform Innovadyne Technologies N/A

mosquito LV liquid handling platform SPT Labtech N/A

Freedom EVO liquid handling platform Tecan Life Sciences N/A

Illumina NextSeq500 and/or Illumina NextSeq2000

hardware and sequencing reagents

Illumina N/A

TCS SP8 laser scanning confocal microscope Leica Microsystems N/A

LSM900 confocal with AiryScan2 Zeiss N/A

Type F oil immersion liquid Leica Microsystems Cat#11513859; CAS: 195371-10-9

Falcon� Round-Bottom Polystyrene Test Tubes

with Cell Strainer Snap Cap, 5mL

Thermo Fisher Scientific Cat#08-771-23

Falcon� Round-Bottom Polypropylene Test Tubes

with Cap, 5 mL

Thermo Fisher Scientific Cat#14-959-11A

384-well hard-shell plates BioRad HSP3801

Amicon Ultra-15 centrifugal filter units Merck Cat#UFC910024

70-mm cell strainer Greiner Bio-One Cat#542070

40-mm cell strainer Greiner Bio-One Cat#542070
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Jop Kind

(j.kind@hubrecht.eu).

Materials availability
Unique/stable materials generated in this study are available from the Lead Contact with a completed Materials Transfer Agreement.

Data and code availability
d All sequencing data generated in this manuscript are deposited on the NCBI Gene Expression Omnibus (GEO) portal and are

publicly available as of the data of publication under accession number GEO: GSE184036 (see Key resource table for further

details). Imaging data are publicly available on Mendeley Data: https://doi.org/10.17632/sp7hsw68c4.1.

d Key scripts are available at Zenodo: https://doi.org/10.5281/zenodo.6308373.

d Any additional information required to reanalyze the data reported in this paper is available from the Lead Contact upon

request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines
All cell lines were grown in a humidified chamber at 37 �C in 5% CO2, and were routinely tested for mycoplasma. Human TERT-

immortalized RPE-1 cells were cultured in DMEM/F12 (GIBCO) containing 10% FBS (Sigma F7524 lot BCBW6329) and 1% Pen/

Strep (GIBCO). This cell line does not contain a Y chromosome. Human HEK293T cells were cultured in DMEM (GIBCO) containing
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10% FBS and 1% Pen/Strep (GIBCO). This cell line does not contain a Y chromosome. Mouse F1 hybrid Cast/EiJ x 129SvJae em-

bryonic stem cells (mESCs; a kind gift from the Joost Gribnau laboratory) were cultured on irradiated primary mouse embryonic

fibroblasts (MEFs), in mESC culture media CM+/+ defined as follows: G-MEM (GIBCO) supplemented with 10% FBS (Sigma

F7524 lot BCBW6329), 1% Pen/Strep (GIBCO), 1x GlutaMAX (GIBCO), 1x non-essential amino acids (GIBCO), 1x sodium pyruvate

(GIBCO), 0.1 mM b-mercaptoethanol (Sigma) and 1000 U/mL ESGROmLIF (EMD Millipore ESG1107). Cells were split every 3 days

and medium was changed every other day. Expression of the Dam-POI constructs was suppressed by addition of 0.5 mM indole-3-

acetic acid (IAA; Sigma, I5148). This cell line does not contain a Y chromosome.

Zebrafish
All experiments were conducted under the guidelines of the animal welfare committee of the Royal Netherlands Academy of Arts and

Sciences (KNAW). Adult T€upfel long fin (wild type) zebrafish (Danio rerio) were maintained and embryos raised and staged as previ-

ously described (Aleström et al., 2019; Westerfield, 2000).

METHOD DETAILS

ChIP-seq
ChIP-seq was performed as described previously (Collas, 2011), with the following adaptations. Cells were harvested by trypsiniza-

tion, and chemically crosslinked with fresh formaldehyde solution (1% in PBS) for 8 min while rotating at room temperature. Cross-

linking was quenched with glycine on ice and sample was centrifuged at 500 g for 10 min at 4�C. Pellet was then resuspended in lysis

buffer for 5min on ice and sonicated as follows: 16 cycles of 30 s on / 30 s off at max power (Bioruptor Diagenode), and centrifuged at

14,000 rpm at 4�C for 10 min. The chromatin in supernatant was treated with RNase A for 30 min at 37�C, and Proteinase K for 4 h at

65�C to reverse crosslinks, then cleared using DNA purification columns and eluted in nuclease-free water. Chromatin was incubated

with antibodies (see below), after which Protein G beads (ThermoFisher #88847) were added for antibody binding. After successive

washing, samples were cleared using DNA purification columns, eluted in nuclease-free water, andmeasured using a Qubit fluorom-

eter. Libraries were prepared according to the Illumina TruSeq DNA LT kit and sequenced on the Illumina HiSeq 2500 following man-

ufacturer’s protocols. Up to 50 ng of immunoprecipitated chromatin was used as input for library preparation. Antibodies used were:

anti-H3K4me3 Abcam ab8580, anti-H3K9ac Abcam ab4441, anti-H3K9me3 Abcam ab8898, anti-H3K27me3 Merck Millipore

07-449, anti-H3K36me3 Active Motif 61902, anti-H4K20me1 Abcam ab9051.

DamID construct design
The constructs for mintbodies, chromatin binding domains, and full-length protein constructs were fused to Dam in both possible

orientations under the control of the auxin-inducible degron (AID) system (Kubota et al., 2013; Nishimura et al., 2009) with either

the hPGK or HSP promoter, and cloned into the pCCL.sin.cPPT.DLNGFR.Wpre lentiviral construct (Amendola et al., 2005) by stan-

dard cloning procedures.

The linkers used for the triple fusion domains are, in order of appearance:

Dam; V5 linker [GKPIPNPLLGLDST]; 1st domain (e.g., chromo); GSAGSAAGSGEF; 2nd domain; linker [KESGSVSSEQL

AQFRSLD]; 3rd domain. All other POIs are linked to Dam via a V5 linker, which has been commonly used in DamID constructs (Meule-

man et al., 2013; Peric-Hupkes et al., 2010; Vogel et al., 2006). The Gly- and Ser-rich flexible linker, GSAGSAAGSGEF, was designed

to express GFP-fusion proteins for rapid protein-folding assay (Waldo et al., 1999). The KESGSVSSEQLAQFRSLD flexible linker was

previously used for the construction of a bioactive scFv (Bird et al., 1988). For context: the Gly and Ser residues in the linker were

designed to provide flexibility, whereas Glu and Lys were added to improve the solubility (Chen et al., 2013).

Bulk DamID2
hTERT-RPE1 cells were grown as described above. At 30% confluence in 6-well plates, cells were transduced with 1500 mL total

volume unconcentrated lentivirus, amounts ranging between 20-1500 mL unconcentrated lentivirus (or 0.1-40 mL concentrated) in

the presence of 10 mg/mL polybrene. Cells were collected for genomic DNA isolation (Wizard, Promega) 48 h after transduction.

Dammethylation levels were checked by m6A-PCR as previously described (de Luca & Kind, 2021; Vogel et al., 2007) and sequenced

following the DamID2 protocol (Markodimitraki et al., 2020).

Immunofluorescent staining and confocal imaging of RPE-1 cells
Viral transduction was performed as described above for bulk DamID2, with the exception that RPE-1 cells were grown on glass cov-

erslips. Two days after transduction, cells were washedwith PBS and chemically crosslinked with fresh formaldehyde solution (2% in

PBS) for 10 min at RT, then permeabilized (with 0.5% IGEPAL� CA-630 in PBS) for 20 min and blocked (with 1% bovine serum al-

bumin (BSA) in PBS) for 30min. All antibody incubations were performed in final 1%BSA in PBS followed by three PBSwashes at RT.

Incubation with primary antibody against the endogenous histone modification as well as purified m6A-Tracer protein (Van Schaik

et al., 2020) (recognizing methylated DNA) was performed at 4�C for 16 h (overnight), followed by anti-GFP (against m6A-Tracer pro-

tein) incubation at RT for 1 h, and secondary antibody incubations at RT for 1 h. The final PBSwash was simultaneously an incubation

with DAPI at 0.5 mg/mL for 2 min, followed by a wash in MilliQ and sample mounting on glass slides using VECTASHIELD Antifade
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mounting medium (Vector Laboratories). Primary antibodies: anti-H3K9ac abcam ab4441 (rabbit) at 1:1000, anti-H3K9me3 abcam

ab8898 (rabbit) at 1:300, anti-GFP Aves GFP-1020 (chicken) at 1:1000. Secondary antibodies: AlexaFluor anti-chicken 488 at 1:500

and anti-rabbit 647 at 1:500. Purified m6A-Tracer protein (used at 1:1000) was a kind gift from the Bas van Steensel laboratory. Im-

aging was performed on a Leica TCS SP8 laser scanning confocal microscope with a 63X (NA 1.40) oil-immersion objective. Images

were processed in Imaris 9.3 (Bitplane) by baseline subtraction. Additional background correction was done with a 1-mM Gaussian

filter for the images of Dam-CBX1 m6A-Tracer and H3K9me3 stainings.

Generation of mouse embryonic stem cell lines
The various stable clonal F1 hybrid mESC lines for the initial single cell experiments were created by lentiviral co-transduction of

pCCL-EF1a-Tir1-IRES-puro and pCCL-hPGK-AID-Dam-POI constructs with a 4:1 ratio in a EF1a-Tir1-IRES-neo mother line

(Rooijers et al., 2019), after which the cells were selected for 10 days on 0.1% gelatine coated 10-cm dishes in 60%Buffalo Rat Liver

(BRL)-conditioned medium containing 0.8 mg/mL puromycin (Sigma P9620), 250 mg/mL G418 (ThermoFisher 11811031) and 0.5 mM

IAA. Individual puromycin resistant colonies were handpicked and tested for the presence of the constructs by PCR using Dam-spe-

cific primers fw-ttcaacaaaagccaggatcc and rev-gacagcggtgcataaggcgg.

The clonal F1 hybrid knock-in cell lines were CRISPR targeted in a mother line carrying Tir1-Puro in the TIGRE locus (Zeng et al.,

2008). For all CRISPR targeting, cells were cultured on gelatin-coated 6-wells in 60% BRL conditioned medium to 70%–90% con-

fluency and transfected with Lipofectamin3000 (Invitrogen L3000008) according to the supplier protocol with 2 mg donor vector and

1 mg Cas9/guide vector. At 24 h after transfection the cells were split to a gelatin-coated 10-cm dish and antibiotic selection of trans-

fected cells is started 48 h after transfection. Cells were selected with 60% BRL conditioned medium containing 0.8 mg/mL puromy-

cin for the Tir1 knock-in and 2.5 mg/mL blasticidin (Invivogen) for the AID-Dam knock-in lines. After 5-10 days of selection, individual

colonies were manually picked and screened by PCR for the correct genotype.

All CRISPR knock-in lines were made in a Tir1-TIGRE mother line that was generated by co-transfection of Cas9-gRNA plasmid

pX330-EN1201(Addgene plasmid #92144) and donor plasmid pEN396-pCAGGS-Tir1-V5-2A-PuroR TIGRE (Addgene plasmid

#92142) (Nora et al., 2017). The Tir1-puro clones were screened for the presence of Tir1 by PCR from the CAGG promoter to Tir1

with the primers fw-cctctgctaaccatgttcatg and rev-tccttcacagctgatcagcacc, followed by screening for correct integration in the

TIGRE locus by PCR from the polyA to the TIGRE locus with primers fw-gggaagagaatagcaggcatgct and rev-accagccacttcaaagtgg-

tacc. The Tir1 expression was further confirmed by Western blot using a V5 antibody (Invitrogen R960-25).

A knock-in of AID-Dam in the N terminus of the RING1B locus was made by co-transfection of a donor vector carrying the blas-

ticidin-p2A-HA-mAID-Dam cassette flanked by two 500-bp homology arms of the endogenous RING1B locus (pHom-BSD-p2A-HA-

mAID-Dam) and p225a-RING1B spCas9-gRNA vector (sgRNA: 50gctttttattcctagaaatgtctc30) as described above. Picked clones

were screened for correct integration by PCR with primers from Dam to the RING1B locus outside the targeting construct; fw-gaa-

caacaagcgcatctggc and rev-tcctcccctaacctgcttttgg. Presence of the RING1B wildtype allele was checked by PCR with primers fw-

tcctcccctaacctgcttttgg and rev-gccttgcctgcttggtttg. The H3K27me3 mintbody coupled to ER-mAID-Dam was knocked into the

Rosa26 locus by co-transfection of pHom-ER-mAID-V5-Dam-scFv_H3K27me3-P2A-BSD-Hom donor vector and p225a-Rosa26

spCas9-RNA vector (sgRNA: gtccagtctttctagaagatgggc) as described above. Picked clones were screened for correct integration

by PCR from a sequence adjacent to the Rosa homology arm to the Rosa26 locus with primers fw-gaactccatatatgggctatg and

rev-cttggtgcgtttgcgggga. The untethered mAID-Dam was knocked into the Rosa26 locus by co-transfection with the pHom-ER-

mAID-V5-Dam-P2A-BSD-Hom donor vector and p225a-Rosa26 spCas9-RNA vector (sgRNA: gtccagtctttctagaagatgggc) as

described above. Picked clones were screened for correct integration by PCR with the same primers as for the Dam-

H3K27me3 mintbody knock-in line.

All clones with correct integrations were furthermore screened for their level of induction upon IAA removal by m6A-PCR eval-

uated by gel electrophoresis (de Luca and Kind, 2021; Vogel et al., 2007), followed by DamID2 sequencing in bulk (Markodimi-

traki et al., 2020), to select the clone with a correct karyotype and the best signal-to-noise ratio of enrichment over expected

regions or chromatin domains. Finally, the best 3-4 clones were selected for testing of IAA removal timing in single cells by

DamID2.

Mouse embryonic stem cell culture and induction of Dam-fusion proteins
When plated for targeting or genomics experiments, cells were passaged at least 2 times in feeder-free conditions, on plates coated

with 0.1% gelatin, grown in 60% BRL-conditioned medium, defined as follows and containing 1 mM IAA: 40% CM+/+ medium and

60% of CM+/+ medium conditioned on BRL cells. For timed induction of the constructs the IAA was washed out at different clone-

specific times before single-cell sorting.

Embryoid body differentiation and induction of Dam-fusion proteins
For EB differentiation, the stable knock-in F1ES lines were cultured for 2 weeks on plates coated with 0.1% gelatin, grown in 2i+LIF

ES cell culture medium defined as follows: 48% DMEM/F12 (GIBCO) and 48% Neurobasal medium (GIBCO), supplemented with 1x

N2 (GIBCO), 1x B27 supplement + vitamin A (GIBCO), 1x non-essential amino acids, 1% FBS, 1% Pen/Strep, 0.1mM b-mercaptoe-

thanol, 1 mM PD0325901 (Axon Medchem, PZ0162-5MG), 3 mM CHIR99021 (Tocris, SML1046-5MG), 1000 U/mL ESGRO mLIF. EB

differentiation was performed according to ATCC protocol. On day 1 of differentiation, 2x10^6 cells were grown in suspension on a
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non-coated bacterial 10-cm dish with 15 mL CM+/� (with b-mercaptoethanol, without LIF) and 0.5 mM IAA. On day 2, half the cell

suspension was divided over five non-coated bacterial 10-cm dishes each containing 15mLCM+/�medium and 0.5mM IAA. Plates

were refreshed every other day. EBs were harvested at day 7, 10, and 14. Two days before single-cell sorting, the EBs were grown in

CM+/� medium containing 1 mM IAA, and induced as follows: 6 h without IAA (RING1B); 20 h without IAA and 7 h with 1 mM 4OHT

(Sigma SML1666) (Dam-H3K27me3-mintbody); 7 h without IAA and 4 h with 1 mM 4OHT (untethered Dam). The EBs were evaluated

by brightfield microscopy and hand-picked for further handling (see below).

FACS for single-cell experiments
FACS was performed on BD FACSJazz or BD FACSInflux Cell Sorter systems with BD Sortware. mESCs and EBs were harvested

by trypsinization, centrifuged at 300 g, resuspended in medium containing 20 mg/mL Hoechst 34580 (Sigma 63493) per 1x106 cells

and incubated for 45 min at 37�C. Prior to sorting, cells were passed through a 40-mm cell strainer. Propidium iodide (1 mg/mL) was

used as a live/dead discriminant. Single cells were gated on forward and side scatters and Hoechst cell cycle profiles. Index in-

formation was recorded for all sorts. One cell per well was sorted into 384-well hard-shell plates (Biorad, HSP3801) containing

5 mL of filtered mineral oil (Sigma #69794) and 50 nL of 0.5 mM barcoded CEL-Seq2 primer (Markodimitraki et al., 2020; Rooijers

et al., 2019). In the EB experiment, the knock-in mESC lines were cultured alongside on 2i+LIF medium and included as a refer-

ence at each time point.

Single-cell Dam&T-seq
The scDam&T-seq protocol was performed as previously described in detail (Markodimitraki et al., 2020), with the adaptation that

all volumes were halved to reduce costs. Liquid reagent dispension steps were performed on a Nanodrop II robot (Innovadyne

Technologies / BioNex). Addition of barcoded adapters was done with a mosquito LV (SPT Labtech). In short, after FACS, 50

nL per well of lysis mix (0.07% IGEPAL, 1 mM dNTPs, 1:50,000 ERCC RNA spike-in mix (Ambion, 4456740)) was added, followed

by incubation at 65 �C for 5 min. 100 nL of reverse transcription mix (1 3 First Strand Buffer and 10 mM DTT (Invitrogen, 18064-

014), 2 U RNaseOUT Recombinant Ribonuclease Inhibitor (Invitrogen, 10777019), 10 U SuperscriptII (Invitrogen, 18064-014)) was

added, followed by incubation at 42 �C for 2 h, 4 �C for 5 min and 70 �C for 10 min. Next, 885 nL of second strand synthesis mix

(1 3 second strand buffer (Invitrogen, 10812014), 192 mM dNTPs, 0.006 U E. coli DNA ligase (Invitrogen, 18052019), 0.013 U

RNase H (Invitrogen, 18021071), 0.26 U E. coli DNA polymerase (Invitrogen)) was added, followed by incubation at 16 �C for 2

h. 250 nL of protease mix was added (1 3 NEB CutSmart buffer, 1.0cmg/mL Proteinase K (Roche, 000000003115836001)), fol-

lowed by incubation at 50 �C for 10 h and 80 �C for 20 min. Next, 115 nL of DpnI mix (1 3 NEB CutSmart buffer, 0.1 U NEB DpnI)

was added, followed by incubation at 37 �C for 6 h and 80 �C for 20 min. Finally, 50 nL of 0.5 uM DamID2 adapters were dispensed

(final concentrations 25 nM), followed by 400 nL of ligation mix (1 3 T4 Ligase buffer (Roche, 10799009001), 0.13 U T4 Ligase

(Roche, 10799009001)) and incubation at 16 �C for 16 hr and 65 �C for 10 min. Contents of all wells were pooled and the aqueous

phase was recovered by centrifugation and transferred to clean tubes. Samples were purified by incubation for 10 min with 0.8

volumes magnetic beads (CleanNA, CPCR-0050) diluted 1:7 with bead binding buffer (20% PEG8000, 2.5 M NaCl), washed twice

with 80% ethanol and resuspended in 8 mL of nuclease-free water before in vitro transcription at 37 �C for 14 h using the

MEGAScript T7 kit (Invitrogen, AM1334). Library preparation was done as described in the CEL-Seq2 protocol with minor adjust-

ments (Hashimshony et al., 2016). Amplified RNA (aRNA) was purified with 0.8 volumes beads as described above, and resus-

pended in 20 mL of nuclease-free water, and fragmented at 94 �C for 90 s with the addition of 0.25 volumes fragmentation buffer.

Fragmentation was stopped by addition of 0.1 volumes of 0.5 M EDTA pH 8 and quenched on ice. Fragmented aRNA was purified

with beads as described above, and resuspended in 12 mL of nuclease-free water. Thereafter, library preparation was done as

previously described (Hashimshony et al., 2016) using up to 7 mL or approximately 150 ng of aRNA, and 8-10 PCR cycles depend-

ing on input material. Libraries were sequenced on the Illumina NextSeq500 (75-bp reads) or NextSeq2000 (100-bp reads)

platform.

Collection of zebrafish samples and FACS
T€upfel long fin (wild type) pairs were set up and the following morning, approximately 1 nL of 1 ng/mL Dam-Mphosph8 mRNA or

0.5 ng/mL Dam-Gfp mRNA was injected into the yolk at the 1-cell stage. Embryos were slowed down overnight at 23 �C and the

followingmorning all embryosweremanually dechorionated. At 15-somite stage, embryoswere transferred to 2-mL Eppendorf tubes

and digested with 0.1%Collagenase type II from Cl. Histolyticum (GIBCO) in Hanks Balanced Salt Solution without Mg2+/Ca2+ (Ther-

mofisher) for 20-30 min at 32 �Cwith constant shaking. Once embryos were noticeably digested, cell solution was spun at 2000 g for

5 min at room temperature and the supernatant was removed. Cell pellet was resuspended with TrypLE Express (Thermofisher) and

digested for 10 min at 32 �C with constant shaking. Cell solution was inactivated with 10% Fetal Bovine Serum (Thermofisher) in

Hanks Balanced Salt Solution without Mg2+/Ca2+ and filtered through a 70-mm cell strainer (Greiner Bio-One). Cells were pelleted

at 2000 g for 5 min at room temperature and washed twice with 10% Fetal Bovine Serum (Thermofisher) in Hanks Balanced Salt So-

lution without Mg2+/Ca2+. Hoechst 34580 at a final concentration of 16.8 mg/mL was added to the cell solution and incubated for

30 min at 28 �C in the dark. Solution was then filtered through a 40-mm cell strainer (Greiner Bio-One), and propidium iodide was

added at a final concentration of 5 mL/mL. FACS was performed on BD FACSInflux as described above, retaining only cells in

G2/M phase based on Hoechst DNA content. Plates were processed for scDam&T-seq as described above.
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Immunofluorescent staining and confocal imaging of zebrafish embryos
Embryos at 15-somite stagewere fixed in 4%PFA (Sigma) for 2 h at RT, followed bywashes in PBS. Embryoswere thenwashed three

times in 4% sucrose/PBS and allowed to equilibrate in 30% sucrose/PBS at 4�C for 3-5 h. Embryos were suspended in Tissue

Freezing Medium (Leica) orientated in the sagittal plane and frozen with dry ice. Blocks were sectioned at 8 mm and slides were re-

hydrated in PBS, treated with �20�C pre-cooled acetone for 7 min at �20�C, washed three times with PBS and digested with Pro-

teinase K (Promega) at a final concentration of 10 mg/mL for 3 min, washed 1x PBS and incubated in blocking buffer (10% Fetal

Bovine Serum, 1% DMSO, 0.1% Tween20 in PBS) for 30 min. Primary antibody was diluted in blocking buffer and slides incubated

overnight at 4�C. Slides were washed the following day and incubated with the appropriate AlexaFluor secondary antibodies (1:500),

DAPI (0.5 mg/mL) and Phalloidin-TRITC (1:200) diluted in blocking buffer for 1 h at RT. Slides were washed, covered with glass cov-

erslips with ProLong Gold Antifade Mountant (Thermofisher) and imaged at 63X with a LSM900 confocal with AiryScan2 (Zeiss). Im-

ageswere viewed and processed in Imaris 9.3 (Bitplane) and AdobeCreative Cloud (Adobe). Primary antibody: anti-H3K9me3 abcam

ab8898 at 1:500 (Chandra et al., 2012).

Processing DamID and scDam&T-seq data
Data generated by the DamID and scDam&T-seq protocols was largely processed with the workflow and scripts described in (Mar-

kodimitraki et al., 2020) (see also https://www.github.com/KindLab/scDamAndTools). The procedure is described in short below.

Demultiplexing

All reads are demultiplexed based on the barcode present at the start of R1 using a reference list of barcodes. In the case of

scDam&T-seq data, the reference barcodes contain both DamID-specific and CEL-Seq2-specific barcodes and zero mismatches

between the observed barcode and reference are allowed. In the case of the population DamID data, the reference barcodes

only contain DamID-specific barcodes and one mismatch is allowed. The UMI information, also present at the start of R1, is ap-

pended to the read name.

DamID data processing

DamID reads are aligned using bowtie2 (v. 2.3.3.1) (Langmead and Salzberg, 2012) with the following parameters: ‘‘--seed 42 --very-

sensitive -N 1.’’ For human samples, the hg19 reference genome is used; for mouse samples, the mm10 reference genome; and for

zebrafish samples the GRCz11 reference genome. The resulting alignments are then converted to UMI-unique GATC counts by

matching each alignment to known strand-specific GATC positions in the reference genome. Any reads that do not align to a known

GATC position or have a mapping quality smaller than 10 are removed. In the case of bulk DamID samples, up to 64 unique UMIs are

allowed per GATC position, while up to 4 unique UMIs are allowed for single-cell samples to account for the maximum number of

alleles in G2. Finally, counts are binned at the desired resolution.

CEL-Seq2 data processing

CEL-Seq2 reads are aligned using tophat2 (v. 2.1.1) (Kim et al., 2013) with the following parameters: ‘‘--segment-length 22

--read-mismatches 4 --read-edit-dist 4 --min-anchor 6 --min-intron-length 25 --max-intron-length 25000 --no-novel-juncs

--no-novel-indels --no-coverage-search --b2-very-sensitive --b2-N 1 --b2-gbar 200.’’ For mouse samples, the mm10 reference

genome and the GRCm38 (v. 89) transcript models are used. For zebrafish samples, the GRCz11 reference genome and the

adjusted transcript models published by the Lawson lab (Lawson et al., 2020) are used. Alignments are subsequently converted

to transcript counts per gene with custom scripts that assign reads to genes similar to HTSeq’s (Anders et al., 2015) htseq-count

with mode ‘‘intersection_strict.’’

Processing of ChIP-seq data
External ChIP-seq datasets were downloaded from the NCBI GEO repository and the ENCODE database (Davis et al., 2018). The

external ChIP-seq data used in this manuscript consists of: H3K9ac ChIP-seq in mESC (ENCSR000CGP), H3K27me3 ChIP-seq

in mESC (ENCSR059MBO), and H3K9me3 ChIP-seq in 6-hpf zebrafish embryos (Laue et al., 2019) (GSE113086). Internal and

external ChIP-seq data were processed in an identical manner. First reads were aligned using bowtie2 (v. 2.3.3.1) with the following

parameters: ‘‘--seed 42 --very-sensitive -N 1.’’ Indexes for the alignments were then generated using ‘‘samtools index’’ and genome

coverage tracks were computed using the ‘‘bamCoverage’’ utility from DeepTools (v. 3.3.2) (Ramı́rez et al., 2016) with the following

parameters: ‘‘--ignoreDuplicates --minMappingQuality 10.’’ For marks that exist in broad domains in the genome, domains were

called usingMUSIC (Harmanci et al., 2014) according to the suggested workflow (https://github.com/gersteinlab/MUSIC). For marks

that form narrow peaks in the genome, peaks were called using MACS2 (v. 2.1.1.20160309) (Zhang et al., 2008) using the ‘‘macs2

callpeak’’ utility with the following parameters: ‘‘-q 0.05.’’

Computing the Information Content (IC) of DamID samples
The Information Content (IC) of a DamID sample is a measure of howmuch structure is in the detected methylation signal. It is essen-

tially an adaptation of the RNA-seq normalization strategy called PoissonSeq (Li et al., 2012). Its goal is to compare the obtained

signal to a background signal (the density of mappable GATCs), identify regions where the signal is similar to background, and finally

compare the amount of total signal (i.e., total GATC counts) to the total signal in background regions. The IC is the ratio of total signal

over background signal and can be used to filter out samples that contain little structure in their data. The code used to compute the

IC is available online (https://github.com/KindLab/EpiDamID2022) and the procedure is explained below.
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As an input, we use the sample counts binned at 100-kb intervals, smoothenedwith a 250-kbGaussian kernel. The large bin size and

smoothing are necessary whenworking with single-cell samples that have very sparse and peaky data and would otherwise be difficult

tomatch to the background signal. As a control, we use the number ofmappableGATCs in the same100-kbbins, similarly smoothened.

We subsequently remove all genomic bins that do not have any observed counts in the sample. Our starting data is then X, a matrix with

size ðn;kÞ, where n is the number of genomic bins and k is the number of samples. Since we are comparing one experimental sample

with the control, k is always 2. Xij denotes the number of counts observed in the ith bin of the jth sample.We first compute the expected

number of counts for each Xij based on the marginal probabilities of observing counts in each bin and in each sample:

d =
Xn

i = 1

Xk

j = 1

Xij

p =
Xk

j = 1

Xj=d = ðp1.pnÞT

q =
Xn

i = 1

Xi=d = ðq1;q2Þ

E = dðp ,qÞ
Where d is the total sum of Xij; pi is the marginal probability of observing counts in bin i; qj is the marginal probability of observing

counts in sample j; and E is the matrix of size ðn; kÞ where entry Eij is the expected number of counts in bin i for sample j, computed

as piqjd.

We subsequently compute the goodness of fit of our predictions compared to the actual counts per bin:

g =
Xk

j = 1

Xj � Ej

Ej

Where gi is the measure of how well the predictions of Ei match the observed counts in Xi in bin i. The better the prediction, the

closer gi is to zero, indicating that the signal of the experimental sample closely resembles the background in bin i. Next, an iterative

process is performed where in each step a subset of the original bins is chosen that exclude bins with extreme values of g. Specif-

ically, all bins with a goodness of fit in the top and bottom 5th percentiles are excluded to progressively move toward a stable set of

bins where the sample resembles the background. After each iteration, the chosen bins are compared to the previous set of bins and

when this has stabilized, or when the maximum number of iterations is reached, the procedure stops. In practice, convergence is

usually reached after only a couple of iterations. The IC is then computed for the experimental sample as the ratio of its summed total

counts to the sum of counts observed in the final subset of bins.

Population DamID data filtering and analyses
The population DamID samples were filtered based on a depth threshold of 300,000 UMI-unique GATC counts and an IC of at least

1.1. Per Dam-construct, the best samples based on the IC weremaintained. Samples were normalized for the total number of counts

using reads per kilobase permillion (RPKM). Normalization for Damcontrols was performed by adding a pseudo count of 1, taking the

per bin fold-change with Dam, and performing a log2-transformation, resulting in log2 observed-over-expected (log2OE) values. The

UMAP presented in Figure 1B was computed by performing principal component analysis (PCA) on the RPKM-normalized samples

(20-kb bins) and using the top components for UMAP computation in python with custom scripts. For the correlations presented in

Figures 1C and S1C, the RPKM-normalized DamID values were normalized for the density of mappable GATCs and log-transformed.

The Spearman’s rank correlation was then computed with the input-normalized ChIP-seq values of the various marks.

Resolution analysis on RPE-1 samples

To evaluate the resolution of EpiDamID signal compared to ChIP-seq, we wanted to determine the spread of the signal around re-

gions of known enrichment. To this end, we used ChIP-seq peaks for H3K9ac and H3K4me3, and domains for H3K27me3 and

H3K9me3. We computed the average ChIP-seq signal and DamID signal around these regions, using a resolution (i.e., bin size) of

200 bp. The resulting signal was mildly smoothed to get a better representation of the trends. For each sample, we then determined

the distance over which the signal measured at the reference point decayed to 50% relative to the background. As a reference point,

we chose the center of H3K9ac and H3K4me3 peaks, or the boundary of H3K27me3 and H3K9me3 domains. The spread of the

DamID signal can then be determined as the increase in this distance relative to the corresponding ChIP-seq sample.

Single-cell DamID data filtering and analyses
Filtering and normalizing scDamID data

Single-cell DamID samples were filtered based on a depth and an IC threshold. For the mouse samples, these thresholds were

3,000 unique GATCs and an IC within the range of 1.5 to 7 (the upper threshold removes samples with very sparse profiles); for
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zebrafish, these thresholds were 1,000 unique GATCs and an IC within the range of 1.2 to 7. For the zebrafish samples, chro-

mosome 4 was excluded when determining depth and IC (and in all downstream analyses) since the reference assembly of this

chromosome is poor and alignments unreliable. The quality of scDam&T-seq samples is determined separately for the DamID

readout and the CEL-Seq2 readout. To preserve as much of the data as possible, we used all samples passing DamID thresh-

olds for analyses that relied exclusively on the DamID readout. Wherever single-cell data was used, samples were normalized for

their total number of GATCs, scaled by a factor 10,000, and log-transformed with a pseudo-count of 1, equivalent to the nor-

malizations customarily performed for single-cell RNA-seq samples. To generate in silico populations based on single-cell sam-

ples, the binned UMI-unique counts of all single-cells were combined and normalization was performed equivalent to population

DamID samples.

scDamID UMAPs

The UMAPs presented in Figures 2A, 3C, and 5C were computed by performing PCA on the depth-normalized single-cell samples

and using the top components for UMAP computation. Since in EBs inactivation of chromosome X can coincides with a strong

enrichment of H3K27me3/RING1B on that chromosome, we depth-normalized these samples using the total number of GATCs

on somatic chromosomes. For the zebrafish samples, chromosome 4 was completely excluded from the analysis. For the mouse

UMAPs, the single-cell data were binned at a resolution of 10-kb intervals, while for the zebrafish UMAPs, the resolution was 100

kb. Notably, when the first principal components showed a strong correlation to sample depth, it was excluded.

Single-cell count enrichment

Figures 2B–2D show the enrichment of counts in ChIP-seq domains for all single-cell mESC samples; Figure S5F shows the enrich-

ment of counts for all MPHOSPH8 zebrafish samples. The count enrichment is equivalent to the more well-known Fraction Reads in

Peaks (FRiP) metric, but has been normalized for the expected fraction of counts within the domains based on the total number of

mappable GATCs covered by these domains. In other words, if the domains cover 50% of the mappable GATCs in the genome and

we observe that 70% of a sample’s counts fall within these domains, the count enrichment is 0.7 / 0.5 = 1.4.

Single-cell CEL-Seq2 data filtering and analyses
Filtering CEL-Seq2 data

Single-cell datasets were evaluated with respect to the number of unique transcripts, percentage mitochondrial reads, percentage

ERCC-derived transcripts and the percentage of reads coming from unannoted gene models (starting with ‘‘AC’’ or ‘‘Gm’’) and

appropriate thresholds were chosen. For the EB data, the used thresholds were 1,000 UMI-unique transcripts, < 7.5%mitochondrial

transcripts, < 1%ERCC-derived transcripts, and < 5% transcripts derived from unannotated genemodels. In addition, a small group

of cells (29/6,554 z 0.4%) from different time points, which formed a cluster that could not be annotated and was characterized by

high expression of ribosomal genes, was removed from further analyses. For the zebrafish data, the used thresholds were 1,000 UMI-

unique transcripts and < 5% ERCC-derived transcripts. Only genes observed in at least 5 samples across the entire dataset were

maintained in further analyses. The quality of scDam&T-seq samples is determined separately for the DamID readout and the

CEL-Seq2 readout. To preserve as much of the data as possible, we used all samples passing CEL-Seq2 thresholds (independent

of DamID quality) for transcriptome-based analyses.

Analysis of CEL-Seq2 data with Seurat and Harmony

Single-cell transcription data was processed using Seurat (v3) (Stuart et al., 2019). First, samples were processed using the ‘‘Normal-

izeData,’’ ‘‘FindVariableFeatures,’’ ‘‘ScaleData,’’ and ‘‘RunPCA’’ commands with default parameters. Subsequently, batch effects

relating to processing batch and plate were removed using Harmony (Korsunsky et al., 2019) using the ‘‘RunHarmony’’ command,

using a theta = 2 for the batch variable and theta = 1 for the plate variable. Clustering and dimensionality reduction were subsequently

performed with the ‘‘FindNeighbors,’’ ‘‘FindClusters’’ and ‘‘RunUMAP’’ commands. Differentially expressed genes per cluster were

found using the ‘‘FindAllMarkers’’ command.

Integration with external single-cell datasets

The EB data was integrated with part of the single-cell mouse embryo atlas published by (Pijuan-Sala et al., 2019) and with the tran-

scription data from the scNMT-seq EB dataset published by (Argelaguet et al., 2019). In the case of themouse embryo atlas, the data

was loaded directly into R via the provided R package ‘‘MouseGastrulationData.’’ One dataset per time point was included (datasets

18, 14, 19, 16, 17, corresponding to embryonic stages E6.5, E7.0, E7.5, E8.0, E8.5, respectively). In the case of the scNMT-seq data-

set, the transcript count tables were downloaded from the repository provided in the publication. Only cells derived fom wild type

embryos were included. The external data and our own data was integrated using the SCTransform (Hafemeister and Satija,

2019) and the anchor-based intregration (Stuart et al., 2019) functionalities fromSeurat. First, all data was normalized per batch using

the ‘‘SCTransform’’ command. Datasets were then integrated using the ‘‘SelectIntegrationFeatures,’’ ‘‘PrepSCTIntegration,’’

‘‘FindIntegrationAnchors,’’ and ‘‘IntegrateData,’’ as per Seurat documentation. To assign scNMT-seq samples to the previously

determined EB clusters, we used Seurat’s ‘‘TransferData’’ command.

SCENIC

We used SCENIC (Aibar et al., 2017) on the command line according to the documentation provided for the python-based scalable

version of the tool (pySCENIC) (Van de Sande et al., 2020). Specifically, we ran ‘‘pyscenic grn’’ with the parameters ‘‘--method

grnboost2’’; ‘‘pyscenic ctx’’ with the parameters ‘‘--all_modules’’; and ‘‘pyscenic aucell’’ with the default parameters. We used

the transcription factor annotation and the transcription factor motifs (10 kb ± of the TSS) provided with SCENIC. This yielded 414
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activating regulons.We subsequently filtered regulons based on the expression of the regulon as awhole (at least 50%of cells having

an AUCell score > 0 within at least one Seurat cluster) and based on the expression of the regulon transcription factor (detected in at

least 5% of cells in at least one cluster) to retain only high confidence regulons. This resulted in 285 remaining activating regulons.

However, repeating all analyses with the unfiltered set of regulons yielded the same trends and relationships.

Linear Discriminant Analysis (LDA) classifier to assign samples to transcriptional clusters based on DamID signal
In both the EB results and the zebrafish results, we noticed that there was a substantial number of cells that passed DamID thresh-

olds, but that had a poor CEL-Seq2 readout. Since most of our analyses rely on the separation of cells in transcriptional clusters (i.e.,

cell types) and cells with a poor CEL-Seq2 readout cannot be included in the clustering, these cells cannot be used in downstream

DamID-based analyses. However, we noticed that the separation of different cell types was recapitulated to a considerable extent in

low-dimensionality representations of the DamID readout (see the DamID-based UMAPs in Figures 3 and 5D). Since cell-type infor-

mation is captured in the DamID readout, we reasoned that a classifier could be trained based on cells with both good DamID and

CEL-Seq2 readouts to assign cells with a poor CEL-Seq2 readout to transcriptional clusters based on their DamID readout.

To this end, we implemented a Linear Discriminant Analysis (LDA) classifier as described below. In addition, the code is available

online (https://github.com/KindLab/EpiDamID2022).

Data input and preprocessing

As in input for the classifier, we used the binned DamID data of all samples passing DamID thresholds and the transcriptional cluster

labels of these samples (samples with a poor CEL-Seq2 readout had the label ‘‘unknown’’). The DamID data was depth-normalized

(as described above) and genomic bins that contained fewer than 1mappable GATCmotif per kbwere excluded, resulting in amatrix

of size N xM, where N is the number of samples andM is the number of remaining genomic bins. For the EB data, a bin size of 10 kb

was used, while a bin size of 100 kb was used for the zebrafish data. Subsequently, the pairwise correlation was computed between

all samples, resulting in a correlation matrix of size N x N. This transformation had two reasons: First, it served as a dimensionality

reduction, since N < <M. Second, it resulted in a data type that effectively describes the similarity of a sample with all other samples,

including samples without a cluster label. Consequently, during the training phase, the classifier can indirectly use the information of

these unlabeled samples to learn about the overall data structure.We found that using the correlationmatrix (N xN) as an input for the

classifier yielded much better results than using the original matrix (N x M).

To train the LDA classifier, we used two thirds (�66%) of all samples with cluster labels (i.e., with a good CEL-Seq2 readout). Since

the number of cells per cluster varied extensively, we randomly selected two thirds of the samples per cluster and thereby ensured

that all clusters were represented in both training and testing. The training data thus consisted of the correlation matrix of size Ntrain x

N and a list of sample labels of sizeNtrain, whereNtrain is the number of samples used for training. Consequently, we retained one third

(�33%) of labeled samples to test the performance of the LDA classifier, consisting of the correlation matrix of sizeNtest xN and a list

of sample labels of size Ntest, where Ntest is the number of samples used for testing. In summary, this split the samples into three

groups: one group for training, one group for testing, and the group of unlabeled samples.

Training the classifier

For the implementation of the LDA classifier, we used the ‘‘LinearDiscriminantAnalysis’’ function provided in the Python (v. 3.8.10)

scikit-learn toolkit (v. 0.24.2). The number of components was set to the number of transcriptional clusters minus one and the

LDA classifier was trained using the training samples.

Testing the performance

To test the performance, the trained LDA classifier was used to predict the labels of the training set of samples. Predictions with a

probability larger than 0.5 were maintained, while predictions with a lower probability were discarded (and the corresponding cells

were thus not labeled). The predicted labels were subsequently compared to the known labels (Figures S3E and S5D). In general, we

found a very good performance for clusters with many cells, while the performance tended to be lower for clusters with few cells. This

is as expected, since the number of samples for these clusters was also very low during training.

Predicting cluster labels for unlabeled samples

After establishing that the performance was satisfactory, the LDA was retrained, this time using all labeled samples. The actual per-

formance on the unlabeled data is likely higher than the performance on the test data, since the number of samples used for the final

training is notably higher. Finally, the cluster labels were predicted for the unlabeled samples. Once again, only predictions with a

probability higher than 0.5 were maintained. Table S2 contains all annotations of predicted cluster labels.

Defining PRC targets
First, we identified for each gene the region of 5 kb upstream and 3 kb downstream of the TSS. Only protein-coding genes and genes

for non-coding RNA were considered. When the TSS domains of two genes overlapped, they were merged if the overlap was > 4 kb,

otherwise the two domains were split in the middle of the overlap. This resulted in 30,356 domains covering a total of 35,814 genes.

Subsequently, for all single-cells, the number of observedGATC counts within each domain was determined. In silico populations per

transcriptional cluster were generated by combining the counts of all cells belonging to each cluster per DamID construct. The in

silico population counts were subsequently RPKM-normalized, using the total number of GATC counts on the somatic chromosomes

of the combined single-cell samples as the depth (i.e., also counts outside the domains). Normalization for Dam controls was

performed for the H3K27me3 and RING1B data per transcriptional cluster by adding a pseudo count of 1, taking the fold-change
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with Dam, and performing a log2-transformation, resulting in log2 observed-over-expected (log2OE) values. The correlation of the

resulting H3K27me3 and RING1B values per cluster is shown in Figure S3F. We subsequently determined PRC targets as those

genes that showed H3K27me3 and RING1B log2OE values > 0.35 in at least one cluster. PRC targets were defined based on the

in silico population of the H3K27me3 and RING1B data of the mESCs (Figure 2) and the EB clusters, excluding cluster 7. Cluster

7 was excluded, because it consisted of relatively few cells and the combined data was consequently sparse.

Comparing EpiDamID and scNMT-seq data at transcription start sites
We downloaded the tables of single-cell CpG methylation values at regions ± 2 kb of gene TSS from the repository provided in the

scNMT-seq publication (Argelaguet et al., 2019). We subsequently averaged the CpG methylation scores across cells per cluster to

gain an average CpG methylation for all genes per cluster. This could be done for four out of eight transcriptional clusters to which

sufficient scNMT-seq samples were attributed (cluster 3: 31 cells; cluster 5: 21 cells; cluster 1: 37 cells; cluster 4: 43 cells). We sub-

sequently could integrate the CpG methylation scores with our own H3K27me3 and RING1B DamID data for all genes, for which the

enrichment scores were computed as described in the previous section. The subsequent analyses were performed on genes that

were represented in both datasets.

ChromHMM of zebrafish in silico populations
In order to determine regions that were characterized by H3K9me3-enrichment in specific (sets of) cell types in the zebrafish embryo,

we made use of ChromHMM (v. 1.22) (Ernst and Kellis, 2017, 2012). As input, we used the in silico H3K9me3 signal (log2OE) of all

clusters that had at least 30 cells passing DamID thresholds for both Dam and MPHOSPH8 (clusters 0-11). The genome-wide signal

at a resolution of 50 kb was used and the values were binarized based on a threshold of log2OE > 0.35. Bins that had fewer than 1

mappable GATC per kb were given a value of 2, indicating that the data was missing. As in all other analysis, chromosome 4 was

excluded. The binarized values of clusters 0-11 were provided as input for the ChromHMM and the results were computed using

the ‘‘LearnModel’’ function using the following parameters: -b 50000 -s 1 -pseudo. The number of ChromHMM states was varied

from 2 to 10 and for each result the differences between the states (based on the emission probabilities) were inspected. We found

that a ChromHMM model with 5 states was optimal, since this yielded the most diverse states and increasing the number of states

just added redundant states with similar emission probabilities.

Repeat enrichment in ChromHMM states
The RepeatMasker repeat annotations for GRCz11 were downloaded from the UCSC Genome Browser website (https://genome.

ucsc.edu/). The enrichment of repeats within each ChromHMM state was computed either for repeat classes as a whole (Figure S6A)

or for individual types of repeats (Figures 5I and S6C). To compute the enrichment of a repeat class/type in a ChromHMM state, the

fraction of repeats belonging to that class/type that fell within the state was computed and normalized for the fraction of the genome

covered by that state. In other words, if we observe that 70% of a certain repeat falls within state B and state B covers 7% of the

genome, then the repeat enrichment is 0.7 / 0.07 = 10.

GO term and PANTHER protein class enrichment analysis
GO term and PANTHER (Mi et al., 2013) protein class enrichment analyses were performed via de Gene Ontology Consortium web-

site (http://geneontology.org/). For Figure S4E, the list of PRC-regulated TFs was used as a query and the list of all TFs as a reference

to determine enrichedBiological Process GO terms. Only the top 10most significant terms are shown. For Figure S5I, the list of genes

in ChromHMM state A1 or B was used as a query and the list of genes in all ChromHMM states as a reference to determine enriched

PANTHER protein classes. All hits are shown.

QUANTIFICATION AND STATISTICAL ANALYSIS

The number of n samples included in analyses is provided within each figure and/or accompanying figure legend. Statistical p values

are associated with the significance test as described in the figure legends. The boxes of boxplots indicate the quartiles of the data-

set, the middle shows the median, and the error bars indicate the data range falling within 1.5 times the inter-quartile range.
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