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The 3D organization of our genome is an important determinant for the tran-

scriptional output of a gene in (patho)physiological contexts. The spatial

organization of linear chromosomes within nucleus is dominantly inferred

using two distinct approaches, chromosome conformation capture (3C) and

DNA fluorescent in situ hybridization (DNA–FISH). While 3C and its

derivatives score genomic interaction frequencies based on proximity ligation

events, DNA–FISH methods measure physical distances between genomic

loci. Despite these approaches probe different characteristics of chromosomal

topologies, they provide a coherent picture of how chromosomes are orga-

nized in higher-order structures encompassing chromosome territories, com-

partments, and topologically associating domains. Yet, at the finer

topological level of promoter–enhancer communication, the imaging-centered

and the 3C methods give more divergent and sometimes seemingly paradoxi-

cal results. Here, we compare and contrast observations made applying visual

DNA–FISH and molecular 3C approaches. We emphasize that the 3C

approach, due to its inherently competitive ligation step, measures only ‘rela-

tive’ proximities. A 3C interaction enriched between loci, therefore does not

necessarily translates into a decrease in absolute spatial distance. Hence, we

advocate caution when modeling chromosome conformations.

Keywords: chromosome conformation capture; DNA fluorescent in situ

hybridization; live-cell imaging; gene regulation; genome organization; loop
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How the linear chromatin fiber is 3D folded within the

nuclear space and how these conformational states are

related to gene expression in healthy and pathological

conditions have gained major attention over the past

decades. DNA–fluorescent in situ hybridization

(DNA–FISH) and chromosome conformation capture

(3C)-based approaches have been mainstream in push-

ing forward our knowledge of the functional 3D orga-

nization of chromosomal fibers. These two

complementary methodologies can capture the

distribution of conformational possibilities in a popu-

lation of cells at a defined time point, when conforma-

tional states become cross-linked. Yet, DNA–FISH
and 3C methodologies are distinct in their setup, in

the experimental biases and in the information that

they provide on chromosomal conformations.

DNA–FISH comes in various flavors and, in short,

enables the visualization of genomic loci within their

nuclear volume by means of fluorescently labeled

probes that specifically hybridize with and thereby tag
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a given region of interest [1]. Recent innovations such

as Oligopaint permit consecutive labeling of large

genomic intervals with fluorescent probes, making

visualization no longer restricted to only a small num-

ber of loci [2]. Besides measuring physical distances

between genomic segments, DNA–FISH traces their

radial positions within the nuclear volume and the

compactness of a given locus in transcriptionally active

or inactive states can be measured [3–6].
DNA-FISH is an image-centered approach and

greatly differs from 3C-based genomic mapping

methodologies, in which cross-linked chromatin fibers

are subjected to digestion and subsequent ligation,

ultimately to score how often certain genomic frag-

ments are ligated to fragments that are in spatial

proximity [7]. Similar to DNA–FISH, 3C-based

approaches can be applied to study either a single

locus or larger regions, or even the entire genome. As

a method that is inherently powerful at cell popula-

tion level, either by bulk or on cumulative single-cell

analysis, 3C-based technologies have made major con-

tributions to the definition of topological metastruc-

tures such as A/B compartments, topologically

associating domains (TADs), and smaller intra-TAD

structures [8–13]. In contrast to DNA–FISH, 3C-

based analysis cannot inform on the intranuclear posi-

tion of a given locus.

In this review, we focus on the topological features

and concepts that have emerged from the use of

DNA–FISH and 3C technologies. We discuss that

there is a strong consensus between DNA–FISH- and

3C-based observations on large-scale genomic confor-

mations. However, concerning the conformations

states below the level of TADs, some recent results

obtained by the respective approaches intuitively seem

to reach divergent conclusions. These contrasting

observations touch upon a long-standing question: Is

spatial proximity between promoter and enhancer a

prerequisite for gene expression?

Intranuclear consensus by DNA–FISH
and 3C approaches

The spatial distribution of linear chromatin fibers

inside the nuclear volume is not random but is struc-

turally organized at various topological levels. Recog-

nizable chromatin structures include, from the largest

to the smallest, chromosome territories (CTs), A/B

compartments, TADs, and intra-TAD structures

including enhancer–promoter loops and polycomb-re-

pressive bundles contacts [12]. With regard to higher-

order levels of organization, that is, the CTs, A/B

compartments, and TADs, DNA fluorescent labeling

and 3C-based methods concur on both their existence

and nature (Fig. 1).

Level 1: Chromosome territories

The largest higher-order conformation, the CT, was

initially hinted upon in the late 19th century by light

microscopy [14,15]. Almost a century later, different

chromosome labeling techniques including DNA–
FISH confirmed that individual chromosomes are not

intermingled in nuclear space, but are confined to spa-

tial domains thereby highly, but not exclusively, self-

interacting [16] (Fig. 1). By the sole use of the molecu-

lar 3C approach, the existence of CTs can be reconsti-

tuted as well. For instance, the vast majority of

interaction partners for a given 4C genomic viewpoint

fragment is always mapped to the same chromosome

[17]. Experiments from the earliest days of population

and single-cell Hi-C demonstrated similar contact dis-

tributions within and between chromosomes [8,18].

Preferred chromosome self-interactions translate into

the distinct chromosomal interaction blocks that are

seen in Hi-C genomic contact matrices, representing

the ligation-based equivalents to the CTs that were ini-

tially visualized by microscopy in the nuclear volume

(Fig. 1). In diploid nuclei, DNA–FISH allows observ-

ing the two homologous chromosomes and finds them

occupying distinct territories. In line with this notion,

Hi-C performed on murine hybrid cells that carry two

subspecies-specific alleles reveals that the individual

homologs of a chromosome pair form their own inter-

action blocks [19]: They contact each other as fre-

quently as any of the other chromosomes. Thus, both

3C-based and DNA labeling approaches show that

individual chromosomes self-aggregate in CTs that

only allow limited interchromosomal intermingling.

Level 2: A/B compartments

One topological step lower, 3C and DNA–FISH find-

ings share further consensus. Locus-specific DNA–
FISH demonstrated that transcribed or silent genes

colocalize in their respective active and inactive nuclear

compartments [20]. This separation of active and inac-

tive loci could be recapitulated by proximity ligation

approaches as well. 4C demonstrated that the collec-

tion of cis-contacts of the b-globin locus highly differs

between transcriptional states [17]. In b-globin-silent
tissues, the locus is contacting other regions with non-

expressed genes elsewhere on the same chromosome

fiber, whereas in fetal liver cells the transcriptionally

active locus predominantly interacts with active in cis

regions Generally, inactive and active hubs could
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systematically be identified by using the genome-wide

Hi-C approach and were referred to as active ‘A’ and

inactive ‘B’ compartments [8,21] (Fig. 1). In whole-

chromosome Hi-C matrices, compartments become

apparent by their typical checkerboard-like distribu-

tion of interaction (Fig. 1). DNA–FISH analyses on

selected single loci confirmed that sequences in the

inactive B compartment are more frequently proximal

to linearly distant inactive loci, than to linearly nearby

but active loci [8].

Until recently, DNA–FISH could only demonstrate

the differential localization for a limited number of

selected loci rather than providing an unbiased cata-

logue of spatial relationships between many individual

loci on a chromosomal fiber. With the advent of Oli-

gopaint, which allows walking along a large linear

Fig. 1. Consensus on large-scale topologies observed by DNA–FISH and 3C. Left: Schematic overview of the 3D structures in which linear

chromosome fibers are folded within the nucleus (dashed-line circle), from largest to smallest: CTs, A/B compartments (A/B), and TADs.

Middle: Schematic representation on how these structures are observed by DNA–FISH. Right: Schematic representation on how these

structures are observed by 3C-based methods. Individual chromosomes in CTs are observed by DNA–FISH as discrete intranuclear domains

(green and red, representing chromosomes 5 and 7, respectively) and by 3C as squares representing the high degree of self-interaction of

individual chromosomes. A checkerboard pattern, typical for A/B compartmentalization, schematically depicted for chromosome 1, becomes

visual by both respective techniques. Finally, TADs are discernable as triangles along a chromosomal interval, by both DNA–FISH and

proximity ligation approaches. See text for further details.
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chromosomal interval, DNA–FISH demonstrated to

be a powerful tool to investigate spatial relationships

in a systematic manner [2]. Combining the data on

spatial distributions from many cis-alleles, Oligopaint-

generated matrices are strikingly reminiscent to the

contact maps obtained by Hi-C, including the charac-

teristic checkerboard patterns of chromosomal com-

partmentalization [22,23] (Fig. 1).

Compartments become intensely rearranged during

cellular differentiation and reprogramming [24–29].
For instance, as demonstrated by Hi-C, along the

in vitro differentiation path from human embryonic

stem cell (ESC) to cardiomyocyte, nearly one-fifth of

the genome switches from the one compartment to the

other [24]. Comparison between multiple human ESC-

derived lineages shows that, in total, an approximate

one-third of the genome can be subjected to A/B com-

partment switching during cellular differentiation [25].

Spatial compartmentalization thereby seems to be dic-

tated by the trans-acting factors associated with the

loci: artificial recruitment of either a pluripotency fac-

tor, a Polycomb group protein, or a constitutive hete-

rochromatin factor directs a locus in ESCs to an

active compartment with pluripotency genes, to a com-

partment enriched for Polycomb-controlled genes, or

to an inactive compartment, respectively [30]. The

switching behavior of genomic sequences from one

compartment to another is also reported by imaging-

based approaches. For instance, it has been demon-

strated that the initial spatial colocalization of inactive

loci and regions that become activated during B-cell

maturation is no longer maintained upon differentia-

tion. Concomitantly, activated regions move away

from the nuclear periphery toward the nuclear interior

[31].

As mentioned, the spatial repositioning in the

nuclear volume of genomic loci cannot be recorded by

the 3C toolbox. However, orthogonal molecular tools

including DNA adenine methyltransferase identifica-

tion (DamID), tyramide signal amplification, followed

by sequencing (TSA-seq), and chromatin immunopre-

cipitation followed by sequencing (ChIP-seq) are able

to partially complement 3C. For example, DamID-

derived lamina-associated domains (LADs) are highly

correlated with B compartments, providing Hi-C data

a spatial dimension, albeit indirectly [32]. Combining

Hi-C data with the recently developed GPSeq con-

firmed that A and B compartments are generally

located more centrally and toward the nuclear periph-

ery, respectively [33].

Together, the spatial segregation of active and inac-

tive regions as probed by DNA–FISH, and the contact

frequency patterns observed by 3C-based methods,

concordantly describe the same higher-order rearrange-

ments of structures referred to as A and B compart-

ments.

Level 3: Topologically associating domains

Whereas A/B compartments represent large chromoso-

mal fractions that are characterized by their interac-

tional and epigenetic states, TADs form self-

interacting domains within compartments, dominantly

defined by their boundaries which are enriched of

CCCTC-binding factor (CTCF) proteins [10]. TADs

are considered as genomic segments in which cis-regu-

latory landscapes are canalized, as demonstrated by

numerous genome-engineering experiments [34–38]. On

a population-wide level, a large measure of agreement

on the structural features of TADs is reached between

3C and DNA–FISH analysis. At the level of single

cells, the two respective methodologies provide com-

plementary insights of TAD organization.

The golden standard to define a TAD is provided

by the 3C technology, which also stands at the root of

its initial description [9–11]. TADs are visualized by

3C methods as triangular shapes along a chromosomal

interval in contact matrices (Fig. 1). They can be

detected when Hi-C or 5C is applied to populations of

cells, in which case they represent average structures

appreciable from superimposing sparse contact data

collected from large numbers of individual alleles.

Indeed, TADs are difficult to grasp from single-cell

Hi-C datasets, but become visible when data of many

individual cells are aggregated [18].

Currently, TADs are predominantly considered to

arise from the dynamic interplay between the cohesin

complex and the boundary protein CTCF. In the

widely adopted mechanistic loop-extrusion model [39–
41], the ring-shaped cohesin protein complex is loaded

on chromosomal positions and generates loops as the

chromatin fiber is progressively sliding through its

ring. CTCF-bound sequences thereby function as

boundary elements inhibiting the progression of cohe-

sin, resulting in a relatively stable loop between con-

vergent oriented CTCF binding sites [42–44].
Important clues in favor of the model originate from

cellular depletions of the main components of the

loop-extrusion model, that is, CTCF and members of

the cohesin complex. Conditional depletion of CTCF

followed by bulk Hi-C analysis demonstrated that the

shaping of interphase chromosomes into TADs is

highly affected. Loops are still being produced by

cohesin, but they are no longer halted at the defined

boundaries [45]. On cohesin-depleted chromosomes

however, loops are no longer being extruded and
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distant cis-elements are less likely to interact with their

putative targets [46,47].

Additionally, Hi-C matrices from synchronized cell

populations give insightful glimpses of the underlying

dynamics that contribute to the formation of TADs.

In cells that are immediately harvested after mitotic

exit, certain individual genomic regions progressively

interact with a continuum of genomic regions. This

directional progression is captured over different sam-

pled time points and can be reconstructed as a ‘grow-

ing’ stripe at CTCF-enriched borders in the Hi-C

matrices [48], reminiscent to prediction by the loop-ex-

trusion model.

DNA-FISH derative Oligopaint is uniquely qualified

to analyze the detailed topology of individual alleles.

By the consecutive hybridization steps along a genomic

interval, it allows visualization and measurement of

spatial distances between all labeled regions from the

single linear molecule. Consequently, the reconstruc-

tion of the spatial morphology of an individual chro-

matin fiber is possible, for instance, for an interval

that would encompass a TAD. In agreement with Hi-

C findings, the Oligopaint strategy is able to recapitu-

late TADs when collapsing the observed structures of

many individual alleles [22]. The profiles that arise

from this spatial distribution mimic the proximity liga-

tion-based triangular TAD structures as observed in

Hi-C matrices (Fig. 1).

Single-cell analyses from the two respective

approaches both demonstrate a high cell-to-cell hetero-

geneity in genome conformation. Single-cell Hi-C

applied to numerous individual cells shows a rich col-

lection in interaction partners for a given genomic

fragment [18,49–51], whereas Oligopaint demonstrates

a high heterogeneity in individual chromosomal con-

formations [23,52]. The spatial structures of linear

fibers, visualized by Oligopaint and referred to as

‘TAD-like structures’, possess boundaries which posi-

tions vary from cell-to-cell, although they preferen-

tially reside at CTCF-enriched positions [23]. From a

single-cell perspective, TAD borders are thus rather

flexible instead of physically absolute [23,53]. It is

important to emphasize that TADs — originally iden-

tified and defined by 3C on population level — and

TAD-like structures — based on single-cell Oligopaint

reconstructions — are far from interchangeable defini-

tions: they represent very different entities based on

their respective statistical and physical nature [54].

Given the observation that TAD borders show

already high variability between individual alleles, how

would single chromosome fibers be impacted by the

depletion of CTCF or Cohesin? Conditional degrada-

tion of the two main players of the loop-extrusion

model, that is, CTCF and cohesin, followed by Oligo-

paint analyses confirms that they dominantly con-

tribute to formation of TADs. On individual

chromosomes, it was demonstrated that CTCF deple-

tion leads to an increased spatial overlap between

intervals that would normally be separated [53]. Con-

trary, removal of cohesin leads to decreased contacts

within domains and between separated domains, sug-

gesting that TAD boundaries may not be inherently

absolute [53]. However, certain TAD structures were

still present in cohesin-depleted cells [23], indicating

that some compact conformations are not solely

dependent on the presence of the loop extruder. These

unaffected structures may include micro-TADs, poly-

comb-enriched domains, or as suggested by recent

Micro-C studies, promoter–enhancer interactions that

exist independently of loop extrusion [12,13].

In summary, concerning the cell population-based

definition of TADs, findings by DNA–FISH and 3C-

based results are highly compatible (Fig. 1). However,

from a single-allele perspective, self-interacting

domains can be interpreted differently from imaging

and ligation-based approaches. For instance, the

TAD-like entities as defined by Oligopaint are not

detectable by 3C methodology in a same individual

cell.

Intra-TAD paradox between labeling
and proximity ligation assays

Whereas the independent findings of 3C and DNA–
FISH methodologies on large-scale chromosomal orga-

nizations share many agreements, the two respective

techniques may present different and seemingly para-

doxical configurations at the level that immediately

concerns gene regulation by cis-regulatory elements. In

particular, recent imaging-based studies challenge the

prevalent notion that enhancers and promoters require

to get in close spatial proximity for transcriptional

activation, while 3C-based experiments appear to sup-

port the concept of communication through proximity.

Probing proximity

One of the, if not the most, rudimentary observations

uncovered by 3C approaches is the profound differ-

ence in enhancer–promoter contacts between transcrip-

tional states of a locus (Fig. 2). For instance, the

aforementioned murine b-globin locus adopts distinc-

tive conformations in expressing and nonexpressing

cells. Whereas in expressing blood cells, the active

Hbb-b1 gene gains more proximity ligation-based con-

tacts with the Locus Control Region (LCR), the
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superenhancer essential for high expression level of all

b-globin genes, the locus remains essentially unstruc-

tured in nonexpressing brain cells [55,56]. This phe-

nomenon of elevated interactions between

transcriptionally active promoters and their linearly

distant enhancers has been described at a plethora of

loci, across many different tissues and many species,

and with different 3C-derivative methods [7]. In agree-

ment, many DNA–FISH experiments report a decrease

in spatial distances between promoter and their enhan-

cers in active tissues, for instance at the HoxD cluster

and its remote digit-specific developmental enhancers

[37].

Several lines of evidence have contributed to the

view that proximity not only coincidences with

enhanced transcription, but it is also an essential deter-

minant of gene expression. It was observed that engi-

neered forced looping between enhancer and promoter

coincides with increased contact frequency and leads

to induced gene expression [57–61]. Forced juxtaposi-

tion between a developmentally silenced embryonic b-
globin gene and the LCR led to its reactivation in

Fig. 2. Topological observations: spatial distance by DNA–FISH versus relative proximity ligation by 3C. Left: A hypothetical locus containing

a gene promoter (green) and its enhancer (red) in an inactive, compacted state, and how this conformation is observed by 4C-seq seen

from the promoter (viewpoint, yellow arrow), and by DNA–FISH. Right: The same locus, now active and decompacted, and how 4C-seq and

DNA–FISH detect this conformation. Typically, upon transcriptional activation a gain of specific interaction between enhancer and promoter

is observed by 4C-seq (enriched interaction with the enhancer, in red). This does not translate into a decrease in spatial distance between

the activated enhancer and promoter, but rather leads to an increased distance as seen by DNA–FISH. Due to decompaction, the

competition with other potential ligation partners in the 3C assay is reduced resulting in a relative gain of promoter–enhancer interaction as

scored in the active conformation. Arrows indicate physical distances between enhancer and promoter. See text for further details.
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adult murine erythroblasts [57]. More recently, a novel

light-activated dynamic looping (LADL) system that

can rapidly induce distal chromatin contacts stimu-

lated ectopic interaction between an active Klf4 enhan-

cer and the silent Zfp462 gene in mouse ESCs. The

novel enhancer–promoter pairing, as evidenced by 5C,

coincides with an increased, modest, Zfp462 upregula-

tion [61].

Simultaneous live imaging of spatial and transcrip-

tional dynamics at the eve locus in Drosophila embryo

provided microscopy-based support for the importance

of spatial proximity in transcriptional regulation over

a large genomic distance [62]. In this experimental sys-

tem, a fluorescently labeled reporter gene, which addi-

tionally allows the instantaneous measurement of

transcriptional activity, was integrated 142 kb

upstream of the fluorescently marked endogenous eve

enhancer. An insulator element homie [63,64] was

placed proximal to the reporter, self-pairing with the

endogenous homie downstream of the enhancer, and

thereby facilitating enhancer–reporter contact. Only at

alleles that display high physical proximity between

transgene and enhancer, a fluorescent spot of nascent

transcripts was observed. When followed over time,

the spatial distance between the enhancer and trans-

gene continued to converge until a sharp increase in

transcriptional activity is reached. Markedly, in the

absence of the proximal homie and, by extension, the

forced enhancer–reporter contact, the reporter gene

remained nearly inactive [62]. In line with a large body

of 3C-based and forced-looping studies, these findings

strongly argue for the pivotal role of a spatial ren-

dezvous of enhancer and promoter to communicate

and achieve transcriptional activity.

Making space for transcription

In contrast to the aforementioned observations of

increased enhancer–promoter proximity during tran-

scription, a number of recent DNA–FISH-based and

live-cell imaging studies point toward an opposite spa-

tial behavior of cis-regulatory domains. Utilizing

DNA–FISH, it was observed that the neural SBE6

enhancer, at 100 kb upstream of its target gene Shh,

spatially evades from its native promoter upon the cel-

lular differentiation from pluripotent to neural progen-

itor state [65]. This increased spatial distance between

enhancer and promoter is concomitant with an

increase in Shh expression. A level of locus decom-

paction is also apparent upon synthetic activation of

either the Shh promoter or the enhancer, respectively.

Consistent with these findings, the dual visualization

strategy Hi-M which permits simultaneous detection of

chromatin organization and nascent transcription

detects a similar decondensation of local chromatin

upon transcriptional activation at the Drosophila sna

locus [4]. ORCA, an approach that is comparable to

Hi-M, although detecting a weak correlation between

physical distances and nascent transcripts of selected

enhancer–promoter pairs, demonstrates that a number

of active promoters display spatial separation from

their cis-regulatory elements. In fact, many inactive

promoters spatially reside in closer vicinity with their

putative enhancers [5].

The conundrum as to whether enhancer proximity is

a prerequisite for gene expression was recently

addressed by another live-cell imaging study, which

probes the topological behavior and transcriptional

dynamics of the mammalian Sox2 locus [66]. In mouse

ESCs, the expression of the Sox2 is fully dependent on

the distal enhancer Sox2 Control Region (SCR). The

SCR is located at ~ 100 kb downstream of the gene

promoter [67,68] and, as indicated by 3C-based meth-

ods, displays highly enriched contacts with the pro-

moter region in Sox2-expressing cells [28,42]. Live-cell

imaging revealed that the physical distance between

the Sox2 promoter and the SCR varies considerably

among individual cells, consistent with the cell-to-cell

variations observed by the previously discussed static

Oligopaint approach [5,22,23,52]. However, no associa-

tion between proximity to the SCR and transcriptional

bursting of the Sox2 was uncovered. Interestingly,

upon differentiation toward a Sox2-negative lineage,

the locus became more spatially compacted [66]. Con-

sistent with the above-mentioned static DNA–FISH
studies, these findings argue that enhancer-mediated

transcription may not be driven by an increased physi-

cal proximity between the enhancer–promoter pair.

Possibly, cis-communication between endogenous

enhancers and promoters may take place in a decom-

pacted and accessible domain in which a further

increase in proximity is not a prerequisite of transcrip-

tional activation.

Discussion

DNA-FISH and 3C-based approaches largely agree on

the existence and nature of CTs, A/B compartments,

and TADs. However, they deviate in describing the

finer-scale topological level, where folding is believed

to directly influence long-range gene regulation. 3C-

based experiments generally score enriched contacts

between enhancers and promoters, in support of the

concept that in order to transfer regulatory informa-

tion, active enhancers must reside in close spatial prox-

imity with their target gene. Some of the novel
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microscopy measurements support this concept, but a

large number appears to challenge this notion. In these

studies, it is often measured that a cis-regulatory

domain becomes rather decompacted upon activation,

with physical distances between enhancer–promoter

pairs increasing instead of decreasing. Strikingly, as

most evident from live imaging of the Sox2 locus,

microscopy even measures increased physical distances

between enhancer–promoter pairs that in 3C methods

show elevated contact frequencies [66]. How is this

possible?

It is essential to consider the limitations of each

methodology when interpreting results produced by

any assays. Proximity ligation relies on cross-linking,

DNA fragmentation, and ligation, followed by NGS-

based sequencing and quantification of ligation prod-

ucts. Reassuringly, the DNA-contact profiles produced

by 3C methods are recapitulated when omitting the

cross-linking step in 4C and Hi-C [69] and when inter-

rogating the topology by ligation-free nuclear proxim-

ity assays such as split-pool recognition of interactions

by tag extension [70]. Also, and importantly, DNA

contacts uncovered by 4C are similarly appreciable

when using an entirely independent method that relies

on targeted recruitment of a DNA methyltransferase,

for in vivo methylation measurements of chromatin

interactions [71].

However, proximity ligation-dependent assays intro-

duce biases that may hamper particularly the study of

individual cells or alleles. A major limitation originates

from the inherently competitive nature of proximity

ligation. As a given end of a digested DNA fragment

can only be ligated to one other DNA fragment, DNA

fragments that share a common nuclear space and that

are consequently cross-linked together compete for

ligation with a given fragment’s free end. In this com-

petition, the spatially closer fragments have an advan-

tage to fuse [7,72]. Once a given fragment ligates, it

leaves the other cross-linked fragments undetected as

proximal partners. Inevitably, no matter the folding of

a locus, linear neighbor DNA fragments will most

often be cross-linked to each other and therefore par-

ticipate in competition for ligation. For single-cell or

single-allele analyses, this has major implications: if a

given genomic site (e.g., a promoter) through folding

is brought proximal to a distant partner site (e.g., an

enhancer) but ligates to its own ‘boring’ (noninforma-

tive) linearly proximal DNA fragment, the enhancer

remains undetected as looped on this allele. 3C-based

approaches are therefore most accurately referred to as

’relative proximity ligation’ assays, and they rely on

quantitative rather than qualitative measurement of

proximal ligation events across cell populations.

Being relative, proximity ligation assays have

another underappreciated consequence. As demon-

strated in Fig. 2, two genomic segments (a hypotheti-

cal promoter and enhancer) in a condensed inactive

chromatin fiber may be in absolute distance closer

together than when looped and held together through

associated large activating protein complexes in a

decondensed active chromatin environment. Yet,

despite being closer in space in the inactive configura-

tion, the two may less frequently form a ligation pro-

duct as intervening sequences are even closer in space,

and they thus more effectively compete for ligation in

the compacted fiber. Upon transcriptional activation

of the locus, the decompacted surrounding chromatin

may expand in space, intervening sequences become

less competitive for ligation events, and hence, the

looped enhancer gets relatively more proximal to the

promoter, resulting in increased 3C ligation products

that suggest increased contact frequencies (Fig. 2).

Providing that proximity ligation assays offer a

proxy for relative contact frequencies instead of abso-

lute or average spatial separation between genomic

sites, caution should therefore be employed when mod-

eling chromosome conformation data and when com-

paring them to or validating them by DNA–FISH
methods. Even two decades after the first development

of 3C and with upcoming approaches of ligation-free

and other proximity ligation-based techniques and

more advanced imaging, it remains essential to (re)-

consider carefully the respective methodological limita-

tions, to eventually understand the true meaning of a

‘genomic interaction’.
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