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SUMMARY

Hedgehog signaling controls pattern formation in
many vertebrate tissues. The downstream effectors
of the pathway are the bifunctional Gli transcription
factors, which, depending on hedgehog concentra-
tion, act as either transcriptional activators or re-
pressors. Quantitatively understanding the interplay
between Gli activator and repressor forms for
patterning complex tissues is an open challenge.
Here, we describe a reductionist mathematical
model for how Gli activators and repressors are inte-
grated in space and time to regulate transcriptional
outputs of hedgehog signaling, using the pathway
readoutsGli1 andPtch1 as amodel system. Spatially
resolved measurements of absolute transcript
numbers for these genes allow us to infer spatiotem-
poral variations of Gli activator and repressor levels.
We validate our model by successfully predicting
expression changes of Gli1 and Ptch1 in mutants
at different developmental stages and in different
tissues. Our results provide a starting point for un-
derstanding gene regulation by bifunctional tran-
scription factors during mammalian development.

INTRODUCTION

During embryonic development, cell fatedecisionsmustbe tightly

controlled in space and time. Gene expression in development

often combines inputs frommultiple upstream regulators in order

to ensure proper formation of complex tissues and organs

(Buecker and Wysocka, 2012; Levine, 2010). To understand

cellular responses to upstream signaling factors, it is important

to know the relation between regulator concentrations and target

gene expression, termed the gene’s input function. In single-cell

organisms or cultured cells, the combined effect of different reg-

ulators has been determined experimentally by measuring the

expression level for a gene of interest under varying concentra-
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tions of its different regulators (Kaplan et al., 2008; Kim and

O’Shea, 2008; Setty et al., 2003). In multicellular organisms, how-

ever, it is often impossible to manipulate regulator levels with the

necessary precision, precluding direct experimental measure-

ment of input functions in the tissue context. Despite these limita-

tions, input functions have been determined in intact Drosophila

melanogasterembryosbasedonmeasurements of upstream reg-

ulators and downstream targets combined with thermodynamic

models or machine learning algorithms (Segal et al., 2008; Zinzen

et al., 2009). Knowledge of input functions allows predicting the

expression of a given target gene based solely on analysis of up-

stream control factors. Yet, in many cases, the upstream regula-

tors are essentially hidden variables, as their spatial distribution

cannot be directly measured in intact tissues and organs. Thus,

solving the inverse problem and determining the levels of up-

stream regulators based on expression patterns of downstream

targets is an important challenge. Inferring hidden control vari-

ables will be essential for understanding design principles of

gene regulation in thecontext of developmental pattern formation.

Cell-cell signaling pathways controlling the establishment of

gene expression patterns in embryonic development are impor-

tant examples of hidden control variables in gene expression.

While these pathways differ significantly in their biochemical de-

tails, most of them share a striking common design principle: the

majority of these pathways (e.g., Hedgehog, Wnt, Notch, and nu-

clear receptors) culminate in bifunctional transcription factors that

act as either activators or repressors, with the balance between

activating and repressing functions being controlled by signaling

levels (see Figure S1A available online) (Barolo and Posakony,

2002). In many cases, it is not possible to determine levels of acti-

vating and repressing isoforms independently in intact tissues and

with high spatial resolution. Modeling-based studies inDrosophila

melanogaster suggest that activators and repressorsmay interact

in complexways to establish developmental gene expression pat-

terns (Haskel-Ittah et al., 2012; Parker et al., 2011). Thus, deter-

mining the spatiotemporal variation of activating and repressing

factors, and understanding how they are integrated to control

targetgeneexpression,will becritical for elucidatinghowprecision

and robustness are encoded during embryonic pattern formation.

The functional dualism of activator versus repressor control is

established in its purest form in hedgehog signaling, where the
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Gli proteins, a family of transcription factors that serve as the

main downstream effectors of the hedgehog pathway, can act

as either transcriptional activators or repressors. In the devel-

oping neural tube—one of the best studied model systems for

hedgehog signaling in vertebrates (Dessaud et al., 2008)—Sonic

hedgehog (Shh) is initially secreted from the notochord to estab-

lish a ventral-to-dorsal (VD) morphogen gradient. Shh controls

the balance between Gli activator and Gli repressor via a

cascade of negative interactions involving the transmembrane

proteins Patched1 (Ptch1) as hedgehog receptor and Smooth-

ened (Smo) as secondary signal transducer (Figure 1A). The

Shh gradient regulates the patterned expression of cell fate

determinants in the ventral half of the neural tube, leading to an

intricate pattern of molecularly distinct neural progenitor stripes

(Figure 1B). The importance of measuring spatiotemporal pro-

files of the Gli activator and repressor individually is becoming

increasingly clear (Oosterveen et al., 2012), yet robust readouts

that can discriminate between the activating versus repressing

form of Gli proteins are currently unavailable. In addition, it re-

mains unclear how activating and repressing forms of Gli are in-

tegrated for regulating individual target genes.

Mus musculus has three different Gli proteins, Gli1–3, which

recognize very similar target sequences, but differ in their

potencies as activators and repressors (Hui and Angers, 2011).

Immunoblotting experiments with mouse embryo extracts have

shown that Gli proteins are differentially processed upon hedge-

hog signaling (Pan et al., 2006). Specifically, Gli3 is the only

mammalian Gli protein that can exert strong repressor function,

whereas all three Gli proteins can act as transcriptional

activators. This provides us with the unique possibility to manip-

ulate activator and repressor levels with high precision by study-

ing knockouts for individual Gli proteins.

Here, we present a minimal model for the dependence of

the canonical hedgehog readouts Gli1 and Ptch1 on Gli

activator and repressor levels. Based on highly quantitative

and spatially resolved measurements of Gli1 and Ptch1 tran-

script levels, we solve the inverse problem and calculate the

hidden control variables, Gli activator and repressor as a func-

tion of VD position (Figure 1C). We validate our reductionist

approach by predicting expression changes of readout genes

in mutants with modified activator and repressor levels.

Furthermore, we use this technique to study the dynamics of

activator and repressor levels, and we demonstrate that our

model can also be applied to hedgehog signaling in the mouse

forelimb.

RESULTS

Spatially Resolved Quantitative Gene Expression
Analysis of Intact Mouse Neural Tube Sections
The hedgehog pathway components Gli1 and Ptch1 serve as

readouts of pathway activity and are directly controlled by Gli

binding sites (Vokes et al., 2007). These two genes are ideal can-

didates for studying activator and repressor control in hedgehog

signaling: (1) their expression is not restricted to specific tissues;

(2) there is no indication for major regulatory contributions by

other signaling pathways; and (3) they are not part of the network

of cross-repressive interactions that encompasses most of the

cell fate determinants in the neural tube (Dessaud et al., 2008).
Developme
In order to measure absolute transcript levels of Gli1 and

Ptch1 in intact tissue, we designed single-molecule fluorescence

in situ hybridization (smFISH) probes targeting these two genes.

Probe sequences are provided in Table S1. Using an array of flu-

orescently labeled oligonucleotide probes complementary to the

coding sequence of the genes, we were able to visualize and

count individual mRNA molecules as diffraction-limited spots

in cryosections of mouse embryos (Figures 1D, S1B, and S1C)

(Itzkovitz et al., 2012; Raj et al., 2008). At embryonic day 9.5

(E9.5), we observed a clear VD gradient of Gli1 and Ptch1 with

highest expression levels in the ventral neural tube and a pro-

gressive decay toward more dorsal positions (Figure 1D). Over-

all, mean transcript numbers in the neural tube were significantly

lower for Gli1 than for Ptch1 (�20 mRNA molecules per cell for

Gli1 and �150 for Ptch1 at peak levels). Gli2 and Gli3—the two

main contributors to Gli activator and repressor function—were

both expressed more highly in the dorsal neural tube than at

the ventral end, with Gli3 displaying significantly more graded

expression thanGli2 (Figure 1E). This data, as well as expression

patterns of other established hedgehog targets (Figure S1E), are

in concordance with earlier studies (Bai et al., 2004; Dessaud

et al., 2008; Lei et al., 2004; Sasaki et al., 1997); however, precise

spatial quantification of mRNA levels now enables the applica-

tion of mathematical modeling.

To simplify data representation, we plotted the absolute tran-

script densities of target genes in the neural tube as a function of

VD position (Figure S1D). We found that expression of both Gli1

andPtch1 reached peak levels at around 15%of the VD distance

(Figure 1F). The decay toward more dorsal positions reflects the

gradient of diffusing Shh, while the reduced expression levels

in the ventral-most 15% of the neural tube correspond to the

population of nonneural cells comprising the floor plate region,

which become refractory to hedgehog signaling at �E8.5 (Ribes

et al., 2010).

A Simple Thermodynamic Model for Gene Regulation by
Bifunctional Transcription Factors
Next, we aimed to develop a simple thermodynamic model

(Bintu et al., 2005; Sherman and Cohen, 2012; Zinzen et al.,

2006) for gene regulation by bifunctional transcription factors.

Such a model should link Gli1 and Ptch1 transcript concentra-

tions to activator and repressor levels using only a small num-

ber of parameters that can be experimentally determined. We

considered a simplified scenario in which a single Gli binding

site controls target genes. Activator and repressor forms of

Gli1–3 all bind the same binding sites with similar dissociation

constants (Hallikas et al., 2006; Müller and Basler, 2000; Peter-

son et al., 2012), hence, in our model we assume that Gli1–3

activator and repressor can bind competitively with the same

dissociation constant K (Figure 2Ai). Importantly, different

dissociation constants for activators and repressors would

only lead to rescaling of A and R, and have no influence on

model predictions (see below and Supplemental Experimental

Procedures). Consequently, three different states of a target

gene’s Gli binding site can be distinguished: (1) activator-

bound, (2) repressor-bound, or (3) free. If we assume equilib-

rium binding of activator and repressor to the same Gli binding

site, the probability for each of these three states is a function

of activator and repressor concentrations (A and R) and the
ntal Cell 31, 448–460, November 24, 2014 ª2014 Elsevier Inc. 449
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Figure 1. Quantitative Measurements of Gene Expression in Intact Mouse Neural Tube Sections

(A) Shh regulates the balance between activator and repressor forms of Gli factors.

(B) Top: Schematic representation of the neural tube. Bottom: Shh secreted from the notochord (NC) forms a VD gradient (gray line), which is transformed into

gradients of activator and repressor forms of Gli (red and blue dashed lines).

(C) The hidden control variables Gli activator and repressor determine gene expression according to the 2D input function of the target gene. Inferring the hidden

control variables requires solving the inverse problem.

(D) Stitched image of transverse neural tube section at E9.5 with ventral (V) to dorsal (D) axis extending from left to right. DetectedGli1 andPtch1mRNAmolecules

are shown in red. Nuclei are counterstained with DAPI (white). Zoom-ins of maximum z-projection of Laplacian of Gaussian filtered smFISH raw data with DAPI

stained nuclei in blue.

(legend continued on next page)
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binding site dissociation constant K as described in the

following equations,

PA =

A

K

1+
A

K
+
R

K

PR =

R

K

1+
A

K
+
R

K

P0 =
1

1+
A

K
+
R

K

; (1)

where PA, PR, and P0 are the probabilities for activator-bound,

repressor-bound, and free state, respectively. Since the time-

scales of Gli protein binding and unbinding are likely to be

much faster than any transcriptional feedback loops or changes

in Shh levels, equilibrium binding is a valid assumption, even

though signaling levels may change over time.

By assigning an output transcript density to each of these

three states (a, b, and g; see Figure 2Aii), we next obtained the

following 2D input function for the transcript density m of a

hedgehog target gene as a function of A and R (for a more

detailed derivation see Supplemental Experimental Procedures):

m=
a,

A

K
+ b+g,

R

K

1+
A

K
+
R

K

: (2)

As shown in Figure 2Aiii, transcript density reaches maximal

value a at high A and low R, and minimal value g at low A and

high R, whereas the basal level b is reached when both A

andR are low, as expected. It is important to note that Equation 2

defines aminimalmodel that contains only regulatory input byGli

transcription factors. Equation 2 is hence not applicable to Gli

targets that also integrate other regulatory interactions.

To apply the above mathematical model to activator/

repressor control of Gli1 and Ptch1, we needed to determine

the parameters for the input functions for these genes. To mea-

sure a—the maximal transcript density at very high activator

concentrations—we performed directed differentiation of em-

bryonic stem cells into neural progenitors and manipulated

hedgehog signaling intensity using the small molecule, Smo

agonist (SAG) (Chen et al., 2002). Embryoid bodies (EBs) that

are neuralized by retinoic acid (RA) and exposed to SAG, faith-

fully recapitulate the gene expression pattern of the embryonic

neural tube (Peterson et al., 2012; Vokes et al., 2007) and

showed maximal transcript densities of aGli1 = 0.09 ±

0.01 mm�3 and aPtch1 = 0.27 ± 0.02 mm�3 at 24 hr post induc-

tion (Figure 2B).

To determine the basal transcription level b, we analyzed

Gli2�/�;Gli3�/� compound mutants in which Gli activator and

repressor functions are both ablated (Bai et al., 2004; Lei et al.,

2004). We measured basal transcript densities of bGli1 =

0.005 ± 0.002 mm�3 and bPtch1 = 0.09 ± 0.01 mm�3 (Figure 2C).

For Ptch1, this value applied only to the ventral half of the neural

tube, since bPtch1 decreased to 0.06 mm�3 in the dorsal-most

zone. Basal expression of Gli1 and Ptch1 did not change sub-

stantially between E8.5 and E9.5, suggesting that basal expres-

sion is relatively stable over time.
(E) Detected Gli2 and Gli3 mRNA molecules in neural tube sections at E9.5.

(F) Transcript densities of Ptch1, Gli1, Gli2, and Gli3 in wild-type neural tube

(95% confidence interval).

See also Figure S1 and Table S1.

Developme
We found that Gli1 and Ptch1 transcription were almost

completely absent in the dorsal neural groove at E7.5, while

Shh secreted from the notochord had not yet spread through

the entire VD axis (Figure 2D). We therefore assumed effective

repression at high repressor levels, gGli1 = gPtch1 = 0. We found

that the overall behavior of the system is relatively insensitive

to the value of a and g, whereas precise measurement of b is

important (see below and Figure S3C).

To complete our thermodynamic model, we estimated the ra-

tio of the dissociation constants KPtch1/KGli1 using three indepen-

dent methods (the absolute values of the dissociation constants

are not important for the further analysis and only act as scaling

factors, see Supplemental Experimental Procedures). In a first

qualitative approach, we analyzed the Gli binding motifs found

within Gli1 binding regions positioned in close proximity to Gli1

and Ptch1 (Peterson et al., 2012) (summarized in Table S2). We

found that Gli1 and Ptch1 both contain high-affinity Gli binding

sites, suggesting similar overall dissociation constants. How-

ever, a large proportion of the Gli binding sites associated with

Ptch1 match the optimal consensus sequence, whereas the Gli

binding sites found nearGli1 aremore divergent. These observa-

tions suggest that Gli1 is regulated by slightly lower affinity bind-

ing sites than Ptch1.

We next aimed to measure KPtch1/KGli1 quantitatively. Having

determinedmodel parameters a, b, and g for both genes, and in-

serting measured wild-type transcript densities mGli1 and mPtch1

in Equation 2, we now have two equations with three unknown

variables, A, R, and KPtch1/KGli1,

mGli1 =
aGli1,

A

KGli1

+ bGli1 +gGli1,
R

KGli1

1+
A

KGli1

+
R

KGli1

mPtch1 =
aPtch1,

A

KPtch1

+ bPtch1 +gPtch1,
R

KPtch1

1+
A

KPtch1

+
R

KPtch1

: (3)

In order to solve this underdetermined system, we used two

different approaches to achieve R = 0 and simplify Equation 3.

First, we compared the transcript density of the two genes at

peak signaling levels across all spatial positions and time

points (Figure 5A) to the theoretical maximum transcript den-

sity as measured in EBs (parameter ai). Mathematical analysis

yielded a value of KPtch1/KGli1 = 0.55 ± 0.15 for the ratio of

the dissociation constants (see Supplemental Experimental

Procedures).

Lastly, we used Gli3�/� embryos (Figure 4C), where repressor

levels are drastically reduced. Substituting R = 0 in Equation 3

and using measured transcript densities in Gli3�/� neural tubes,

we were able to determine KPtch1/KGli1 through a linear fit (see

Supplemental Experimental Procedures and Figure 2E). We

found KPtch1/KGli1 = 0.60 ± 0.03, confirming the two previous

approaches.
at E9.5 as a function of VD position. Shading corresponds to error bars

ntal Cell 31, 448–460, November 24, 2014 ª2014 Elsevier Inc. 451
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Figure 2. Thermodynamic Model for Gene Regulation through Bifunctional Transcription Factors
(A) Summary of the model, (i) activator and repressor can compete for the same binding site and have identical dissociation constants; (ii) for each target gene, we

assign transcript densities a, b, and g to the three possible occupancy states of the Gli binding site; and (iii) graphical representation of model input function,

transcript density as a function of activator and repressor.

(B) Transcript densities of Gli1 and Ptch1 in EB sections at different SAG concentrations (24 hr after exposure to RA and SAG).

(C) Gli1 and Ptch1 expression in Gli2�/�; Gli3�/� mutant neural tubes at E8.5 and 9.5. Expression in wild-type neural tubes at E9.5 is shown as a reference.

(D)Gli1 andPtch1 transcript density graphs at E7.5, shortly after the onset ofShh expression. Wemeasuredmean transcript density values in the dorsal half of the

neural tube to calculate an upper boundary for gGli and gPtch1. We found very low values, gGli1 < 0.0014/mm3 and gPtch1 < 0.0063/mm3. For model calculations, we

hence assumed complete repression, gGli1 = gPtch1 = 0.

(E) Determination of KPtch1/KGli1 based on Gli3�/� expression data and thermodynamic model for input functions. For details, see Supplemental Experimental

Procedures. Error bars were calculated based on Gaussian error propagation of measurement uncertainties.

See also Figure S2 and Table S2.
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Based on Transcript Measurements

(A) (i and iii) Experimentally determined parameters

a, b, and g for Gli1 and Ptch1. (ii and iv) Qualitative

explanation of different activator/repressor sensi-

tivities. Gli1 is insensitive to repressor because

bzg. For Ptch1, b > g provides potential for

repression.

(B) Difference in gene expression between wild-

type and Gli2�/�;Gli3�/� for Gli1 and Ptch1.

(C) Calculated activator and repressor levels in the

wild-type neural tube at E9.5 as a function of VD

position based upon the model. Shading corre-

sponds to error bars (95% confidence interval),

calculated by Gaussian error propagation.

(D) 2D input functions of Gli1 and Ptch1. Wild-type

activator and repressor gradients are shown as a

trajectory (black) on the transcript density maps.

See also Figure S3.
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Inferring Hidden Control Variables from Transcript
Measurements
The parameters a, b, and g are summarized in Figures 3Ai and iii.

We found that bGli1zgGli1, whereas bPtch1 > gPtch1. This observa-

tion suggested thatGli1 and Ptch1might have different activator

and repressor dependencies: in the absence of activator or

repressor, Gli1 and Ptch1 are expressed at basal levels.

Increasing activator levels leads to upregulation of both Gli1

and Ptch1 since a > b; however, if the repressor concentration

is increased, only Ptch1 experiences downregulation (bPtch1 >

gPtch1), whereas Gli1 cannot be further reduced (bGli1zgGli1). In

summary, these data indicate that Gli1 is relatively insensitive

to Gli repressor over a wide concentration range due to its basal

transcription levels remaining as low as those in the repressed

state (Figures 3Aii and iv).

To illustrate the importance of basal transcription for providing

the potential for activation and repression, we plotted wild-type
Developmental Cell 31, 448–460, N
transcript density graphs for Gli1 and

Ptch1 after subtracting basal transcript

densities measured in Gli2�/�;
Gli3�/� sections (Figure 3B, left panel).

Gli1 transcription in wild-type animals

wasalways larger than thebasal transcript

density, suggesting that this gene is in an

activator-controlled regime throughout

the entire neural tube. In contrast, Ptch1

expression dropped below basal levels

at the dorsal end and was hence subject

to repression in this zone, while being

dominated by the activator in the ventral

neural tube (Figure 3B, right panel).

We next applied our reductionist model

to calculate spatial profiles of activator

and repressor levels along the neural

tube. After havingmeasured all model pa-

rameters, we were now able to solve

Equation 3 for A and R in the wild-type

neural tube. The inferred activator and

repressor gradients along the VD axis
are shown in Figure 3C. Note that calculation of A and R was

purely analytical and did not involve any fitting procedure. To

account for the remaining gradient of Ptch1 in Gli2�/�;Gli3�/�

neural tubes, we used the position-dependent values of bPtch1
and bGli1 shown in Figure 2C. Importantly, we found smooth

opposing gradients for A and R that decay to zero, even though

we did not specify boundary conditions or restrict solutions to

positive values.

In Figure 3D, we illustrate the mathematical solutions graph-

ically. Gli1 and Ptch1 both have characteristic 2D input func-

tions, based on the parameters discussed above. Next, we

plotted the activator and repressor gradients determined in Fig-

ure 3C as a trajectory on the input function maps. The acti-

vator/repressor trajectory shown in black in Figure 3D is the

same for both genes, but the transcript densities along this

trajectory are gene-dependent. If we read out the transcript

density of Gli1 and Ptch1 along the trajectory, we obtain the
ovember 24, 2014 ª2014 Elsevier Inc. 453
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Figure 4. Model Correctly Predicts Gene

Expression in Hedgehog Pathway Mutants

with Altered Gli Activator and Repressor

Levels

(A) Schematic view of relative Gli potencies (see

text).

(B) Estimated activator and repressor gradients

inGli3�/� neural tube at E9.5 (black). Calculation is

based on measurement of Gli2 and Gli3 expres-

sion and on assumptions discussed in the main

text. For comparison, activator and repressor

levels in wild-type are shown in red.

(C and D) Predicted transcript densities ofGli1 and

Ptch1 at E9.5 inGli3�/� (C) andGli2�/�mutants (D)

(black). Experimental data are shown in red (wild-

type) and blue (mutant).

See also Figure S4 and Data S1.
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transcript densities shown in Figure 1F. Hence, while the input

function maps show the space of all possible solutions, the

activator/repressor trajectory corresponds to the activator/

repressor combinations that are actually observed in the neural

tube.

The model described above assumes a single Gli binding site

for Gli1 and Ptch1, implicitly neglecting cooperative binding of

Gli proteins to neighboring Gli binding sites. Since Gli binding co-

operativity has been suggested to play amajor role in hedgehog-

induced pattern formation in Drosophila (Parker et al., 2011), we

mathematically explored the influence of cooperative binding on

our model. For this purpose, we considered a model with two Gli

binding sites (Figure S3A and Supplemental Experimental Pro-

cedures). Introducing cooperative or anticooperative binding of

activators and repressors changed the scaling behavior of acti-

vator and repressor gradients without affecting the overall shape

of the traces (Figure S3B). The model was also generally robust

toward variation of other model parameters (Figure S3C and

Supplemental Experimental Procedures). Notably, introducing

different dissociation constants for activators and repressors

only lead to a trivial rescaling of A and R. However, the model

was relatively sensitive to changes of KPtch1/KGli1. Specifically,

we obtained negative repressor values when assuming KGli1 <

KPtch1.
454 Developmental Cell 31, 448–460, November 24, 2014 ª2014 Elsevier Inc.
Predicting Gene Expression in
Mutants with Altered Activator and
Repressor Levels
As a next step, we aimed to validate

our approach by predicting gene expres-

sion changes in mutants with altered

activator/repressor balance. For this

purpose, we estimated the changes in

activator and repressor levels in Gli2�/�

and Gli3�/� mutants. Our assumptions

for Gli potencies are shown in Figure 4A.

We assumed equal potencies of Gli2

and Gli3 in the activator form. Gli2 is

believed to have only weak repressor

function, since it is mostly degraded in

the absence of Shh rather than being pro-

cessed to a repressor (Pan et al., 2006).
Gli1 is a constitutive activator; however, its potency seems to

be low, since no phenotype has been observed for Gli1 knock-

outs (Bai et al., 2002). In a simplified model, we neglected Gli2

repressor and Gli1 activator function. Hence, repressor levels

drop to R = 0 in the Gli3 mutant (shown in black in Figure 4B,

right). Activator levels upon removal of Gli3 depend on the rela-

tive levels of Gli2 and Gli3, and hence on the VD position. Using

mRNA levels as a proxy for protein, we obtain,

A
�
Gli3�=��=A

�
Gli3+ =+

�
,

Gli2

Gli2+Gli3
: (4)

This calculation was performed independently for each posi-

tion along the VD axis. Gli2 levels in Gli3�/� were undistinguish-

able from wild-type, suggesting there is no compensation at the

level of Gli expression in the Gli3mutant (data not shown). Using

the transcript density measurements for Gli2 and Gli3 shown in

Figure 1F, we obtained the reduced activator gradient depicted

in black in Figure 4B (left).

Solving Equation 3 with these calculated activator and

repressor gradients yields predicted transcript densities of

Gli1 and Ptch1 in the Gli3�/� neural tube, shown in black in Fig-

ure 4C (experimental data for wild-type is shown in red for com-

parison). We found that our model predicted downregulation of

Gli1 and upregulation of Ptch1 in the Gli3�/� neural tube.
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Figure 5. Temporal Analysis of Hedgehog

Signaling Reveals Different Dynamics of

Activator and Repressor Levels

(A) Gli1 and Ptch1 transcription in the neural tube

at different developmental time points. Data for

Gli2 and Gli3 are shown in Figure S5.

(B) Calculated activator and repressor dynamics

between E8.0 and E11.5.

(C) Activator and repressor levels as a function of

time at the most relevant spatial locations (ventral

neural tube for activator and intermediate neural

tube for repressor). Time windows allowing

expression of target genes are indicated sche-

matically by red arrows, based on an arbitrary

threshold (dashed line).

See also Figure S5.
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Comparing the prediction to experimental data for the Gli3

mutant (blue traces), we discovered that the model predicted

these opposite effects, as well as the location and magnitude

of gene expression changes correctly. We can understand the

seemingly contradictory expression changes of Gli1 and

Ptch1 in Gli3�/� by considering the activator and repressor de-

pendency of these two genes shown in Figures 3Aii and iv. Both

activator and repressor are reduced in the Gli3 mutant, but acti-

vator levels are reduced only moderately, while the repressor is

completely ablated. For Ptch1, which depends on both A and R,

the stronger change of repressor levels is dominant, leading to

derepression, and hence, upregulation of transcription. Gli1, on

the other hand, is much less sensitive to R (as long as values of

A are low), so that its expression change is dominated by the

reduction of A, leading to reduced activation, and hence, lower

transcript levels.

Using the same approach for the Gli2 mutant, we obtained a

reduced activator gradient, while repressor levels remain the

same. Again, our model agrees well with experimental data (Fig-

ure 4D). However, the deviation between model and experi-

mental data seemed to be slightly larger in Gli2�/� than in

Gli3�/� mutant embryos. This effect might be due to the altered

gene expression patterns of other direct and indirect hedgehog

targets in the Gli2 mutant, which could potentially feed back on

the hedgehog signal. For the Gli3 mutant at E9.5, on the other

hand, we did not find such changes in gene expression of other

hedgehog targets (Figure S1F).

We continued to explore the sensitivity of our model to param-

eter variations by using predicted readout gene expression in
Developmental Cell 31, 448–460, N
Gli3�/� neural tubes as criterion for model

performance (Figure S4). Including coop-

erativity led only to minor changes in pre-

dicted gene expression (Figure S4A).

Similarly, varying a, b, and g in a range

of possible experimental errors yielded

only negligible effects (Figure S4B). Exact

values for KPtch1/KGli1, however, proved to

be crucial for quantitatively correct pre-

dictions (Figure S4Bi). Importantly, our

simplifying assumption for Gli1–3 po-

tencies (Figure 4A) was not critical for cor-

rect model predictions (Figure S4C). Spe-
cifically, including Gli1 activator andGli2 repressor function (50%

potency compared to Gli3) led only to very minor differences.

Our model’s ability to predict expression changes of pathway

readout genes in mutants suggests that the inferred activator

and repressor gradients shown in Figures 3C and 3D are repre-

sentative of the actual activator and repressor levels in embry-

onic tissue. Hence, we now have a means to determine activator

and repressor levels independently at high spatial resolution

without the need for genetic manipulation. The smFISH data

set, Matlab scripts for inferringA andR, and scripts for predicting

expression traces in mutants are provided as Data S1. We next

used this approach as a tool for studying the dynamics of acti-

vator and repressor levels in the neural tube.

Temporal Analysis of Hedgehog Signaling Reveals
Different Dynamics of Activator and Repressor Levels
Hedgehog signaling in the neural tube is highly dynamic. After

reaching peak levels at early developmental stages, overall

signaling intensity continually decreases after E8.5 (Balaskas

et al., 2012;Peterson et al., 2012). Furthermore, temporal integra-

tion of the hedgehog signal has been shown to be important for

pattern formation in the neural tube (Dessaud et al., 2007; Stama-

taki et al., 2005). We therefore decided to examine the temporal

dynamics of activator versus repressor levels during neural

tube development based on transcript density measurements

at different stages of embryonic development (Figures 5A and

S5). In agreement with previous work (Balaskas et al., 2012; Pe-

terson et al., 2012), we found maximal transcript levels for Gli1

and Ptch1 at E8.5, followed by a decrease at E9.5 and E10.5.
ovember 24, 2014 ª2014 Elsevier Inc. 455
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Figure 6. Exploring the Generality of the

Model

(A) Predicted transcript densities ofGli1 and Ptch1

at E8.5 (somite stage-matched littermates) in the

Gli3 mutant (black). Experimental data are shown

in red (wild-type) and blue (Gli3�/�). The thermo-

dynamic model predicts expression of Gli1 and

Ptch1 correctly.

(B) Schematic transcript density map for bzg.

White arrows illustrate the effect of changing R

at different Gli levels. (1) At low Gli concentrations,

the target gene is insensitive toward varying

repressor concentrations. (2) At high A and R,

the target gene becomes sensitive to R, since

competition between A and R is stronger at high

Gli concentrations.

(C) Ptch2 expression traces in the neural tube at

E9.5. Wild-type data are shown in red, and basal

transcription in Gli2�/�;Gli3�/� embryos is shown

in green. The predicted wild-type transcript den-

sity graph (magenta) is in good agreement with the

experimental data.

See also Figure S6.
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Using our thermodynamic model, we calculated activator and

repressor concentrations for these different time points (Fig-

ure 5B). We found that activator levels reached a maximum at

E8.5, followed by a rapid decline. The dynamics of the repressor,

however, did not show thepulsing behavior observed for the acti-

vator. Instead, in our experimental time window, we observed a

continuous downregulation of the repressor. The different dy-

namics of activator and repressor levels are illustrated schemat-

ically inFigure 5C,wheremean levels at the spatial positionsmost

relevant for pattern formation—the ventral neural tube for the

activator and the intermediate neural tube for the repressor

(shaded areas in Figure 5B)—are plotted as a function of time.

Expression of Gli target genes can be initiated in twoways, either

by increasing activator or by reducing repressor concentrations.

Using an arbitrary threshold for the initiation of gene expression

(dashed line in Figure 5C), we see that the time windows during

which expression of target genes is possible are very different

for activator and repressor (red arrows in Figure 5C). While acti-

vator levels are above the threshold of activation only in a short

time window around E8.5, the repressor falls below the threshold

of derepression at a later time, and remains below the threshold

until the end of our experimental time window.

Exploring the Generality of the Model
The drastic reduction of Gli activator and repressor levels over

time allowed us to test the validity of our model in a different

parameter range. For this purpose, we compared predicted

expression of Gli1 and Ptch1 in Gli3�/� neural tubes at E8.5 to

experimental data. Using bGli1 and bPtch1 as determined at E8.5

(Figure 2C), and Gli2 and Gli3 transcript densities measured at

E8.5 (Figure S5), our model predicted gene expression in the

Gli3�/� neural tube at E8.5 correctly (Figure 6A). Interestingly, un-
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like at E9.5, we did not detect a reduction

of Gli1 in Gli3�/� embryos at E8.5, but

rather a slight increase. We can under-

stand this effect by considering the sche-
matic transcript density map shown in Figure 6B. As discussed

above, genes with low basal transcription (bzg) can be insensi-

tive to repressor concentration. This is, however, only true at low

concentrations of A and R. At high concentrations, even genes

with bzg become sensitive to R because competition between

activator and repressor for the binding sites becomes substantial

(white arrows in Figure 6B). The fact that we experimentally

confirmed this prediction provides a further important validation

of our model.

To explore the generality of the model further, we aimed to

apply our approach to different genes. Many hedgehog targets

are also subject to additional regulatory interactions, such as

other signaling pathways and tissue-specific competence fac-

tors. Perhaps most importantly, many of the well-established

hedgehog targets in the neural tube are transcription factors

that are involved in cross-repressive interactions (Dessaud

et al., 2008). To avoid confounding effects, it is thus important

to carefully select genes whose regulation is dominated by Gli

activator and repressor levels. Ptch2 (Motoyama et al., 1998),

a non-tissue-specific coreceptor of the pathway, fulfills these

criteria and was hence selected for further model validation.

We first determined model parameters for Ptch2 analogously

to our approach for Gli1 and Ptch1. We found that Ptch2 has

the lowest parameter value for a and the highest Gli binding

site affinity K among the three genes we investigated (Figure

S6). Similar to Gli1, basal expression b is very low for Ptch2

(green trace in Figure 6C). With these parameters, and A and R

as determined in Figure 3C, we predicted Ptch2 expression in

the wild-type neural tube without any additional fit parameters,

using Equation 2 as the input function. The model reproduced

the graded expression pattern of Ptch2 and peak expression

levels very well (Figure 6C). However, it is important to note
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Figure 7. Applying the Model to the Mouse Embryonic Forelimb

(A) Transcript densities of Ptch1, Gli1, Gli2, and Gli3 along the posterior-to-

anterior axis in wild-type forelimbs at E10.5.

(B and C) Gli1 and Ptch1 transcript densities in wild-type (red) and Gli3�/�

(blue) forelimbs at E10.5. Model predictions are shown in black.

See also Figure S7.
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Developme
that Figure 6C shows a real predictionwithout any freemodel pa-

rameters. It is hence not surprising that we observe minor

expression differences. In particular, we experimentally

observed a somewhat steeper gradient for Ptch2 than predicted

by the model, suggesting that the input function for Ptch2 might

be steeper than for Gli1 and Ptch1. The model furthermore

correctly predicted that Ptch2 expression should remain practi-

cally unchanged in the Gli3�/� neural tube (data not shown).

We next aimed to validate whether our approach can also be

successfully applied to different tissues and organs. As a second

model system we chose the embryonic forelimb, where Shh is

expressed from the zone of polarizing activity, establishing

a posterior-to-anterior gradient of Shh (Bénazet and Zeller,

2009). We measured transcript density graphs of Ptch1, Gli1,

Gli2, and Gli3 in wild-type forelimbs at E10.5 (Figure 7A). Since

basal transcript density b can contain regulatory contributions

by other pathways, we reasoned that this parameter is most

likely to vary in different tissues. We hence determined the

parameter b in forelimbs, obtaining bGli1z0.0005/mm3 and

bPtch1z0.018/mm3 (data not shown). Based on wild-type Gli1

and Ptch1 gradients, we then calculated A and R along the pos-

terior-to-anterior axis of the wild-type forelimb at E10.5 (red

traces in Figure S7). We next estimated A and R in Gli3�/� fore-

limbs (black traces in Figure S7) and predicted Gli1 and Ptch1

expression in the forelimbs of Gli3�/� mutants (Figures 7B and

7C).We found that themodel was in good agreement with exper-

imental data. This proof-of-principle experiment suggests that

the same model can correctly describe the activator and

repressor dependence of hedgehog readouts in different

tissues.

DISCUSSION

A General Approach for Inferring Hidden Control
Variables for Gene Expression
The interplay of different upstream regulators for controlling gene

expression is often unclear, particularly in caseswhere regulators

cannot be directly measuredwith sufficient precision in intact tis-

sues. Here, we mathematically infer hidden control variables of

hedgehog signaling—Gli activator and repressor—bymeasuring

transcriptional outputs of signaling in intact tissue sections

(Figures 1D–1F) and by developing a minimal model for the input

functions of hedgehog target genes (Figure 2A). For this

approach it is important to select genes that are faithful reporters

of hedgehog signaling and that donot dependonother regulatory

contributions. A schematic summary of our approach is shown in

Figure 1C. In our model, we assume equilibrium binding of acti-

vator and repressor molecules to the same binding site, and we

assign different output transcript densities to each occupancy

state. Importantly, all model parameters were measured experi-

mentally, using a combination of in vivo and in vitro approaches

(Figures 2B–2E). For our analysis, precise quantification of abso-

lute transcript levels using smFISH is crucial for disentangling the

contributions of the two upstream regulators. Using short-lived

mRNA molecules instead of more long-lived protein reporters

such as GFP fluorescence allows us to achieve very high tempo-

ral resolution. This is a crucial advantage of our approach, given

the highly dynamic nature of hedgehog signaling in the devel-

oping neural tube. The approach we present here is broadly
ntal Cell 31, 448–460, November 24, 2014 ª2014 Elsevier Inc. 457
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applicable and could be used for studying the integration of

multiple signaling factors controlling target genes in many other

contexts besides hedgehog signaling.

Unified Model for Activator and Repressor Control by
Bifunctional Transcription Factors
Our analysis provides a reductionist model for the dualism of

activator versus repressor control in hedgehog signaling. Impor-

tantly, our method reveals a surprising simplicity in gene regula-

tion by bifunctional Gli transcription factors. Competitive binding

of activators and repressors to the same binding sites can

explain all observed gene expression changes of hedgehog

readouts in mutants at different developmental stages and in

different tissues, including nontrivial opposing changes of Gli1

and Ptch1 in the Gli3�/� neural tube at E9.5. Cooperativity,

different affinities for activators and repressors, and binding

preferences of Gli1–3, do not seem to be essential to understand

expression changes of these genes in the mutant embryos.

Basal transcription and binding site affinity, however, emerge

as major determinants for activator versus repressor depen-

dence of target genes. There are two conditions that have to

be fulfilled for a gene to be dependent solely on activator or

repressor input. First, basal transcription b has to be close to a

(insensitive to A) or g (insensitive to R) (see Figure 3A). Second,

overall Gli protein levels (A+R) have to be low, so that the binding

site is in the unbound state b for a significant fraction of time (see

Figure 6B). Both conditions are fulfilled for Gli1 at E9.5 (see Fig-

ure 4C; downregulation of Gli1 in Gli3�/� neural tube). At E8.5,

however, the second condition begins to break down, leading

to increased repressor dependence of Gli1 (see Figure 6A; slight

increase ofGli1 inGli3�/� neural tube). Thus, cells sense the ratio

A/R at high Gli concentrations, but can become insensitive to

either A or R at low Gli concentrations.

Gli1 and Ptch1 are ideal candidate genes for disentangling

the regulatory contributions of A and R, since their expression

seems to be dominated by hedgehog signaling. Other Gli targets

may integrate input from different signaling pathways, may

require tissue-specific competence factors, or may be part of

complex gene regulatory networks. Hence, their Gli activator/

repressor dependence might be overpowered by other, domi-

nant regulatory inputs that are currently not included in the input

functions. In this perspective, our study constitutes only one

facet of pattern formation in the neural tube. In a similarly reduc-

tionist approach, Balaskas et al. (2012) have demonstrated the

importance of mutually repressive interactions between hedge-

hog targets for pattern formation in the neural tube. Other recent

studies have highlighted the importance ofSox genes as compe-

tence factors for neural-specific expression of hedgehog targets

(Oosterveen et al., 2013; Peterson et al., 2012). The ultimate goal

of these different lines of research should be to create a com-

bined mathematical model that has the power to predict spatio-

temporal gene expression patterns on the genome-wide level

and in different wild-type and mutant tissues.

Differences in binding cooperativity between Gli activator and

repressor have been proposed as a mechanism for hedgehog-

induced pattern formation in Drosophila (Parker et al., 2011).

Interestingly, differential cooperativity is not required to explain

expression changes of Gli1 and Ptch1 in mutant mouse em-

bryos, despite the existence of multiple Gli binding sites for
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both genes. We speculate that repressor cooperativity models

might be suboptimal for distinguishing activator-regulated genes

from repressor-regulated genes in the mouse, since vertebrate

Gli binding motifs seem to exhibit much less sequence diver-

gence than those of Drosophila (Parker et al., 2011; Peterson

et al., 2012). However, we would like to note that our results do

not exclude cooperativity or other regulatory interactions, since

our model is relatively insensitive to these factors.

Activator/repressor dualism in the Wnt pathway is established

in a way that is very similar to hedgehog signaling: Tcf/Lef tran-

scription factors can act as activators or repressors depending

onWnt ligand levels (Figure S1A). Similar to Gli proteins, different

Tcf/Lef factors seem to exhibit different potencies in the activator

and repressor state (Cadigan and Waterman, 2012; Merrill et al.,

2004). Thework presented here can serve asa conceptual frame-

work for studying activator versus repressor control in Wnt

signaling, as well as in other cell-cell signaling pathways. Similar

to our approach for hedgehog signaling, transcriptional targets

involved in feedback regulation might also be good candidates

when studying other pathways, since loci encoding feedback

regulators are often the simplest readouts of signaling pathways.

Biological Implications of Activator/Repressor Dualism
in Hedgehog Signaling
Using our model to measure activator and repressor gradients

independently,wefind that the levelsofGli activator and repressor

follow very different dynamics (Figures 5B and 5C). Interestingly,

the process of temporal adaptation and desensitization seems

to lead to a zero-hedgehog state that is characterized by the

absence of activator and repressor, rather than a repressed state,

and is hence different from the initial conditions at the onset

of Shh expression. We can thus tentatively define three stages

of hedgehog-induced pattern formation in the neural tube,

‘‘repressed’’ (before the onset of Shh expression, �E7.5),

‘‘instructive’’ (high A, low R, �E8.0–E9.0), and ‘‘permissive’’

(AzRz0,�E9.5–E11.5). Indeed, expressionof hedgehog targets

in theneural tube is initiatedaroundE8.5, atpeakactivator levels in

the instructive state (Jeong andMcMahon, 2005). The permissive

zero-hedgehog statemight provideagood framework for defining

precise boundaries due to cross-repressive interactions between

genes expressed in adjacent stripes (Balaskas et al., 2012).

The embryonic forelimb is another interesting model system

for hedgehog signaling. While many design principles, such as

temporal integration of the hedgehog signal, are analogous to

the neural tube, the severity of the Gli2�/� phenotype is much

stronger in the neural tube than in the forelimb, and vice versa

forGli3�/� (Ahn and Joyner, 2004). Our approach yields activator

and repressor gradients that are similar to the neural tube, sug-

gesting that the hedgehog pathway operates in comparable

ways in the two tissues. Comparing expression of Ptch1, Gli1,

Gli2, and Gli3 in the neural tube and the forelimb, we find similar

patterns of graded expression (Figures 1F and 7A). A notable dif-

ference, however, is that the ratio Gli3/Gli2 in the forelimb is

higher than in the neural tube, in particular in the region closest

to the signaling center (ventral neural tube and posterior fore-

limb). As a consequence, gene expression changes in Gli3�/�

embryos in this zone are stronger for the forelimb than for the

neural tube: expression of Gli1 and Ptch1 decreases substan-

tially in the posterior forelimb of Gli3�/� mutants at E10.5, while
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remaining almost constant in the ventral neural tube at E9.5 (Fig-

ures 4C, 7B, and 7C). This observation demonstrates the impor-

tance of quantitative and spatially resolved measurements of

mRNA levels for the interpretation of genetic experiments.

Experimental data for the Gli3�/� forelimb is in good agreement

with model predictions (Figures 7B and 7C), suggesting that the

same unified model can describe hedgehog signaling in different

tissues. Hence, we believe that the model presented here can

help clarify differences between different tissues with respect

to e.g., the relative importance of Gli activator versus repressor

for pattern formation. Exploring tissue-specific effects, including

additional regulatory interactions, and extending the analysis to

other signaling systems that are regulated by bifunctional tran-

scription factors will be important tasks for future research. We

anticipate that the combination of spatially resolved quantitative

gene expression measurements, genetic manipulation, and

mathematical modeling will emerge as a powerful tool to gain

fascinating insights into the design principles of signaling sys-

tems during development and beyond.

EXPERIMENTAL PROCEDURES

Generation of Mutant Mice

Mouse colonies for Smo (Zhang et al., 2001), Gli2 (Mo et al., 1997), and Gli3

(Maynard et al., 2002) were maintained as previously described. Compound

mutants were generated from timed matings of double heterozygous mice

and genotyped by PCR using extraembryonic yolk sac tissue. All studies

involving vertebrate animals were performed with institutional approval in

compliance with institutional guidelines.

Embryos were collected and fixed for 1 hr in 4% paraformaldehyde and

cryoprotected overnight in 30% sucrose/4% paraformaldehyde prior to

embedding in tissue freezing medium. For neural tube analysis, we used eight

micrometer cryosections taken at the level of the forelimb (heart level before

E9.5) for hybridizations. For embryos younger than E9.5, the number of so-

mites was used for precise staging. For forelimb analysis, longitudinal sections

perpendicular to the left-right axis were taken at the level of the central

forelimb. Experiments were performed independently with multiple tissue

sections from at least three different embryos and gave reproducible results.

Generation of Gli2DN Embryonic Stem Cells

An N-terminally truncated, active form of mouse Gli2 carrying an in-frame

N-terminal 33FLAG tag (Sigma) was cloned into the pBigT shuttle vector,

then into pRosa26PA (Srinivas et al., 2001). The linearized construct was elec-

troporated into YFP3-1 (Rosa26YFP/b-gal) embryonic stem (ES) cells (Mao

et al., 2005) and neomycin-resistant colonies that passed initial visual screens

(loss of b-gal or YFP expression) were assayed by southern blot. One resulting

ES cell line, Gli2DN, was used for further experiments.

Embryoid Bodies

V6.5 embryonic stem cells (ESC) were cultured under standard conditions

(15% fetal bovine serum + leukemia inhibitory factor). Neuralized EBs were

formed as previously described (Wichterle et al., 2002). Briefly, ESCs were

seeded in low attachment 6-well plates (Corning) at a density of 53105 ESC

per well and cultured in DFNK (Dulbecco’s Modified Eagle Medium:F12,

neurobasal media + 10% knockout serum replacement). After 48 hr, EBs

were treated with different concentrations of SAG (Cal Biochem) and RA

(0.5 mM). Fixation, cryoprotection, and sectioning were performed analogously

to mouse embryos.

smFISH and Image Analysis

Fluorescent probes for smFISHwere constructed as previously described (Raj

et al., 2008). In short, we designed libraries consisting of up to 96 oligonucle-

otides of 20 nucleotides length, complementary to the coding sequences of

the genes of interest (see Table S1 for probe sequences). Probeswere coupled

to different fluorophores (Cy5, Alexa594, and TMR) to allow detection of up to
Developme
three genes in the same tissue sections. Hybridizations were performed over-

night at 30�C as previously described (Itzkovitz et al., 2012; Raj et al., 2008).

DAPI dye for nuclear staining was added during the washes after hybridization.

Images were taken with a Nikon Ti-E inverted fluorescence microscope equip-

ped with a 1003 oil-immersion objective and a Photometrics Pixis 1024B CCD

camera using MetaMorph software (Molecular Devices). We recorded stacks

of images (z spacing 0.3 mm) at adjacent x-y positions covering the entire

VD axis of neural tube sections.

Diffraction-limited dots corresponding to single mRNA molecules were

automatically detected using custom Matlab software, based on previously

described algorithms (Raj et al., 2008). Briefly, the images were first filtered

using a 3D Laplacian of Gaussian filter with a width of 15 pixels and a SD of

1.5 pixels (Figure S1B). We then determined the intensity threshold at which

the number of connected components was least sensitive to the threshold

(Itzkovitz et al., 2012) (Figure S1C). Individual images were stitched in Matlab

using stage coordinates and cross-correlation analysis.

Data Analysis and Mathematical Modeling

Transcript density graphs were calculated in a stripe along the VD axis with

lateral width of 20 mm, using a sliding window with a length of 10% of the

VD axis for smoothing (Figure S1D). Colored patches in transcript density

graphs show 95% confidence intervals around the mean. Error bars for

inferred variables and model predictions were calculated based on Gaussian

error propagation of measurement uncertainties for Ptch1, Gli1, Gli2, and

Gli3 transcript densities. Mathematical modeling was performed in Matlab,

as described in the Supplemental Experimental Procedures.
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Oosterveen, T., Kurdija, S., Ensterö, M., Uhde, C.W., Bergsland,M., Sandberg,

M., Sandberg, R., Muhr, J., and Ericson, J. (2013). SoxB1-driven transcrip-

tional network underlies neural-specific interpretation of morphogen signals.

Proc. Natl. Acad. Sci. USA 110, 7330–7335.

Pan, Y., Bai, C.B., Joyner, A.L., andWang, B. (2006). Sonic hedgehog signaling

regulates Gli2 transcriptional activity by suppressing its processing and degra-

dation. Mol. Cell. Biol. 26, 3365–3377.

Parker, D.S., White, M.A., Ramos, A.I., Cohen, B.A., and Barolo, S. (2011).

Thecis-regulatory logic of Hedgehog gradient responses: key roles for gli

binding affinity, competition, and cooperativity. Sci. Signal. 4, ra38.

Peterson, K.A., Nishi, Y., Ma, W., Vedenko, A., Shokri, L., Zhang, X.,

McFarlane, M., Baizabal, J.M., Junker, J.P., van Oudenaarden, A., et al.

(2012). Neural-specific Sox2 input and differential Gli-binding affinity provide

context and positional information in Shh-directed neural patterning. Genes

Dev. 26, 2802–2816.

Raj, A., van den Bogaard, P., Rifkin, S.A., van Oudenaarden, A., and Tyagi, S.

(2008). Imaging individual mRNA molecules using multiple singly labeled

probes. Nat. Methods 5, 877–879.

Ribes, V., Balaskas, N., Sasai, N., Cruz, C., Dessaud, E., Cayuso, J., Tozer, S.,

Yang, L.L., Novitch, B., Martı́, E., and Briscoe, J. (2010). Distinct Sonic

Hedgehog signaling dynamics specify floor plate and ventral neuronal pro-

genitors in the vertebrate neural tube. Genes Dev. 24, 1186–1200.

Sasaki, H., Hui, C., Nakafuku, M., and Kondoh, H. (1997). A binding site for Gli

proteins is essential for HNF-3beta floor plate enhancer activity in transgenics

and can respond to Shh in vitro. Development 124, 1313–1322.

Segal, E., Raveh-Sadka, T., Schroeder, M., Unnerstall, U., and Gaul, U. (2008).

Predicting expression patterns from regulatory sequence in Drosophila seg-

mentation. Nature 451, 535–540.

Setty, Y., Mayo, A.E., Surette, M.G., and Alon, U. (2003). Detailed map of

acis-regulatory input function. Proc. Natl. Acad. Sci. USA 100, 7702–7707.

Sherman, M.S., and Cohen, B.A. (2012). Thermodynamic state ensemble

models ofcis-regulation. PLoS Comput. Biol. 8, e1002407.

Srinivas, S., Watanabe, T., Lin, C.S., William, C.M., Tanabe, Y., Jessell, T.M.,

and Costantini, F. (2001). Cre reporter strains produced by targeted insertion

of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol. 1, 4.

Stamataki, D., Ulloa, F., Tsoni, S.V., Mynett, A., and Briscoe, J. (2005). A

gradient of Gli activity mediates graded Sonic Hedgehog signaling in the neural

tube. Genes Dev. 19, 626–641.

Vokes, S.A., Ji, H., McCuine, S., Tenzen, T., Giles, S., Zhong, S., Longabaugh,

W.J.R., Davidson, E.H., Wong, W.H., and McMahon, A.P. (2007). Genomic

characterization of Gli-activator targets in sonic hedgehog-mediated neural

patterning. Development 134, 1977–1989.

Wichterle, H., Lieberam, I., Porter, J.A., and Jessell, T.M. (2002). Directed

differentiation of embryonic stem cells into motor neurons. Cell 110, 385–397.

Zhang, X.M., Ramalho-Santos, M., and McMahon, A.P. (2001). Smoothened

mutants reveal redundant roles for Shh and Ihh signaling including regulation

of L/R symmetry by the mouse node. Cell 106, 781–792.

Zinzen, R.P., Senger, K., Levine, M., and Papatsenko, D. (2006).

Computational models for neurogenic gene expression in the Drosophila

embryo. Curr. Biol. 16, 1358–1365.

Zinzen, R.P., Girardot, C., Gagneur, J., Braun, M., and Furlong, E.E.M. (2009).

Combinatorial binding predicts spatio-temporalcis-regulatory activity. Nature

462, 65–70.
evier Inc.


	A Predictive Model of Bifunctional Transcription Factor Signaling during Embryonic Tissue Patterning
	Introduction
	Results
	Spatially Resolved Quantitative Gene Expression Analysis of Intact Mouse Neural Tube Sections
	A Simple Thermodynamic Model for Gene Regulation by Bifunctional Transcription Factors
	Inferring Hidden Control Variables from Transcript Measurements
	Predicting Gene Expression in Mutants with Altered Activator and Repressor Levels
	Temporal Analysis of Hedgehog Signaling Reveals Different Dynamics of Activator and Repressor Levels
	Exploring the Generality of the Model

	Discussion
	A General Approach for Inferring Hidden Control Variables for Gene Expression
	Unified Model for Activator and Repressor Control by Bifunctional Transcription Factors
	Biological Implications of Activator/Repressor Dualism in Hedgehog Signaling

	Experimental Procedures
	Generation of Mutant Mice
	Generation of Gli2ΔN Embryonic Stem Cells
	Embryoid Bodies
	smFISH and Image Analysis
	Data Analysis and Mathematical Modeling

	Supplemental Information
	Acknowledgments
	References


