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SUMMARY

Members of the Wnt family of secreted signaling pro-
teins are key regulators of cell migration and axon
guidance. In the nematode C. elegans, the migration
of the QR neuroblast descendants requires multiple
Wnt ligands and receptors. We found that the migra-
tion of the QR descendants is divided into three
sequential phases that are each mediated by a
distinct Wnt signaling mechanism. Importantly, the
transition from the first to the second phase, which
is the main determinant of the final position of the
QR descendants along the anteroposterior body
axis, is mediated through a cell-autonomous process
in which the time-dependent expression of a Wnt re-
ceptor turns on the canonicalWnt/b-catenin signaling
response that is required to terminate long-range
anterior migration. Our results show that, in addition
to direct guidance of cell migration by Wnt morpho-
genic gradients, cell migration can also be controlled
indirectly through cell-intrinsic modulation of Wnt
signaling responses.

INTRODUCTION

Morphogens such as Wnt proteins play a central role in embry-

onic patterning by providing positional information to cells in

developing tissues. In recent years, it has become clear that

such morphogenic gradients also contribute to the guidance of

migrating cells and axons in the developing nervous system

(Zou and Lyuksyutova, 2007). In the mammalian spinal cord,

for example, Wnt gradients control the migration of commissural

axons (Liu et al., 2005; Lyuksyutova et al., 2003), and in

C. elegans, a gradient of the Wnt protein EGL-20 acts as a repul-

sive guidance cue in the migration of the hermaphrodite-specific

neurons (Pan et al., 2006). In addition to acting as direct repulsive

or attractive guidance signals, Wnt proteins can also function as

permissive factors that enable cells to respond to other guidance

cues (Whangbo and Kenyon, 1999; Witze et al., 2008). How

migrating cells and growth cones interpret information from
188 Developmental Cell 31, 188–201, October 27, 2014 ª2014 Elsev
Wnt ligands to adopt a specific migratory response is, however,

still largely unknown.

Wnt proteins can trigger different signaling cascades in re-

sponding cells (Angers and Moon, 2009). In canonical Wnt

signaling, binding ofWnt to the receptors Frizzled and Lrp6 leads

to stabilization of the cytoplasmic protein b-catenin, which in turn

interacts with members of the TCF family of transcription factors

to coactivate the expression of specific sets of target genes

(Clevers and Nusse, 2012). Wnt can also signal independently

of b-catenin through distinct noncanonical Wnt pathways,

including a pathway that depends on the receptor tyrosine ki-

nase Ror2 (Green et al., 2008) and a pathway that requires the

planar cell polarity (PCP) components Van Gogh (Vangl) and

Prickle (Pk) (Wallingford, 2012).

Studies on the role of Wnt signaling in cell and axon migration

have been hampered by the complexity of the vertebrate embryo

and the multitude of Wnt ligands and receptors that are present

in the vertebrate genome. The nematode C. elegans offers a

more tractable system, with only 5Wnt ligands, 4 Frizzled recep-

tors, and single orthologs of Ror2, Vangl, and Pk that control the

migration and polarity of defined cells and axons (Sawa and

Korswagen, 2013). Among the cells that migrate in response to

Wnt signaling is the QR neuroblast and its descendants

(Figure 1A). During the first stage of larval development, the

QR lineage generates a specific set of descendants: an anterior

daughter cell (QR.a) that divides once to generate an apoptotic

cell and a cell (QR.ap) that differentiates into a chemosensory

neuron, and a posterior daughter cell (QR.p) that divides twice

to generate an apoptotic cell and two cells (QR.paa and QR.pap)

that differentiate into a mechanosensory neuron and an inter-

neuron, respectively (Sulston and Horvitz, 1977). Throughout

this process, each QR neuroblast descendant migrates to a

highly stereotypic position along the anteroposterior body axis.

Previous studies have shown that the migration of QR.p and its

descendants (abbreviated as QR descendants unless indicated

otherwise) requires multiple Wnt ligands and receptors (Harter-

ink et al., 2011; Kim and Forrester, 2003; Zinovyeva and Forres-

ter, 2005; Zinovyeva et al., 2008). These observations raise the

question how the QR descendants integrate this complex Wnt

signaling information to migrate to their precisely defined final

positions.

Here, we show that the migration of QR descendants can be

divided into three sequential phases, each of which is controlled
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Figure 1. mom-5/Frizzled and cam-1/Ror2 Act in Parallel Genetic Pathways to Control the Anterior Migration of the QR Descendants

(A) Schematic overview of the anterior migration of QR.a and QR.p and their descendants. Apoptotic cells are indicated as white cells with a cross, while the final

QR descendants are indicated in green. The final position of QR.pa division is indicated in red.

(B and E) Average position of the QR descendants QR.pap and QR.paa with respect to the seam cells V1.a to V6.p (lower brackets indicate Vn.a [left] and Vn.p

[right] daughters of Vn cells). Values listed are percentiles of the total number of cells scored, n > 50 for all genotypes. A color (red) coded heatmap represents the

range of percentile values. The hsp16.2 HS promoter was used to drive ubiquitous expression of egl-20 and cwn-1, and the time of HS is indicated. The ceh-22

promoter was used to drive anterior expression of egl-20 and cwn-1 in the pharynx (Okkema and Fire, 1994). Q lineage specific RNAi was performed by ex-

pressing cam-1 or mom-5 dsRNA using the egl-17 promoter (Burdine et al., 1998) in the RNAi spreading defective mutant sid-1(qt9) (Winston et al., 2002).

Statistical significance was calculated using Fisher’s exact test (***p < 0.0001).

(C) Single-molecule mRNA FISH of cam-1 and mom-5 mRNA (red). The Q neuroblasts (outlined with dotted line) and seam cells are labeled with GFP (heIs63).

Quantification of mRNA spots is indicated as mean ± SD (n > 30). Statistical significance was calculated using an unpaired t test (**p < 0.001).

(D) cam-1 andmom-5 transcription dynamics in single QR.p (green) and QR.pa (red) neuroblast daughter cells as measured in wild-type animals (n > 60 for both

mRNA species). The number of mRNA spots per cell is plotted against the cell position with respect to the seam cells H2 to V5. See also Figure S1.
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by a distinctWnt signalingmechanism. First, anterior migration is

mediated through parallel-acting MOM-5/Frizzled- and CAM-1/

Ror2-dependent noncanonical Wnt pathways. Second, once

QR.pa reaches its final position, anterior migration is stopped

by activation of canonical Wnt/b-catenin signaling. Finally, the
Developm
short-range migration of QR.paa and QR.pap to their specific

anteroposterior and dorsoventral positions requires the PCP

pathway components VANG-1/Vangl and PRKL-1/Pk. Impor-

tantly, we found that Wnt ligands do not act instructively in this

process. Instead, our results show that the final position of
ental Cell 31, 188–201, October 27, 2014 ª2014 Elsevier Inc. 189
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QR.pa along the anteroposterior body axis is determined through

a cell-intrinsic timing mechanism that turns on canonical Wnt/

b-catenin signaling by upregulating the expression of theWnt re-

ceptor mig-1. Our results are consistent with a model in which

time-dependent switching between Wnt signaling pathways

rather than positional information from Wnt ligands controls the

highly stereotypic migration of QR.p and its descendants.

RESULTS

The Parallel Acting Wnt Ligands EGL-20 and CWN-1
Do Not Provide Positional Information to the Migrating
QR.p Descendants
Mutations in different Wnt ligand and receptor genes have been

shown to interfere with the anterior migration of the QR descen-

dants (Harris et al., 1996; Whangbo and Kenyon, 1999; Zino-

vyeva and Forrester, 2005; Zinovyeva et al., 2008). Using the final

anterior position of QR.paa and QR.pap (abbreviated as QR.pax)

as a measure of total migration distance, we confirmed that the

QR.pax localize at more posterior positions in egl-20 and cwn-1

Wnt null mutants (Figure 1B). This defect was strongly enhanced

in cwn-1; egl-20 double mutants, indicating that the two Wnt

ligands act in parallel to control anterior migration of the QR de-

scendants (Zinovyeva et al., 2008). Mutation of the Wnt gene

cwn-2 did not affect QR.pax localization but enhanced the

undermigration phenotype of egl-20 and weakly of cwn-1,

consistent with a minor role of cwn-2 in the migration process

(Figure S1A available online).

egl-20 is expressed by a group of cells in the tail region and

forms a posterior to anterior concentration gradient that acts

instructively in guiding the migration of the hermaphrodite-spe-

cific neurons (Coudreuse et al., 2006; Pan et al., 2006; Whangbo

and Kenyon, 1999). Previous studies have indicated that this

gradient does not function as a directional guidance signal in

QR descendant migration (Whangbo and Kenyon, 1999).

Consistently, we found that reversal of the EGL-20 concentration

gradient, by ceh-22 promoter directed expression of egl-20 in

the pharynx (Okkema and Fire, 1994), significantly rescues the

QR.pax undermigration phenotype of egl-20mutants (Figure 1B).

However, when egl-20 was ubiquitously overexpressed using a

heat inducible promoter, the QR.pax migrated beyond their

wild-type positions (Figure 1B) (Whangbo and Kenyon, 1999),

indicating that EGL-20 can promote the migration of the QR de-

scendants when present at elevated levels.

cwn-1 is also expressed in the posterior, but in a broader

region than egl-20 (Harterink et al., 2011; Pan et al., 2006). To

investigate whether CWN-1 functions as an instructive guidance

signal, we tested if uniform expression of cwn-1 restores the

normal anterior migration of the QR descendants in a cwn-1

null mutant background. As shown in Figure 1B, heat-shock

(HS) promoter directed expression of cwn-1 rescued the under-

migration phenotype of cwn-1(ok546). Furthermore, expression

of cwn-1 in the pharynx also significantly rescued QR.paxmigra-

tion in the cwn-1 null mutant background. However, in contrast

to egl-20, overexpression of cwn-1 did not induce overmigration

of the QR.pax. These results support the notion that morpho-

genic gradients of EGL-20 and CWN-1 do not provide positional

information to themigrating QR descendants. There is, however,

a difference in the ability of EGL-20 and CWN-1 to promote the
190 Developmental Cell 31, 188–201, October 27, 2014 ª2014 Elsev
migration of the QR descendants when these Wnt ligands are

overexpressed.

The Wnt Receptors MOM-5/Frizzled and CAM-1/Ror2
Act in Parallel Genetic Pathways to Promote Anterior
Migration of the QR Descendants
Analysis of Wnt receptor mutants showed that the QR.pax are

posteriorly displaced in mutants of the Frizzled mom-5 and the

Ror2 ortholog cam-1 (Figure 1B) (Kim and Forrester, 2003; Zino-

vyeva et al., 2008). mom-5 has an essential function in early

embryogenesis (Thorpe et al., 1997), but homozygous null

mutant offspring of heterozygous mothers (mom-5 [+M]) is

viable. Despite this maternal contribution, mom-5 (+M) mutants

exhibit a highly penetrant QR.pax undermigration phenotype.

To investigate whether mom-5 acts cell-autonomously in QR

descendant migration, we first examined whether mom-5 is ex-

pressed in the QR lineage. Using a quantitative single-molecule

mRNA fluorescent in situ hybridization (smFISH)method (Ji et al.,

2013; Middelkoop et al., 2012), we found that mom-5 is ex-

pressed in the Q neuroblasts and their descendants (Figure 1C).

Quantification ofmom-5mRNA spots revealed thatmom-5 is ex-

pressed at a significantly higher level in theQRdescendants than

in the lineally equivalent QL descendants, which is consistent

with the observation that mom-5 mutants are defective in QR

but not QL descendant migration (Zinovyeva et al., 2008).

Furthermore, we found that the expression of mom-5 gradually

increases in the QR lineage (average of 2.9 ± 2.2 transcripts in

QR, 7.8 ± 6.2 transcripts in QR.p, and 21 ± 4.6 transcripts in

QR.pa, n > 20) (Figure 1D; Figure S1D).

To investigate whether mom-5 is required in the QR descen-

dants, we used the egl-17 promoter to specifically express

wild-type mom-5 in the Q lineage of mom-5 (+M) mutants (Bur-

dine et al., 1998; Ou and Vale, 2009). As shown in Figure 1E,

this significantly rescued QR.pax migration. Furthermore, we

found that Q lineage-specific knockdown of mom-5 by egl-17

promoter directed expression of mom-5 double-stranded RNA

(dsRNA) resulted in a weak but significant undermigration of

the QR.pax (Figure 1E). We conclude that mom-5 functions

cell-autonomously in QR descendant migration.

Mutation of the Ror2 ortholog cam-1 also induced significant

undermigration of the QR.pax (Figure 1B) (Kim and Forrester,

2003; Zinovyeva et al., 2008). The penetrance of this phenotype

was lower than in mom-5 (+M) mutants, however, and the

QR.pax also localized in a broader region along the anteroposte-

rior axis. To investigate whether the kinase domain of CAM-1 is

required for QR descendant migration, we determined QR.pax

localization in cam-1 alleles that mutate (xd13) or delete (ks52)

the kinase domain (Kim and Forrester, 2003). In both cam-1 al-

leles, the QR.pax were posteriorly displaced (Figure S1B), but

the penetrance of this phenotype was lower than in the

cam-1(gm122) null mutant, indicating that CAM-1 has both

kinase-dependent and kinase-independent functions in QR des-

cendant migration. Examination of endogenous cam-1 expres-

sion showed that cam-1 is expressed in the Q neuroblast lineage

(Figure 1C). Similar to mom-5, cam-1 was expressed at a signif-

icantly higher level in theQR descendants than in theQL descen-

dants, which is in agreement with the requirement of cam-1 for

QR but not QL descendant migration (Zinovyeva et al., 2008).

Furthermore, we found that the expression of cam-1 also
ier Inc.
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gradually increases during QR lineage progression (average of

5.3 ± 3.3 mRNA spots in QR, 5.5 ± 4.8 mRNA spots in QR.p

and 17 ± 5.2 mRNA spots in QR.pa, n > 20) (Figure 1D; Fig-

ure S1D). To investigate whether cam-1 is required in the QR de-

scendants, we knocked down cam-1 by Q lineage specific

expression of cam-1 dsRNA. As shown in Figure 1E, this resulted

in weak but significant QR.pax undermigration, consistent with a

cell-autonomous function of cam-1 in QR descendant migration.

To examine whethermom-5 and cam-1 are part of a common

signaling mechanism or of parallel pathways, we examined

mom-5 (+M); cam-1 double mutants (Figure 1B). We found that

the final position of the QR.pax was shifted toward the posterior,

indicating that loss of both receptors enhances the defect in QR

descendant migration. In addition, the more widespread dis-

tribution of the QR.pax observed in cam-1 single mutants was

retained in the double mutant. We conclude that mom-5 and

cam-1 act in parallel to control QR descendant migration.

Next, we investigated the genetic relationship between the

two receptors and the different Wnt ligands involved in QR

descendant migration. We found that the undermigration phe-

notype of mom-5 (+M) was strongly enhanced by mutation of

egl-20, indicating that mom-5 and egl-20 act in parallel genetic

pathways (Figure 1B). In contrast, there was only weak (but sta-

tistically significant) enhancement in double mutants with cwn-1.

A similar analysis showed that the undermigration phenotype of

cam-1 was strongly enhanced by mutation of cwn-1, whereas

the cam-1; egl-20 double mutant was not significantly different

from cam-1 single mutants (p = 0.45, Fisher’s exact test). Muta-

tion of cwn-2 weakly enhanced the cam-1 induced undermigra-

tion phenotype, but the cwn-2; mom-5 (+M) double mutant was

not significantly different from themom-5 (+M) single mutant (p =

0.61, Fisher’s exact test) (Figure S1A). On the basis of these re-

sults, we conclude that egl-20 predominantly acts through the

cam-1 pathway, whereas cwn-1 (and possibly cwn-2) act mainly

through the mom-5 pathway.

The cytoplasmic protein Disheveled (Dvl) is a common com-

ponent of both canonical and noncanonical Wnt signaling path-

ways (Angers and Moon, 2009). To investigate whether the

parallel cam-1 andmom-5 pathways act through distinct Dvl iso-

forms, we assayed QR descendant migration in null mutants of

the three Dvl orthologs dsh-1, dsh-2, and mig-5 (Figure S1C).

We found that the QR.pax localized at more posterior positions

in dsh-2 (+M) single mutants. Furthermore, double-mutant com-

binations of the differentWnt andDvl mutants showed that dsh-2

and mig-5 enhance the undermigration phenotype of egl-20 as

well as cwn-1 and cwn-2, indicating that they may act in both

of the parallel pathways. This is consistent with the multifunc-

tional nature of Dvl proteins in Wnt signal transduction (Gao

and Chen, 2010).

MOM-5/Frizzled and CAM-1/Ror2 Control Distinct
Dynamic Aspects of the Long-Range Migration of QR.p
The migration of QR.p and its descendants can be divided into a

long-rangemigration phase in which QR.p andQR.pa cover a to-

tal distance of about 38 mm along the anteroposterior body axis

(29.2 ± 5.5 mm for QR.p and 8.9 ± 2.5 mm for QR.pa, n > 70) and a

short-range migration phase in which QR.paa and QR.pap

localize to their final anteroposterior and dorsoventral positions

(Figure 1A). We found that the distance of QR.p migration was
Developm
strongly reduced in egl-20, cwn-1, cam-1, mom-5 (+M), and

dsh-2 (+M) mutants (Figure S2B), indicating that the CAM-1/

Ror2- and MOM-5/Frizzled-dependent Wnt pathways are

required for the long-range anterior migration of QR.p.

To examine dynamic aspects of QR.p migration, we per-

formed static and time-lapse spinning-disc confocal imaging

on animals in which the plasma membrane and nucleus of the

Q neuroblasts and seam cells are marked with GFP (Middelkoop

et al., 2012). Expression of these markers (a pleckstrin homology

domain containing GFP and a fusion of histone 2B with GFP) do

not influence the migration of the QR descendants (Middelkoop

et al., 2012). We found that QR.p and its sister cell QR.a polarize

along the anteroposterior axis during their migration. At the ante-

rior side, a leading edge is visible at which small filopodia-like

protrusions are formed, while the nucleus is positioned in the

posterior half of the cell (Figure 2A; Movies S1 and S2). Further-

more, we found that the F-actin-binding protein COR-1/coronin,

which marks the leading edge of migrating cells (Wang et al.,

2013), is enriched at the anterior side of QR.p and QR.a (Fig-

ure S2A). To quantify QR.p polarity, we took the ratio of the dis-

tance of the nucleus to the most posterior and the most anterior

side of the cell (Figure 2K). In wild-type animals, QR.p was pre-

dominantly polarized toward the anterior (ratio of 0.65 ± 0.02,

mean ± SEM).

We found that this anterior polarization is lost in cam-1 mu-

tants (Figure 2D). Time-lapse imaging showed that QR.p and

QR.a fail to maintain an anterior protrusion. Instead, the cells

flip back and forth between anterior and posterior polarization

(Movie S3), a behavior that is captured in the quantification of

static images as a large spread in QR.p polarity ratios and a

mean polarity ratio (0.92 ± 0.06) that approaches random polar-

ization (Figure 2K). Furthermore, COR-1 was localized to both

the anterior and posterior sides of QR.p (Figure S2A). Consistent

with our observation that egl-20 and cam-1 are part of the same

genetic pathway, we found that the polarization and migration of

QR.p were similarly affected in egl-20 mutants (Figures 2B, 2K,

and 2M; Movie S4). We conclude that egl-20 and cam-1 are

required for the persistent anterior polarization of QR.p.

In contrast, measurements of QR.p polarity in cwn-1, cwn-2,

and mom-5 (+M) mutants showed that the average polarization

direction (0.71 ± 0.04, 0.68 ± 0.02, and 0.68 ± 0.03 for mom-5

[+M], cwn-1, and cwn-2, respectively) is not significantly

different from wild-type (although it should be noted that polari-

zation was more variable in cwn-2 and mom-5 mutants; p <

0.001, Levene’s test) (Figures 2C, 2E, and 2K; Figure S2C) and

that COR-1 is normally localized at the anterior side of the cell

(Figure S2A). Furthermore, time-lapse imaging revealed that

QR.p and QR.a remain correctly polarized toward the anterior

in mom-5 (+M) mutants (Movie S5). The overall speed of migra-

tion, however, was significantly reduced (Figure 2L). The

absence of a polarity phenotype in cwn-1, cwn-2, and mom-5

(+M) mutants is in agreement with the notion that these genes

function in a common pathway that is functionally distinct from

the egl-20- and cam-1-dependent pathway. This conclusion is

further supported by the observation that loss of cwn-1 does

not significantly change the QR.p polarity phenotype of egl-20

mutants (Figure S2C).

It has previously been shown that a gain-of-function (gof)

mutation of the Rac family member mig-2 affects the persistent
ental Cell 31, 188–201, October 27, 2014 ª2014 Elsevier Inc. 191
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Figure 2. egl-20/Wnt and cam-1/Ror2 Are Required for Persistent Polarization of QR.p

(A–J) Representative images of migrating QR.p cells in wild-type and mutant animals in which QR.p and the seam cells express plasma membrane and nuclear

localized GFP (heIs63). Anterior is left. Asterisk (white) indicates the main protruding front (if any). Scale bar represents 5 mm.

(K) Quantification of QR.p polarity as the ratio of the distance of the nucleus to the posterior (P) and the anterior (A) side of the cell. Black lines indicatemean ± SEM

(n > 25 for all genotypes). Statistical significance was calculated using an unpaired t test (***p < 0.0001). The mean polarity of cwn-1, mom-5, ina-1, and cwn-1;

ina-1 double mutants was not statistically different from wild-type.

(L andM) The speed of QR.p migration was calculated from the average anterior distance that QR.p covers in 1 hr (*or 2 hr in M) after the start of migration (n > 75,

except cam-1 n > 50). Statistical significance was calculated using an unpaired t test (***p < 0.0001).

See also Figure S2.
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polarization of the QL descendant QL.ap, while mutation of the

integrin a-subunit gene ina-1 affects the speed of QL.ap migra-

tion independently of polarity (Ou and Vale, 2009). It was there-

fore proposed thatmig-2 and ina-1 function in distinct pathways

that separately control the polarity and speed of QL.ap. On the

basis of the similarity of the cam-1 mutant phenotype to mig-

2(gof) and mom-5 to ina-1, we hypothesized that the cam-1

pathway may localize the activity of Rac proteins such as MIG-
192 Developmental Cell 31, 188–201, October 27, 2014 ª2014 Elsev
2, while the mom-5 pathway may regulate migration speed by

controlling integrin dynamics. Consistent with the study of Ou

and Vale (2009), we found that loss of ina-1 reduced QR.pmigra-

tion speed without affecting QR.p polarity (Figures 2G, 2K, and

2L; Movie S6). Because mom-5; ina-1 double mutants were

not viable, we examined QR.p polarity in cwn-1; ina-1 double

mutants. We found that the double mutant had a similar average

QR.p polarity ratio as observed in the cwn-1 and ina-1 single
ier Inc.
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Figure 3. Canonical Wnt/b-catenin

Signaling Acts Cell Autonomously to Termi-

nate Migration of QR.pa

(A) Average position of the QR descendants

QR.pap and QR.paa with respect to the seam cells

V1.a to V6.p (n > 50 for all genotypes).

(B) Position of QR.p division with respect to the

seam cells V1 to V4 (n > 75 for all genotypes).

(C) Position of QR.pa division with respect to the

seam cells V1 to V4 (n > 70 for all genotypes).

(D) Position of QR.pa division with respect to the

seam cells V1.p to V2.a (n > 70 for all genotypes).

In all cases, statistical significance was calculated

using Fisher’s exact test (***p < 0.0001). See also

Figure S3.
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mutants (Figures 2I and 2K). The final position of QR.p, however,

was shifted posteriorly (Figure S2B), indicating that the defect in

QR.p migration is enhanced in the double mutant. The lack of a

polarity phenotype in the cwn-1; ina-1 double mutant shows that

both genes are dispensable for QR.p polarization. The enhanced

defect in QR.p migration suggests, however, that the CWN-1

and MOM-5 dependent Wnt pathway and INA-1 control the

migration separately (although it should be noted that a shared

function cannot be ruled out because the ina-1(gm144) allele is

a hypomorphic mutation).

We found that QR.p did not form a clear leading edge and was

mostly unpolarized in mig-2(mu28) loss-of-function and mig-

2(gm103) gof mutants (Figures 2F, 2H, and 2K; Movies S7 and

S8). Furthermore, QR.p was mostly unpolarized in the cam-1;

mig-2(mu28) double mutant, a phenotype that was quantitatively

similar to themig-2(mu28) single mutant (Figures 2J and 2K). The
Developmental Cell 31, 188–201
suppression of the random polarization

phenotype of cam-1 indicates that mig-2

functions downstream of cam-1. This

suppression could be related to a general

requirement of MIG-2 for protrusion for-

mation, but is also in agreement with our

model that the CAM-1 pathway may con-

trol the persistent polarization of QR.p by

regulating the activity of MIG-2. However,

we found that the QR.p migration defect

of the cam-1; mig-2(mu28) double mu-

tants was enhanced compared with the

single mutants (Figure S2B), indicating

that in addition to this potentially shared

function in QR.p polarization, CAM-1

and MIG-2 also have separate functions

in QR.p migration.

Taken together, these results support

our conclusion that the Wnt receptors

CAM-1/Ror2 and MOM-5/Frizzled func-

tion in parallel to control the long-range

anterior migration of QR.p. Furthermore,

our results demonstrate that CAM-1 and

MOM-5mediate distinct dynamic aspects

of the migration, with the CAM-1 pathway

regulating the persistent polarization of
QR.p and the MOM-5 pathway controlling migration indepen-

dently of polarity.

Termination of QR.pa Migration Requires Activation
of Canonical Wnt/b-catenin Signaling
The long-range anterior migration of the QR descendants ends

when QR.pa divides at a position between the seam cells V1.p

and V2.a (Figure 1A). To investigate how QR.pa is instructed to

stop at this specific position, we examined mutants in which

the QR descendants migrate beyond their wild-type positions.

Again using the final position of QR.paa and QR.pap as a proxy

for total migration distance, we found that the QR.pax overmi-

grate in mutants of the canonical b-catenin gene bar-1 (Fig-

ure 3A), as has been observed previously (Whangbo and

Kenyon, 1999). b-catenin is a central component of the canon-

ical Wnt/b-catenin pathway that binds to members of the TCF
, October 27, 2014 ª2014 Elsevier Inc. 193
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family of transcription factors to coactivate the expression of

Wnt target genes (Clevers and Nusse, 2012). We found that

mutation of the single C. elegans TCF ortholog pop-1 induces

a similar overmigration phenotype as bar-1. Furthermore, spe-

cific expression of dominant-negative N-terminally truncated

POP-1 (Korswagen et al., 2000) in the Q cell lineage induced

significant overmigration as well (Figure 3A), demonstrating

that pop-1 functions cell-autonomously in QR descendant

migration.

The overmigration observed in bar-1 and pop-1 mutants indi-

cates that activation of canonical Wnt/b-catenin signaling may

be required to stop migration of the QR descendants. To test

this possibility, we expressed constitutively active N-terminally

truncated BAR-1 using a HS inducible promoter (Gleason

et al., 2002) and asked whether early activation of Wnt/b-catenin

signaling prematurely terminates QR descendant migration. To

prevent activation of the posterior migration pathway that is

induced by Wnt/b-catenin signaling in the QL lineage, we per-

formed these experiments in animals carrying a null mutation in

the Wnt target gene mab-5 (Figure 3A) (Korswagen et al., 2000;

Maloof et al., 1999; Salser and Kenyon, 1992). Consistent with

our hypothesis, we found that a brief HS at the beginning of

the migration process leads to significant undermigration of

the QR.pax (Figure 3A). A similar result was obtained when we

constitutively activated Wnt/b-catenin signaling by introducing

a mutation in the negative regulator pry-1/Axin (Korswagen

et al., 2002).

To directly examine the effect of canonical Wnt/b-catenin

signaling on the long-range migration of QR.p and QR.pa, we

determined the position at which these cells end their migration

in wild-type and Wnt/b-catenin pathway mutants. In bar-1 mu-

tants, the position at which QR.p terminates its migration and di-

vides was not significantly different from wild-type (Figure 3B)

(p = 0.1, Fisher’s exact test). In contrast, there was significant

overmigration of QR.pa, with the majority of cells dividing at a

more anterior position than in wild-type animals (Figures 3C

and 3D). The opposite phenotype was observed when Wnt/

b-catenin signaling was constitutively activated by mutation of

pry-1, with both QR.p and QR.pa terminating their migration at

a more posterior position than in wild-type animals (Figures 3B

and 3C). The short-range anteroposterior migration of QR.paa

and QR.pap was not affected in bar-1 mutants (Figure S3). We

conclude that canonical Wnt/b-catenin signaling is necessary

and sufficient to inhibit the long-range anterior migration of the

QR descendants.

The specific effect of bar-1 on QR.pa migration indicates that

canonical Wnt/b-catenin signaling is activated at the end of the

long-range migration phase to terminate QR.pa migration. To

further investigate this model, we determined QR.p migration

speed and the final localization of the QR.pax in double mutants

between bar-1 and the QR.p migration mutant cwn-1. We found

that the speed of QR.p migration was similar as in the cwn-1

single mutant (Figure 5C). The final position of the QR.pax

was however intermediate to the overmigration induced by

bar-1 and the undermigration induced by cwn-1 (Figure 3A).

We conclude that long-range anterior migration (noncanonical

Wnt signaling) and termination of anterior migration (canonical

Wnt/b-catenin signaling) are separate and sequentially acting

processes.
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MIG-1/Frizzled Is Necessary and Sufficient for
Termination of QR.pa Migration and Is Strongly
Upregulated at the End of the Long-Range
Migration Phase
To investigate how QR.pa migration is regulated at the Wnt re-

ceptor level, we determined the position at which QR.pa divides

in Frizzled mutants. We found that there was extensive overmi-

gration of QR.pa in mig-1 and lin-17 mutants (Figure 3D). As in

bar-1 mutants, QR.p migration was not significantly affected

(Figure S2B), indicating that mig-1 and lin-17 are specifically

required for the canonical Wnt/b-catenin pathway-dependent

termination of QR.pa migration. This is in agreement with the

role of MIG-1 and LIN-17 in activation of canonical Wnt/b-cate-

nin signaling in the QL neuroblast lineage (Harris et al., 1996; Ji

et al., 2013; Maloof et al., 1999).

Consistent with a cell-autonomous function of mig-1 and

lin-17 in migration termination, we found that both receptors

are expressed in the QR.pa neuroblast (Figure 4A). However,

quantification of mig-1 and lin-17 smFISH spots revealed that

there are important differences in the temporal expression of

the two receptors during QR lineage progression. We found

that the expression of lin-17 is relatively constant (average of

9.3 ± 4.7 transcripts in QR, 4.5 ± 1.6 transcripts in QR.p and

4.0 ± 1.6 transcripts in QR.pa, n > 20) (Figure 4B; Figure S1D).

The expression of mig-1, on the other hand, is highly dynamic,

with an initial expression of 19 ± 8.1 transcripts in QR, an almost

complete loss of expression (1.2 ± 0.4) in QR.p and a striking 18-

fold upregulation of expression (21 ± 1.2) in QR.pa (n > 25) (Fig-

ure 4B; Figure S1D).

The upregulation ofmig-1 at the end of the long-range anterior

migration phase suggests that mig-1 may act as a switch that

turns on Wnt/b-catenin signaling to stop anterior migration. To

test this model, we asked which of the two phases of mig-1

expression is required for the correct positioning of the QR.pax.

We found that expression of mig-1 using the egl-17 promoter,

which recapitulates the early expression of mig-1 in QR (Fig-

ure 4C; Figure S1D), did not rescue the overmigration phenotype

of mig-1 mutants (Figure 4D). In contrast, the overmigration

phenotype was fully rescued when mig-1 was specifically ex-

pressed in QR.pa using the egl-46 promoter (Wu et al., 2001).

Next, we examined whether expression of mig-1 is sufficient

to stop anterior migration. To test this, we used the mom-5

promoter to express mig-1 during QR.p migration. Consistent

with our model, we found that such premature expression of

mig-1 resulted in significant undermigration of the QR.pax. We

conclude that the upregulation ofmig-1 expression is necessary

and sufficient to stop the anterior migration of QR.pa.

mig-1 Expression Is Activated through a
Q Lineage-Intrinsic Timing Mechanism
Next, we investigated how the expression ofmig-1 is induced in

QR.pa. One possibility is that positional cues, provided by local-

ized or graded signals, inducemig-1 expression at a specific po-

sition along the anteroposterior axis. An alternative possibility is

that mig-1 expression is regulated through a Q lineage-intrinsic

mechanism that turns on mig-1 expression at a specific time in

the migration process. To distinguish between these two possi-

bilities, we first asked whether posterior displacement of QR.p

and QR.pa interferes with mig-1 expression. In gof mutants of
ier Inc.
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Figure 4. Upregulation of mig-1/Frizzled Expression in QR.pa Is Necessary and Sufficient to Terminate QR.pa Migration

(A) smFISH analysis of endogenous mig-1, lin-17, vang-1, and prkl-1 mRNA in QR.p and QR.pa. Images of QR.p and QR.pa were taken in synchronized pop-

ulations grown for 5 to 6 and 7 to 8 hr after hatching, respectively. Nuclei are visualized with DAPI staining. Scale bar represents 5 mm.

(B)mig-1, lin-17, vang-1, and prkl-1 transcription dynamics in single QR.p (green) andQR.pa (red) neuroblast daughter cells asmeasured in wild-type animals (n >

55 for each mRNA species). The number of mRNA spots per cell is plotted against the cell position with respect to the seam cells H2 to V5.

(C) Schematic overview of mig-1 transcription dynamics in QR and its descendants during their migration in wild-type animals. Expression is initially high in QR

and then drops quickly during initial migration. In QR.p expression is low and rises sharply again in QR.pa. On top of the graph, the transcription dynamics of egl-

17, egl-46, and mom-5 are indicated.

(D) Average position of the QR descendants QR.pap and QR.paa with respect to the seam cells V1.a to V6.p (n > 50 for all genotypes). Statistical significance was

calculated using Fisher’s exact test (***p < 0.0001).
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mig-2, the anterior migration of QR.p is reduced (Ou and Vale,

2009), and the final position of QR.p and QR.pa is shifted about

two seam cell positions to the posterior. We found that despite

this difference in position along the anteroposterior axis, mig-1

expression is still activated at wild-type levels in QR.pa (Fig-

ure 5A). Next, we investigated whether anterior displacement

of the QR descendants influences mig-1 expression. QR.p and

QR.pa migrate beyond their normal positions when EGL-20 is

overexpressed using a heat-inducible promoter (Figures 5A

and 5B) (Whangbo and Kenyon, 1999). We found that when

QR.p andQR.pa are shifted toward the anterior,mig-1 is also ex-

pressed more anteriorly (Figure 5A). Taken together, these re-
Developm
sults demonstrate that the upregulation of mig-1 expression in

QR.pa is not induced by positional cues.

The second possibility is that mig-1 expression is regulated

through a Q lineage-intrinsic mechanism. We hypothesized

that mig-1 expression is induced by a timing mechanism that

either counts total migration time or is coupled to the cell cycle

of QR.p and QR.pa. In such a model, the position at which

mig-1 expression is induced and QR.pa migration is terminated

will depend on the overall speed of migration: when migration

speed is reduced, mig-1 will be expressed more posteriorly,

and when speed is increased, mig-1 will be expressed more

anteriorly. This model is supported by the observation that in
ental Cell 31, 188–201, October 27, 2014 ª2014 Elsevier Inc. 195
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mig-2(gof) mutants, which expressmig-1 at a more posterior po-

sition than in wild-type (Figure 5A), the speed of migration is

strongly reduced (Ou and Vale, 2009). Furthermore, we found

that overexpression of EGL-20, which leads to overmigration

of QR.pa and more anterior mig-1 expression, induces a signifi-

cant increase inmigration speed (Figure 5B). A similar correlation

between migration speed and QR.pa overmigration was ob-

served in the collagen mutant emb-9 (Figure 5B), which may

facilitate migration by providing a less dense extracellular matrix

(C. Kenyon, personal communication).

The speed of QR.p migration was not increased in mig-1, lin-

17, and bar-1 mutants (Figure 5C), which is consistent with our

model that canonical Wnt/b-catenin signaling is required for

termination of QR.pa migration and not for the anterior migration

process itself. On the basis of these results, we conclude that the

endpoint of QR.pa migration is defined by the combined regula-

tion of migration speed and the timing of mig-1 expression and

canonical Wnt/b-catenin pathway activation.

The Final Short-Range Migration of QR.pap and QR.paa
Is Dependent on the PCP Components VANG-1/Vangl
and PRKL-1/Pk
The last phase of QR descendant migration involves the short-

rangemigration of the QR.pa daughter cells QR.pap and QR.paa

(Figure 1A). Measurements of the final position of QR.pap and

QR.paa showed that QR.pap localizes slightly anterior to the po-

sition of QR.pa division, while QR.paa migrates a short distance

toward the posterior (Figures 6A and 6A0). In addition, QR.pap

moves to a specific dorsal position, where it differentiates into

the neuron SDQR, while QR.paa migrates ventrally and differen-

tiates into the neuron AVM (Figure 6C) (Hedgecock et al., 1987;

Sulston and Horvitz, 1977).

In a small-scale screen of noncanonical Wnt pathway compo-

nents (data not shown), we found that the average position of

QR.paa and QR.pap was shifted toward the anterior in mutants

of the PCP pathway components vang-1/Vangl and prkl-1/Pk

(Figure S4A). Both genes likely function in the same pathway,

as the QR.pax were similarly localized in vang-1; prkl-1 double

mutants. Detailed analysis of the final localization of the individ-

ual QR descendants in vang-1 and prkl-1 mutants showed that

the position of QR.pa division was not significantly different

from wild-type (p = 0.97 and 0.10, Fisher’s exact test, respec-

tively) (Figure 6B), indicating that vang-1 and prkl-1 do not affect

the canonical Wnt/b-catenin pathway dependent termination of

QR.pa migration. Instead, we found that vang-1 and prkl-1 are

required for the final positioning of QR.paa and (to a lesser

extent) of QR.pap (Figure 6B). Thus, in vang-1 and prkl-1 mu-

tants, the short-range posterior migration of QR.paa was absent,

with QR.paa either remaining at its starting position or moving
Figure 5. A QR Lineage-Intrinsic Mechanism Controls the Termination

(A)mig-1 transcription dynamics in single QR.p (green) and QR.pa (red) neuroblas

transgenic animals (heat-shocked for 1 min) (n > 30 for all genotypes). The numbe

seam cells H2 to V5. Dashed line indicates the position of seam cell V2.

(B) Left: Position of QR.pa division with respect to the seam cells V1.p to V2.a (n > 3

test (*p < 0.01, ***p < 0.0001). Right: The speed of QR.pmigrationwas calculated f

75 for all genotypes). Statistical significance was calculated using an unpaired t te

emb-9 mutants were shifted to the nonpermissive temperature of 25�C 9 to 10 h

(C) Speed of QR.p migration in wild-type and mutant animals (n > 75, except pry

Developm
slightly anterior (Figure 6A0 0). In the case of QR.pap, there was

a slight but significant anterior shift in the final position.

We found that vang-1 and prkl-1 are also required for the

dorsoventral positioning of QR.pap and QR.paa, with both cells

showing either reduced or even reversed migration along the

dorsoventral axis (Figure 6C). It has previously been shown

that the dorsoventral position of QR.pap is regulated by UNC-

6/netrin and the receptors UNC-5 and UNC-40/DCC (Kim

et al., 1999). We confirmed the requirement of unc-6 for the dor-

sal migration of QR.pap but found that the ventral migration of

QR.paa was also significantly affected in unc-6(e78) hypomor-

phic and unc-6(ev400) null mutants (Figure 6C; Figure S4C). In

double mutants between unc-6(ev400 or e78) and prkl-1, the

dorsoventral distribution of QR.pap and QR.paa was not sig-

nificantly different from unc-6 single mutants (p = 0.58 and

0.13, unpaired, two-tailed t test, respectively, for ev400). Com-

parable results were obtained with unc-6; vang-1 double mu-

tants. The absence of an enhanced dorsoventral migration

phenotype in double mutants of prkl-1 and vang-1 with unc-6

suggests that these genes may be part of a common genetic

pathway. This conclusion is supported by our observation that

the expression of the UNC-6 receptor unc-40 is not influenced

by loss of prkl-1 (Figure S4D).

To determine in which cells vang-1 and prkl-1 are expressed

during Q neuroblast migration, we performed smFISH analysis

in L1 larvae (Figures S4B and S4E). We found that vang-1 is ex-

pressed in both the QL and QR neuroblast lineages. In addition,

vang-1 mRNA was detected in hypodermal seam cells, the M

mesoblast cell, and in ventral nerve cord neurons. To investigate

whether vang-1 is required in the migrating QR descendants, we

tested whether Q cell lineage-specific expression of vang-1 res-

cues QR.paa and QR.pap migration in a vang-1 null mutant

background. Consistent with a cell-autonomous function of

vang-1, we found that expression of vang-1 in the Q cell lineage

was sufficient to rescue QR.pax migration (p < 0.0001, Fisher’s

exact test) (Figure S4A).

prkl-1 expression was observed in the Q neuroblast descen-

dants, the M mesoblast cell, and at low levels in ventral nerve

cord neurons and unidentified cells in the head region (Fig-

ure S4B). Consistent with the more prominent role of prkl-1 in

QR.paa migration, we found that prkl-1 is expressed at a signif-

icantly higher level in QR.paa than QR.pap (Figure 6D; Fig-

ure S4E). Interestingly, smFISH analysis revealed that the

expression of prkl-1 is dynamically regulated during QR descen-

dant migration. Thus, whereas vang-1 transcription remained

relatively constant throughout QR lineage progression, the

expression of prkl-1 was strongly upregulated at the end of the

long-range migration phase (Figure 4B). These results indicate

that, similar to the role of mig-1 in QR.pa migration termination,
of QR.pa Migration

t daughter cells as measured in wild-type,mig-2(gof) mutants and Phs::egl-20

r of mRNA spots per cell is plotted against the cell position with respect to the

0 for all genotypes). Statistical significance was calculated using Fisher’s exact

rom the average distance that QR.p covers in 1 hr after the start of migration (n >

st (*p < 0.01, ***p < 0.0001). EGL-20 expression was induced using a 1 min HS.

r prior to analysis.

-1; mab-5, n > 50) (*p < 0.01, ***p < 0.0001).
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Figure 6. The PCP Pathway Components vang-1/Vangl and prkl-1/Pk Control the Final Short-Range Migration of QR.pap and QR.paa

(A) Position of QR.pa, QR.pap, and QR.paa relative to the seam cells V1.p to V2.a in wild-type animals (n > 70 for all cell types). Statistical significance was

calculated using Fisher’s exact test (*p < 0.01, ***p < 0.0001).

(A0 and A0 0) Schematic representation of the short-range anteroposterior and dorsoventral migration of QR.paa and QR.pap in wild-type and vang-1 and prkl-1

mutants.

(B) Position of QR.pa, QR.pap, and QR.paa relative to the seam cells V1.p to V2.a in wild-type and mutant animals (n > 70 for all genotypes; *p < 0.01, ***p <

0.0001).

(C) Position of QR.pap and QR.paa on the dorsoventral axis (n > 70 for all genotypes). Midline is set at zero, and dashed lines indicate the average position of

QR.pap and QR.paa in wild-type. The histogram on the right displays percentile counts along the dorsoventral axis.

(D) prkl-1 and vang-1 transcription dynamics in single QR.pap (blue) and QR.paa (yellow) neuroblast daughter cells as measured in wild-type animals (n > 45 for

both cell types). The number of mRNA spots per cell is plotted against the relative distance between the two QR.pax cells with respect to the total width of the

dorsoventral axis, with a longer distance correlating to more advanced stages of dorsoventral migration.

See also Figure S4.
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upregulation of prkl-1 expression may mediate the transition to

the final short-range migration phase. In support of this model,

we found that early expression of prkl-1 in the QR lineage using

the egl-17 promoter did not rescue QR.pap and QR.paa migra-

tion in prkl-1 null mutants (p = 0.11, Fisher’s exact test), while

expression using the egl-46 promoter, which is expressed late

in the QR lineage, fully rescued the migration phenotype (p <

0.0001, Fisher’s exact test) (Figure S4A).

DISCUSSION

Wnt proteins play an evolutionarily conserved role in guiding

migrating cells and axons along the anteroposterior axis of the

developing nervous system. In C. elegans, the anterior migration
198 Developmental Cell 31, 188–201, October 27, 2014 ª2014 Elsev
of the QR neuroblast descendants requires the activity of multi-

ple Wnt ligands and receptors (Harterink et al., 2011; Kim and

Forrester, 2003; Zinovyeva and Forrester, 2005; Zinovyeva

et al., 2008). Here, we have investigated how the QR descen-

dants integrate this complex information to migrate to their pre-

cisely defined final positions. We found that the migration is

divided into three sequential steps, each of which is mediated

by a distinct Wnt signaling mechanism. Importantly, our results

show that the QR descendants switch between these signaling

mechanisms by temporally regulating the expression of Wnt

pathway components.

Wnt proteins form concentration gradients that can act as

attractive or repulsive guidance signals for migrating cells and

axons in the developing nervous system (Zou and Lyuksyutova,
ier Inc.
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2007). The Wnt ligands that are required for QR descendant

migration, EGL-20 and CWN-1, are expressed in the posterior

body region and are expected to form posterior-to-anterior con-

centration gradients, as has been shown for EGL-20 (Coudreuse

et al., 2006; Harterink et al., 2011; Pan et al., 2006; Whangbo and

Kenyon, 1999). However, we found that neither of the two Wnt

ligands provides positional information to the migrating QR de-

scendants, as uniform expression or even reversal of the EGL-

20 and CWN-1 concentration gradients is sufficient to restore

normal QR.pax positioning in their respective mutant back-

grounds. Furthermore, we found that the overmigration of the

QR descendants that is induced by overexpression of EGL-20

is a consequence of the dose-dependent effect of EGL-20 on

the speed of QR.p migration. The permissive role of EGL-20

and CWN-1 raises the question how the QR descendants are in-

structed to migrate toward the anterior. Previous studies have

shown that anterior migration of the QR descendants requires

the transmembrane protein MIG-13 (Masuda et al., 2012; Sym

et al., 1999). Recent evidence suggests that MIG-13 functions

cell-autonomously in the QR descendants to promote anterior

migration (Wang et al., 2013). On the basis of these observations

and the results presented in this study, we propose that the QR

descendants use MIG-13 to respond to an as yet unknown ante-

rior guidance signal, but require Wnt signaling for (1) persistent

polarization and motility, (2) termination of anterior migration,

and (3) switching to the final dorsoventral migration phase.

The first phase in the migration process is the MOM-5/Friz-

zled- and CAM-1/Ror2-dependent long-range anterior migration

of QR.p and QR.pa. Analysis of mutant combinations showed

that CAM-1 and MOM-5 act in parallel pathways that control

distinct aspects of the migration process. Using live-cell time-

lapse confocal imaging, we found that QR.p fails to persistently

polarize in cam-1mutants, whereas inmom-5mutants, QR.p re-

mains correctly polarized but migrates at a strongly reduced

speed. Interestingly, the phenotype of cam-1 is remarkably

similar to the defect in QL.ap polarity observed in gof mutants

of the Rac-like small guanosine triphosphatase (GTPase) mig-

2, whilemom-5 resembles mutants of the integrin alpha-subunit

ina-1 (Ou and Vale, 2009). Analysis of double mutants revealed

that the mom-5 pathway and ina-1 may function in parallel to

control QR.pmigration speed. The ectopic protrusion phenotype

of cam-1, however, was suppressed by loss ofmig-2, indicating

that CAM-1 may control QR.p polarity by regulating the activity

ofMIG-2. In vertebrates, Ror2 has been shown to regulate filopo-

dia formation (Schambony andWedlich, 2007) and to control the

polarity of migrating cells through reorientation of the microtu-

bule organizing center (Nishita et al., 2010; Nomachi et al.,

2008), but a direct link with Rac family GTPases has not been

made. The CAM-1 dependent polarization of QR.a and QR.p

therefore provides a valuable single cell assay to investigate

how Ror2 signaling controls cell polarity and filopodia formation.

The second step in QR descendant migration is termination of

the MOM-5 and CAM-1 dependent long-range anterior migra-

tion phase. We found that this requires activation of canonical

Wnt/b-catenin signaling in QR.pa. Canonical Wnt/b-catenin

signaling may terminate migration by directly inhibiting the

CAM-1- and MOM-5-dependent migration pathways but may

also stop migration by promoting division of QR.pa. Measure-

ments of migration speed in pry-1/Axin mutants showed that
Developm
constitutive activation of Wnt/b-catenin signaling induces a sig-

nificant reduction in QR.p migration speed (Figure 5C). This is in

agreement with a direct role of Wnt/b-catenin signaling in migra-

tion inhibition. Interestingly, QR.p was normally polarized in

pry-1mutants (Figure S2C), indicating that canonical Wnt/b-cat-

enin signaling reduces migration speed independently of QR.p

polarization.

The Frizzledmig-1 plays a pivotal role in defining the endpoint

of QR.pa migration. Quantification of mig-1 expression showed

that it is sharply upregulated in QR.pa, and transgenic rescue ex-

periments revealed that this induction of mig-1 expression is

necessary and sufficient for termination of migration. Impor-

tantly, we found that the expression of mig-1 is not induced by

positional cues from the extracellular environment. Instead, we

found that mig-1 expression is activated through a cell-intrinsic

timing mechanism. Consistent with this mechanism, we found

that the position along the anteroposterior axis at which QR.pa

expresses mig-1 is correlated with the speed of migration. An

interesting question is how mig-1 expression is activated at

such a specific time point in themigration process. One possibil-

ity is that the temporal regulation ofmig-1 expression is coupled

to the QR.p lineage, with division of QR.p triggering the expres-

sion ofmig-1 in QR.pa, but a lineage-independent time-keeping

mechanism may be involved as well.

The final phase in the migration process is the short-range

migration of QR.paa and QR.pap. We found that this anteropos-

terior and dorsoventral migration is dependent on the PCP

pathway components VANG-1/Vangl and PRKL-1/Pk. Similar

to mig-1, the expression of prkl-1 is temporally regulated, indi-

cating that the transition to this PCP related pathway may also

be mediated through a cell-intrinsic timing mechanism. Analysis

of dorsoventral migration in double mutant combinations of

vang-1 and prkl-1 with unc-6/Netrin showed that vang-1 and

prkl-1 may function in a common genetic pathway with the

unc-6 guidance signal. How PCP and UNC-6 Netrin signaling

are coordinated to control the final dorsoventral positioning of

QR.paa and QR.pap remains to be established.

Transcriptional regulation of guidance receptors and intracel-

lular signaling components is an important mechanism in spec-

ifying the complex trajectories of migrating cells and axons

(Derijck et al., 2010; Polleux et al., 2007; Su et al., 2000). The

expression of such guidance components can be induced by

extracellular signals, but our results show that cells can also

use cell-intrinsic mechanisms to express distinct Wnt pathway

components at specific time points in the migration process.

Such cell-intrinsic regulation of migration also appears to be

important in vertebrate nervous system development. During

brain development, retinal ganglion cell (RGC) axons migrate to-

ward the optic tectum. At a specific stage in their migration, the

RGC axons induce the expression of neuropilin-1, which enables

them to respond to semaphorin guidance cues (Derijck et al.,

2010). The time-dependent induction of neuropilin-1 expression

also occurs when RGCs are grown in vitro, indicating that the

temporal regulation of neuropilin-1 expression is a cell-autono-

mous process (Campbell et al., 2001). How neuropilin-1 is upre-

gulated at such a specific time point in RGC development is still

unknown. Our observation that QR descendant migration is

controlled through temporal regulation of Wnt responsiveness

provides a powerful paradigm to study cell-intrinsic timing
ental Cell 31, 188–201, October 27, 2014 ª2014 Elsevier Inc. 199
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mechanisms in a highly reproducible single cell migration

system.

EXPERIMENTAL PROCEDURES

Analysis of QR Descendant Migration

The final position of the QR descendants QR.paa and QR.pap was determined

using differential interference contrast (DIC) microscopy in late L1 larvae, as

described (Coudreuse et al., 2006). The position of QR.paa and QR.pap was

determined with respect to the seam cell daughters V1.a to V6.p. To provide

a more detailed measure of QR.paa and QR.pap migration distance, the posi-

tion was determined with respect to the V1.p and V2.a seam cell nuclei. The

relative position of QR.paa and QR.pap on the dorsoventral axis was deter-

mined by dividing the distance between QR.paa or QR.pap and the midline

(defined as themiddle of the V1.p nucleus) over the total dorsoventral distance

at this position. The position of QR.pa was determined in transgenic animals

expressing GFP in the Q cell lineage (transgenes ayIs9 and syIs90). The relative

position of QR.pa with respect to the V1.p and V2.a seam cell nuclei was deter-

mined by dividing the distance between V1.p and QR.pa over the total dis-

tance between V1.p and V2.a. The position of QR.p division was determined

relative to the seam cells V1 to V4. The speed of QR.pmigration wasmeasured

in synchronized larvae by determining the average distance ofmigration during

the first hour after QR division. A 2 hr time frame was chosen for egl-20, cam-1,

and mig-2(mu28) mutants to reliably score anterior migration distance.

Imaging

For static imaging, animals were mounted on 2% agarose pads containing

10 mM sodium azide. Confocal images were obtained using a Leica TCS

SPE confocal microscope. For imaging of QR.p polarity using the heIs63

marker, settings were 633 objective, 33 zoom, and 15% 488 nm (GFP) laser

power. For imaging of the plasmamembrane and actin localization in QR.p us-

ing the casIs49 marker, settings were 633 objective, 33 zoom, 20% 488 nm

(GFP) laser power, and 20% 532 nm (mCherry) laser power. Z-stacks were

made using a 0.5 mm step size. Image acquisition was performed using LASAF

software. A maximum projection was made of all slices in which the Q cell was

detected. DIC and epifluorescence images were obtained using a Zeiss Axio-

scope microscope equipped with a Zeiss Axiocam digital camera. Images

were analyzed using ImageJ version 1.43u software. For time-lapse imaging,

larvae synchronized at 5 to 6 hr after hatching were mounted in 0.5 ml of

0.1 mmdiameter polystyrene microspheres in aqueous suspension (Polyscien-

ces 00876 2.5%w/v aqueous suspension) onto a 10% agarose pad (Kim et al.,

2013). Animals were imaged using a PerkinElmer Ultraview Vox spinning disk

confocal microscope (633 objective, 13 zoom, and 4% 488 nm laser power).

Z-stacks (0.5 mm) were made every 2 min for a 2 hr duration. Image acquisition

was performed using Velocity software. Images were processed and movies

were created using Velocity and ImageJ software, respectively.

HS Experiments

HS experiments were performed as previously described (Middelkoop et al.,

2012) with the following changes: L1 larvae synchronized at 0 to 1 hr after

hatching were incubated at 33�C in a volume of 50 ml for the indicated length

of time.

Statistical Analysis

Statistical analysis of QR descendant position was performed using Fisher’s

exact test. A Monte Carlo approximation, iterated 10,000 times using SPSS

version 20, was used to estimate significance. Analysis of differences in

QR.p polarity variability was performed using Levene’s test for equal variance.

In all other cases, statistical analysis was examined using unpaired, two-tailed

Student’s t tests. Results were deemed significant at p < 0.05.

SUPPLEMENTAL INFORMATION
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