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Reconstructing lineage relationships between cells within a tissue or organism is a long-standing aim
in biology. Traditionally, lineage tracing has been achieved through the (genetic) labeling of a cell followed
by the tracking of its offspring. Currently, lineage trajectories can also be predicted using single-cell
transcriptomics. Although single-cell transcriptomics provides detailed phenotypic information, the
predicted lineage trajectories do not necessarily reflect genetic relationships. Recently, techniques
have been developed that unite these strategies. In this Review, we discuss transcriptome-based lineage
trajectory prediction algorithms, single-cell genetic lineage tracing, and the promising combination of
these techniques for stem cell and cancer research.
Understanding the lineage through which tissues and organisms

are formed is one of the fundamental questions in biology.

Identifying these relationships will provide invaluable information

not only on normal tissue development and homeostasis, but also

on developmental disorders and pathologies such as cancer.

Historically, lineage tracing is accomplished through the intro-

duction of a heritable mark in a cell, followed by the tracking of

its progeny. The different cell types that comprise the progeny

are developmentally related since all of these marked cells origi-

nate from the same founder cell. Furthermore, the variety of cell

types found in the progeny represents the potential of the founder

cell. In order to accurately predict the potential of the founder cell,

lineage tracing requires accurate cell-type identification. Ideally,

one would use as many markers as possible to achieve accurate

andprecise cell-type classification.However, cell-type identifica-

tion is usually based on a limited number of markers, thereby

potentially masking variability within a subpopulation of cells

that express the selected marker genes. This approach might

therefore give a biased view on organ complexity.

Recent advances in single-cell transcriptomics technologies

now allow transcriptome profiling of thousands of single cells,

giving unprecedented resolution in cell-type identification and

deepening our understanding of tissue complexity (Gr€un et al.,

2015; Haber et al., 2017; Jaitin et al., 2014; Klein et al., 2015;

Macosko et al., 2015; Zeisel et al., 2015). The power of single-

cell transcriptomics has led researchers to start large-scale

sequencing projects such as ‘‘The Human Cell Atlas’’ and ‘‘Fly

Cell Atlas,’’ endeavors aimed toward sequencing all cell types

present in the human body (Rozenblatt-Rosen et al., 2017)

and fruit fly, respectively. In addition, the NIH Brain Initiative (In-

sel et al., 2013) is funding projects aimed at sequencing all cell

types present in the human and rodent brain. In parallel, there

have been considerable advances in computational methods

aimed at performing lineage trajectory reconstruction based

on single-cell transcriptomics data (Cannoodt et al., 2016),

allowing researchers to sort the transcriptomes of single cells

according to their differentiation status. Since lineage recon-

struction based on single-cell transcriptomics is independent

from the true genetic relationship between cells, we reserve

the term ‘‘lineage tracing’’ for genetic lineage tracing and use
the term ‘‘differentiation trajectories’’ for transcriptome-derived

lineage predictions. However, new experimental techniques

that combine single-cell transcriptome sequencing with genetic

lineage labels provide information on the relationships between

cells for lineage reconstruction along with detailed phenotypic

information (Alemany et al., 2018; Frieda et al., 2017;

Raj et al., 2018; Spanjaard et al., 2018; Yao et al., 2017). This

integration of single-cell lineage tracing and transcriptomics

will be incredibly powerful, as it allows coarse lineage recon-

struction based on genetically heritable marks, followed by

refinement based on the transcriptome-derived differentiation

trajectories and the assessment of gene-expression changes

as a function of the developmental cell state (Figure 1).

In this review, we discuss some of the numerous strategies

used to predict differentiation trajectories based on single-cell

transcriptomics and highlight their applications in various biolog-

ical systems. Next, we discuss recent developments in prospec-

tive lineage tracing that entails the introduction of a heritable

mark and retrospective lineage tracing, which exploits naturally

occurring elements in the genome (Woodworth et al., 2017).

Finally, we discuss some recent studies that successfully

combine genetic lineage tracing with single-cell transcriptomics,

highlighting the power of integrating these two techniques.

Advances in Single-Cell mRNA Sequencing
Technologies
In the short time span since the first single-cell transcriptome

sequencing technique was published in 2009 (Tang et al.,

2009), an impressive amount of new techniques have become

available (Hashimshony et al., 2012, 2016; Islam et al., 2014;

Klein et al., 2015; Macosko et al., 2015; Muraro et al., 2016;

Picelli et al., 2013). While manual picking and processing of

each individual cell was initially required, now thousands to

tens of thousands of cells are processed in parallel using micro-

fluidic or robot-based approaches (Klein et al., 2015; Macosko

et al., 2015; Muraro et al., 2016). Two recently published tech-

niques completely eliminated the need for single-cell isolation

by using a pool and split strategy in which cells are first labeled

in multiple groups, followed by an iteration of pooling, splitting,

and labeling to ensure each single-cell obtains a unique set of
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Figure 1. Combination of Single-Cell Genetic Lineage Tracing and Single-Cell Transcriptomics
First a phylogenetic tree is constructed based on genetic labels identified in single cells. This tree can then be refined using transcriptomics-based lineage
reconstruction algorithms. Finally, gene-expression gradients can be projected onto the phylogenetic tree to identify gene-expression dynamics throughout the
system.
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labels (Cao et al., 2017; Rosenberg et al., 2018). A more detailed

overview of the available single-cell mRNA sequencing tech-

niques and their properties can be found in Haque et al. (2017)

and Papalexi and Satija (2018).

With the massive increase in throughput of single-cell

mRNA sequencing techniques, multidimensional data analysis

becomes increasingly important. Numerous algorithms have

been developed to cluster cells, extract significantly differentially

expressed genes between clusters of cells, identify outlier cells,

and allow visual representation of datasets in two dimensions.

These algorithms along with other important aspects of the

design and analysis of single-cell mRNA sequencing experi-

ments will not be discussed in depth but are reviewed in Gr€un

and van Oudenaarden (2015) and Yuan et al. (2017).

Differentiation Trajectory Reconstruction Algorithms
Single-cell transcriptomics allows one to investigate the tran-

scriptional state of thousands of individual single cells thereby

reliably capturing cell-type diversity in heterogeneous samples.

When applied to a developing or differentiating biological sys-

tem, many cells transition between different states. If sufficient

amounts of cells in these transition states are captured, differen-

tiation trajectories through which tissues are built or maintained

can be accurately predicted. These differentiation trajectories

can then be exploited to probe kinship among different cell types

and to identify genes essential for transitions along these trajec-

tories. However, the difficulty with single-cell transcriptomics

data lies in its inherent noisiness and dropout effects (lowly ex-

pressed genes are difficult to detect due to technical limitations).

Over the last few years, an impressive amount of computational

methods have been developed to place cells on differentiation

trajectories. Most of these methods rely on the assumption

that cells with similar expression profiles arise from the same

lineage and that cells with more similarity between their expres-

sion profiles are closely related. Here, we will discuss some of

those algorithms and the biological systems they have been

applied to.
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Dimensionality Reduction-Based Algorithms

The majority of the differentiation trajectory reconstruction

methods rely on some form of dimensionality reduction. One of

the first and commonly applied algorithms, Monocle (Trapnell

et al., 2014), uses independent-component analysis (ICA) to

project all cells in a low dimensional space (usually 2 dimensions)

(Figure 2A). This is followed by Minimum Spanning Tree (MST)

construction and the definition of a backbone connecting the

most and least differentiated cells. All remaining cells are then

projected on the backbone, resulting in a 1-dimensional ordering

of all cells. This dimension is termed pseudotime, which repre-

sents the predicted lineage trajectory of the studied sample. In

Monocle, the pseudotime ordering of the cells is not directional,

meaning that high pseudotime could either mean most or least

differentiated cells; however, users can define a root cell giving

the MST a starting point. Monocle was originally used to recon-

struct the differentiation trajectory of developing human skeletal

muscle myoblasts. One limitation of Monocle is its inability to

allow for bifurcations in the lineage prediction, so only linear

differentiation systems can be analyzed. This issue has been

resolved in the second edition, Monocle2 (Qiu et al., 2017).

Monocle2 builds the lineage tree in a higher dimensional space,

retainingmore data for highly intricate differentiation trajectories.

Since their publication, Monocle and Monocle2 have been used

in numerous studies to predict differentiation trajectories of

many developing or differentiating systems. Among these are

studies that unravel the lineage trajectories of several types of

neurons (Bardy et al., 2016; Camp et al., 2015; Dulken et al.,

2017; Hanchate et al., 2015; Lacar et al., 2016; Lisi et al., 2017;

Marques et al., 2016; Treutlein et al., 2016), progenitors and

stem cells of the hematopoietic system (Mass et al., 2016; Qiu

et al., 2017; Stubbington et al., 2016; Tang et al., 2017), the

placenta (Tsang et al., 2017), and hair follicles (Joost et al., 2016).

Several other algorithms, including SLICE (Guo et al., 2017),

TSCAN (Ji and Ji, 2016), Waterfall (Shin et al., 2015), SCUBA

(Marco et al., 2014), and Slingshot (Street et al., 2017), employ

a similar strategy as Monocle by first reducing dimensionality of
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the data through principal-component analysis (PCA), ICA, or

t-stochastic neighbor embedding (tSNE) and then constructing

a MST or fitting a smooth curve and finally projecting single cells

on the pseudotime axis (Figure 2A). MST construction in SLICE,

TSCAN, and Waterfall is less sensitive to outliers since these al-

gorithms use predefined clusters of cells rather than single cells.

SLICE uses transcriptome entropy as a measure for differentia-

tion in order to identify the least differentiated cells in the popula-

tion and thereby creates a pseudotime starting point. The appli-

cation of TSCAN to a single-cell dataset containing primitive

hematopoiesis cells revealed the importance of the HOPX tran-

scription factor for blood formation (Palpant et al., 2017). SCUBA

reduces dimensionality of the data using tSNE followed by the

fitting of a smooth curve. SCUBAhasbeen used to identify a pop-

ulation of cells in transition between Lgr5+ stem cells and more

mature cells in the mouse small intestine. On top of that, SCUBA

identified a set of key genes that change expression during this

transition (Kim et al., 2016). In contrast to SLICE, SCUBA, and

TSCAN, Slingshot takes any form of dimensional reduction, con-

structs a MST, and then further refines this tree by fitting smooth

curves through all of the major MST branches. Single cells are

then projected onto their closest curve resulting in ordered line-

age trajectories with bifurcations. Slingshot has recently been

used to predict the cell-fate potentials and branch points in the

lineage trajectories of olfactory stem cells (Fletcher et al., 2017).

Nearest Neighbor Graph-Based Algorithms

Another class of differentiation trajectory reconstruction

algorithms is based on k-nearest neighbor graphs (k-NNGs). In

k-NNGs, each cell is connected to its k nearest neighbors,

thereby linking similar cells to each other. The first algorithmusing

k-NNGs was Wanderlust (Bendall et al., 2014), which represents

cells as nodes in a collection of k-NNGs, each comprising a sub-

set of the total population of cells (Figure 2B). A user-defined root

cell is used to generate a collection of shortest walks from the

root cell to all the other cells in each of the graphs. This process

results in numerous possible differentiation trajectories, which

are then averaged to select the most probable one. Similar to

Monocle,Wanderlust only enables the study of linear trajectories,

while its successor, Wishbone (Setty et al., 2016) allows

bifurcations, expanding the repertoire of complex differentiation

trajectories that can be studied (Figure 2B). Both Wanderlust

and Wishbone were originally designed for Cytometry by Time

Of Flight (CyTOF) data, but Wishbone has been adapted so it

can be used with single-cell transcriptomics data. Wanderlust
Figure 2. Overview of Lineage Reconstruction Algorithms
(A) Lineage reconstruction algorithms based on dimensional reduction. Monoc
minimum spanning tree (MST) connecting all cells. Connecting the two cells furth
by the user through the identification of a root cell. Large side branches are exclu
constructs a MST of cluster centers, and directionality is inferred from transcrip
centers. TSCAN and Waterfall also constructs a MST based on the cluster cent
pseudotime. SCUBA uses tSNE for dimensionality reduction followed by the fitti
them in pseudotime. Monocle, TSCAN, Waterfall, and SCUBA all require user inp
(B) Lineage reconstruction algorithms based on NNGs. BothWanderlust andWish
user-defined root cell to all other cells in the graph, is then used to construct the lin
in the lineage trajectory.
(C) Lineage reconstruction algorithms based on cluster networks. Both StemID a
Single cells are then projected on the edges between the clusters, and underrepr
cell population based on transcriptome entropy. The Furchgottmethod infers the in
by tree construction based on the triplet relations.
(D) Graphical representation of RNA velocity. Current and future state of the cell a
current and future state determines the direction and speed of differentiation. No
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and Wishbone were developed to order cells along a develop-

mental axis; however, there are other uses for k-NNGs in sin-

gle-cell transcriptomics.Markov Affinity-basedGraph Imputation

of Cells (MAGIC), for instance, locally diffuses gene-expression

values in the NNG, thereby smoothening gene expression across

highly similar cells (van Dijk et al., 2017). This reduces the dropout

effects often observed for lowly expressed genes.

Other graph-based algorithms include approximate graph

abstraction (AGA) (Wolf et al., 2017) and population balance

analysis (PBA) (Weinreb et al., 2018). AGA averages single cells

on the NNG into clusters before constructing the differentiation

tree and should therefore be less sensitive to outliers. PBA

approximates the velocity of cell differentiation based on the

local density of cells on the NNG. PBA also provides fate proba-

bilities, predicting the direction of differentiation for the less

differentiated cells.

Other Lineage Reconstruction Algorithms

StemID (Gr€un et al., 2016) andMpath (Chen et al., 2016) belong to

a third category of differentiation trajectory reconstruction algo-

rithms and start by creating clusters of cells using k-medoid or hi-

erarchical clustering, respectively (Figure 2C). All cluster centers

are connected in a high dimensional space, creating a transition

network. Single cells are then projected on the edges between

the cluster centers, thereby populating the edges. Underpopu-

lated edges are removed, resulting in a lineage trajectory

network. StemID then identifies a stem cell population from the

transcriptome entropy of each cell cluster, thereby providing a

root for the network. StemID has been used to identify a potential

stem cell population in the human pancreas (Gr€un et al., 2016).

Another approach, first developed for bulk mRNA sequencing

by Hein€aniemi et al. (2013), but later implemented for single-cell

mRNA sequencing by Furchtgott et al. (2017), starts with the

identification of cell clusters. Each triplet of clusters is then

screened for differentially expressed transcription factors, which

are subsequently used to infer whether the cell clusters in the

triplet are related, and if so, to identify the intermediate cluster.

This is done iteratively for all triplets of clusters followed by the

construction of a lineage tree based on the relations between

all triplets. This approach is useful for datasets with highly

diverse systems containing many cell types, although in the cur-

rent implementation, single cells are not projected back on the

lineage tree. This approach has been used to infer the differenti-

ation trees of hematopoietic cells (Furchtgott et al., 2017) and of

an in vitro neural differentiation system (Yao et al., 2017).
le uses independent-component analysis, followed by the construction of a
est away from each other identifies a backbone. Directionality can be provided
ded, and remaining cells are projected onto the pseudotime backbone. SLICE
tome entropy. Single cells are projected on the edges connecting the cluster
ers, followed by projection of the single cells onto the edges to align cells in
ng of a smooth curve. Single cells are projected on the smooth curve to order
ut to infer directionality.
bone start with the construction of a NNG. A collection of shortest walks, from a
eage trajectory.Wishbone has the added benefit that it can identify bifurcations

nd Mpath start by connecting all cluster centers in a high dimensional space.
esented edges are removed from the graph. StemID identifies a potential stem
termediate cluster (if possible) from each triplet of clusters in the data, followed

re computed based on exon and intron data, respectively. Difference between
user input is required to infer these parameters.
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A recent and fundamentally different view on differentiation

trajectory reconstruction was presented in La Manno et al.

(2017). In this algorithm, named RNA velocity, transcripts only

containing exons are selected to represent the current state of

the cell. The fraction of unspliced transcripts across all genes

defines an RNA velocity vector, pointing toward the future state

of the cell. Both the current state and the future state can then be

projected into a 2-dimensional space, showing the direction and

the speed of differentiation (Figure 2D). The authors use this

approach to show differentiation trajectories of astrocytes,

oligodendrocyte precursors, dentate gyrus granule neurons,

and pyramidal neurons in the developing mouse hippocampus.

Furthermore, directionality from the RNA velocity vector has

allowed for the identification of glia cells as the root of the differ-

entiation trajectory, which confirms the current view on hippo-

campus development (Gebara et al., 2016).

Besides these algorithms, many publications present their

own differentiation trajectory reconstruction algorithms due to

unsatisfactory performance of previous strategies. This raises

the question about whether the robustness of each differentia-

tion trajectory reconstruction algorithm depends on the biolog-

ical system of interest or technical differences, such as the

experimental protocols.

Reconstructing differentiation trajectories from single-cell

transcriptomics data heavily relies on sufficient sampling of cells

that transition between the different states in the lineage trajec-

tory. In the scenario of little or no cell differentiation, predictions

on lineage relations become incredibly challenging. This will be

particularly problematic in pathologies, such as cancer, where

tumors often have multiple transcriptionally distinct populations

of cells (Brady et al., 2017; Chung et al., 2017; Patel et al., 2014;

Tirosh et al., 2016a, 2016b), and transitioning cells connecting

these populations are frequently absent. Finally, and most

importantly, differentiation trajectories based on single-cell

transcriptomics are purely phenotypic: they do not necessarily

reflect the genetic relations between the true lineages of

the cells.

Single-Cell Genetic Lineage Tracing
Reconstructing lineage relationships between cells in devel-

oping tissues or organisms, or between stem cells and their

mature progeny, has been a long-standing interest in biology.

Lineage tracing was initially performed through the visual

tracking of cells over time (Deppe et al., 1978), utilizing several

strategies: the creation of chimeric embryos (Mintz, 1967), the

engraftment of cells from one species to another (Le Douarin

and Teillet, 1973), and the injection of dyes into a single

founder cell (Lawson et al., 1986; Pedersen et al., 1986). The

development of fluorescent-activated cell sorting (FACS) al-

lowed isolation of single cells and the transplantation of these

single cells to assess their potential. This has been at the basis

of studies on hematopoietic stem cells (Osawa et al., 1996)

and cancer initiation (Quintana et al., 2008). In recent years,

lineage tracing is mainly performed through tracking of genetic

features, either introduced experimentally or intrinsic to the

system, termed prospective and retrospective lineage tracing,

respectively. Prospective lineage tracing relies on the introduc-

tion of reporter transgenes, such as b-galactosidase or GFP

(Frank and Sanes, 1991; Turner and Cepko, 1987). Transgenes
integrate into the genome through viruses, with the goal of

labeling single founder cells. All descendants of the founder

cell inherit the transgenes. Since the transgenes encode a

protein easily visualized using microscopy, the clone and the

cell-fate choices made by the descendants of the founder

cell become traceable. Another frequently used strategy is

MARCM in Drosophila (Lee and Luo, 1999) or MADM in mice

(Zong et al., 2005), where a fluorescent protein is expressed

in a few founder cells upon induction of a recombinase that

either removes an inhibiting factor or repairs a deprecated

fluorescent protein. All descendants of the founder cells are

labeled, allowing lineage tracing and fate determination of their

progenies. However, this strategy only detects clones sparsely

distributed across a sample, otherwise distinguishing clones

from one another become impossible.

Viral Barcoding-Based Lineage Tracing

To overcome the limitations associated with imaging-based

lineage tracing, viral strategies have been extended to include

cell-specific DNA barcodes. The DNA barcodes usually consist

of a stretch of random nucleotides, providing almost limitless

complexity (Lu et al., 2011). Each founder cell contains a unique

DNA barcode, meaning that cells with different barcodes origi-

nated from different founder cells even if they occur in close

proximity. The DNA barcodes can be identified through (next-

generation) sequencing, allowing the identification of the clones

and the assessment of the clonal complexity of the studied sys-

tem (Figure 3A).

The viral barcoding approach has been used extensively over

the last few years to perform lineage tracing in a wide variety of

tissues. In the hematopoietic system, viral barcoding has delin-

eated how HSPCs differentiate into the wide variety of mature

cells that comprise the blood (Gerlach et al., 2013; Gerrits

et al., 2010; Lu et al., 2011; Naik et al., 2013; Rodriguez-Fraticelli

et al., 2018; Schepers et al., 2008; van Heijst et al., 2009;

Verovskaya et al., 2013). Viral barcoding has also successfully

elucidated aspects of cancer biology. The landmark paper Eirew

et al. (2015) demonstrates with viral barcoding that clonal selec-

tion upon xenograft transplantation is highly variable from tumor

to tumor. Tumors that experiencemoderate initial selection upon

xenotransplantation have long-lasting clonal dynamics during

serial xenotransplantations. Furthermore, they show that clonal

dynamics patterns are reproducible when performing parallel

xenotransplantations from the same tumor. A second publica-

tion had established that the number of cells with tumor initiating

capacity varies from 1 in 10 to 1 in 10,000 cells upon xenotrans-

plantation (Nguyen et al., 2014). Viral barcoding strategies have

also been employed to study drug resistance in in vitromodels of

cancer (Bhang et al., 2015).

Cre-Lox-Based Lineage Tracing

The use of fluorescent proteins for lineage tracing has immensely

expanded with the introduction of color switching techniques

such as Brainbow and its successors (Weissman and Pan,

2015). These techniques rely on a Cre-Lox system, which,

upon activation, marks a founder cell with a single or an assort-

ment of fluorescent proteins. The advantage of this approach

over viral labeling is that cell labeling can be induced at any point

in time and in a wide variety of tissues. These techniques are

frequently implemented in model organisms to study the

dynamics of tissue development and tissue maintenance and
Cell Stem Cell 23, August 2, 2018 5
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Figure 3. Overview of Genetic Lineage Tracing Strategies
(A) Lineage tracing through viral barcoding can be performed in a wide variety of model systems, among which are cultured cells andmice. Cells are infected with
a virus library containing many different barcodes. After a period of time, cells are harvested, genomic DNA is isolated, and barcodes are sequenced. Clones can
be identified through the barcode sequence. Clonal expansion of initially labeled cells can be assessed. When phenotypic information is acquired (shape), it is
possible to determine the fate of the initially labeled cells.
(B) The Polylox mouse model was created by the introduction of a set of barcodes interspersed with loxP sites. Upon activation of the Cre recombinase, the
Polylox cassette recombines, thereby producing unique cellular barcodes via a combination of losses and inversions of single barcodes. After a period of time,
cells are harvested, genomic DNA is isolated, and barcodes are sequenced. Clone identification is done through the assessment of the combination of losses and
inversions of barcodes. Clonal expansion of initially labeled cells can be assessed. When phenotypic information is acquired (shape), it is possible to determine
the fate of the initially labeled cells.
(C) Lineage tracing using CRISPR-Cas9 can be done in cultured cells and zebrafish. Introduction of CRISPR-Cas9 and gRNA into the cells results in the scarring
of the target sequence during a given timewindow. After a period of time cells are harvested, genomic DNA is isolated, and scars are sequenced. The combination
of scars in each cell produces a unique barcode, and the construction of multi-level phylogenetic trees is possible since scarring takes place over a long period of
time and a portion of the scars will be shared between clones.
(D) Tracking of somatic mutations can be performed in any model organism. Somatic mutations arise spontaneously and accumulate over time, thereby marking
single cells and all their progeny. Clones can be identified through whole-genome or targeted sequencing. Construction of multi-level phylogenetic trees is
possible since mutations arise over a long period of time.
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the initiation and progression of cancer. However, the maximum

number of traceable unique clones with this system is �50-100,

depending on the technique and microscopy setup. Given the

relatively limited number of fluorescent proteins, the number of

clones that can be traced simultaneously is unlikely to increase

dramatically. In a recently published technique, the fluorescent

proteins have been replaced by DNA barcodes, using the flexi-

bility of induction of the Cre-Lox system, but dramatically

increasing the maximum number of clones that can be traced
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in parallel (Figure 3B) (Pei et al., 2017). In this work, a mouse

model was created harboring an array of barcodes interspersed

by LoxP sites (Polylox cassette). Recombination with the Cre

recombinase results in the deletion or inversion of some barco-

des, thereby introducing a cell-specific genetic label. Theoretical

diversity of barcodes achieved through this recombination is

greater than 106. Since this mouse model is easily bred with all

sorts of tissue-specific and inducible Cre mouse models,

researchers can induce labeling of thousands of unique clones
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in a tissue and time-specific manner. Similarly to viral barcoding,

the induction of the Polylox rearrangement can occur only once,

therefore hindering the construction of multi-level phylogenetic

trees based on these techniques.

CRISPR-Cas9 Genome Editing-Based Lineage Tracing

Another recently developed method for prospective lineage

tracing uses CRISPR-Cas9-directed genome editing. Targeting

of the Cas9 nuclease to a specific locus often results in the intro-

duction of small insertions or deletions (indels) (Jao et al., 2013;

Varshney et al., 2015). All the descendants of the founder cell

inherit these indels, which therefore act as traceable elements.

This approach has been used in zebrafish, in which 1-cell em-

bryoswere injectedwith CRISPR-Cas9 and guide RNAs (gRNAs)

targeting previously introduced transgenes (Junker et al., 2017;

McKenna et al., 2016). After injection of Cas9 mRNA into the

yolk of the one cell embryo, scarring occurs for a period of

12 hr (Alemany et al., 2018), creating complex scarring patterns

in many cells. This work aimed to study the lineage contribution

of early embryonic cells to adult zebrafish organs, revealing that

most organs derive from relatively few progenitors (Figure 3C)

(Junker et al., 2017; McKenna et al., 2016). Since scarring tran-

spires over the course of several hours, complexmulti-level trees

can be built. Themultiple rounds of scarring increase the amount

of information used for phylogenetic tree construction. Although

scars created through CRISPR-Cas9 are highly complex, there

exists a limited number of scars. This led researchers to the

idea of designing a CRISPR-Cas9 system that targets its own

gRNA sequence (Kalhor et al., 2017; Perli et al., 2016). This hom-

ing CRISPR barcode increases the complexity by several orders

of magnitude as scarring occurs over a longer period of time.

Using this self-targeting form of CRISPR-Cas9, a mouse model

has been created to study clonal dynamics during early mouse

development (Kalhor et al., 2018). Another technique, named

CRISPR-UMI, combines the CRISPR-Cas9 approach with

cellular barcoding in cell culture, which not only allows lineage

tracing, but also creates mutations in a specific set of targeted

genes. This enables researchers to study the effect of gene

knockouts at a single-cell level and distinguishes between

frequently occurring mutations with minor effects compared to

infrequently occurring mutations with significant effects (Michlits

et al., 2017).

Retrospective Lineage Tracing
All prospective lineage-tracing techniques require the introduc-

tion of exogenous material into the cells. Such techniques are

impossible to implement in a completely wild-type setting,

such as in human tissues. Furthermore, prospective lineage

tracing can only start after the introduction of the genetic labels.

These limitations of prospective lineage tracing can be over-

come by using naturally occurring mutations (such as somatic

mutations or copy number variations [CNVs]) or other inheritable

elements that accumulate over time, eliminating the need for re-

searchers to actively induce labeling. The significant advances in

next-generation sequencing technologies can now harness

naturally occurring mutations to perform lineage tracing. Similar

to genetic barcodes or CRISPR-Cas9-induced scars, spontane-

ously occurring somatic mutations or CNVs are inherited by all

the progeny of the mutated cell. Furthermore, the amount of

mutations increases over time, providing an additional layer of
information to the data (Figure 3D). However, naturally occurring

mutations generally arise in low frequencies, thereby requiring

high coverage sequencing data, especially for less frequent

clones (Nik-Zainal et al., 2012).

Retrospective Lineage Tracing through CNVs

The most readily accessible genetic elements to use for single-

cell retrospective lineage tracing are CNV. This is primarily due

to the fact that relatively shallow sequencing data can easily

identify CNVs (<13), given that there is equal coverage across

the genome with minimal amplification biases. Although CNVs

are relatively uncommon in healthy tissue, several studies

show the presence of CNVs in skin and brain (Cai et al., 2014;

Knouse et al., 2016; Knouse et al., 2014; McConnell et al.,

2013). Most CNVs found in these studies were unique to a single

cell, although small clones of cells sharing CNVs were present,

suggesting that these CNVs appeared during development of

the tissue. Nevertheless, the low frequency of CNVs found in

healthy somatic tissue does not allow for the construction of a

phylogenetic tree that accurately represents tissue develop-

ment. In contrast to healthy tissue, CNVs are often abundant in

cancer and change dramatically during tumor progression,

which makes an ideal system for lineage tracing purposes

(Demeulemeester et al., 2016; Gawad et al., 2014; Navin et al.,

2011; Wang et al., 2014).

Using single-cell DNA sequencing of CNVs, Navin et al.

showed the presence of several genetically distinct clones in

breast tumors, which probably arose during consecutive waves

of clonal expansion (Navin et al., 2011; Wang et al., 2014). In

these studies, enough CNVs were identified to allow accurate

reconstruction of phylogenetic trees. A subsequent study from

the Navin group incorporated a spatial component to single-

cell whole-genome sequencing (scWGS) (Casasent et al.,

2018). Here, using laser microdissection, the authors showed

distinct CNV profiles between ductal carcinoma in situ (DCIS)

and invasive ductal carcinoma (IDC), indicating genomic evolu-

tion precedes acquisition of invasive properties. In tumors with

multiple IDC lesions, cells harboring the same set of CNVs

were generally not spatially restricted, confirming the migratory

nature of IDC cells.

Retrospective Lineage Tracing through SNV, Indels, and

Repeat Regions

Another class of genetic elements typically used to perform line-

age tracing include single-nucleotide variants (SNVs) and small

indels. Both frequently exist in non-coding regions of the

genome, exerting little to no effect on the function of the cell.

Since SNVs are faithfully copied during DNA replication, SNVs

have been successfully used for the reconstruction of phyloge-

netic trees of tumors from bulk DNA (Abbosh et al., 2017; Gao

et al., 2016; Ju et al., 2017; Martincorena et al., 2015; Navin

et al., 2010). In recent years, several studies have detected

SNVs by scWGS or single-cell whole-exome sequencing

(scWES) (Hou et al., 2012; Lodato et al., 2015; Wang et al.,

2014; Xu et al., 2012; Zafar et al., 2016). The difficulty with using

scWGS or scWES for lineage tracing lies in the sparse distribu-

tion of SNVs throughout the genome, which renders a substan-

tial portion of the generated data unusable for lineage tracing

due to the absence of SNVs. Furthermore, confident detection

of SNVs is hampered by whole-genome amplification methods,

which are error prone and fail to provide equal coverage across
Cell Stem Cell 23, August 2, 2018 7
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the genome (Gawad et al., 2016). Despite these difficulties,

there are several examples where researchers managed to

construct phylogenetic trees based on scWGS or scWES data

from single cells (Ross and Markowetz, 2016; Xu et al., 2012).

Additionally, the SNV detection problems can be circumvented

by targeted sequencing on a predefined set of genomic loci that

potentially harbor somatic mutations. With this approach, more

single cells can be processed for the same cost as scWGS or

scWES techniques, since the amount of data with extraneous

information is drastically reduced. This approach has been

used to reconstruct lineages from mature neurons (Lodato

et al., 2015) and metastatic colorectal carcinoma (Leung

et al., 2017).

Besides CNVs and SNVs, retrotransposon elements, such as

LINE1 elements, and microsatellite repeats have also been

used to perform lineage tracing. Up to 17% of the human

genome consists of LINE1 elements, where most are stably inte-

grated in the genome and a small, mobile fraction can jump from

its original locus to a new one (Muotri et al., 2005; Ostertag and

Kazazian, 2001). Attempts to trace the lineage of these LINE el-

ements have been unsuccessful, as studies in neurons estimate

the frequency of these events to be less than 1 event per cell

(Evrony et al., 2015). Microsatellite regions are repeats of small

DNA elements that can either grow or shrink in size due to

DNA polymerase slippage during DNA replication. A number of

studies have exploited the variation in the size of each of these

microsatellite repeats as a heritable mark for lineage tracing

(Frumkin et al., 2005; Reizel et al., 2011; Reizel et al., 2012;

Salipante and Horwitz, 2006). A major benefit of using microsat-

ellite repeats for lineage tracing is their well-defined positions

along the genome, alleviating the need for expensive techniques

such as scWGS or scWES.

Retrospective Lineage Tracing through

Epigenetic Marks

Growing evidence for the use of epigenetic elements, such as

DNA methylation and DNA hydroxymethylation as a marker for

lineage tracing, has accumulated in recent years. DNA methyl-

ation is a chemical modification that mostly occurs on CpG dinu-

cleotides in the genome; CpGmethylation is faithfully maintained

during cell division. DNAmethylation has been established as an

important regulator of gene expressionwith dramatic differences

between different tissues (Smith and Meissner, 2013). There is

evidence that DNA methylation patterns can change slowly

over time, in a fashion that might be unrelated to cell function

(Jones et al., 2015). Therefore, such genomic regions are well

suited for lineage tracing studies.

Another epigenetic mark that could have potential for lineage

tracing is DNA hydroxymethylation. After DNA replication,

hydroxymethylation is not copied onto the newly synthesized

strand. Subsequently, one daughter cell inherits the old highly

hydroxymethylated strand, while the other daughter cell inherits

the new lowly hydroxymethylated strand. In a recent study,

Mooijman et al. (2016) have shown that strand bias, the amount

of hydroxymethylation on the positive strand of the DNA divided

by the total amount of hydroxymethylation, can be used as a

marker for lineage tracing in early mouse embryos. They found

that strand bias patterns were faithfully mirrored in sister cells,

which can be explained by the slow conversion of 5-methylcyto-

sine into 5-hydroxymethylcytosine.
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Combinatorial Techniques for Transcriptomics and
Lineage Tracing
All of the above methods for genetic lineage tracing have pro-

vided invaluable new information on the development of tissue

in health and disease. However, the main focus of these tech-

niques is the genotypic relation of cells to each other. In other

words, these methods address the question of whether cells

originate from the same ancestor but lack any information on

the phenotypic state of the cell. Some of the techniquesmeasure

a few markers that reveal the phenotypic state of the cell; how-

ever, this cannot rival the richness of information acquired

through single-cell transcriptomics. Ideally one would measure

both the genotypic and phenotypic state of the cell by combining

the techniques described above. This will allow for refinement of

the phylogenetic trees based on genetic labels by incorporation

of differentiation trajectories acquired through transcriptomics.

Furthermore, this will provide a detailed insight of transcriptional

changes that occur as cells move along the branches of the

phylogenetic trees (Figure 1). In the last two years, a handful of

studies have been published that combine lineage tracing with

single-cell transcriptomics. These studies serve as an example

of the power achieved by the convergence between single-cell

transcriptomics and single-cell lineage tracing techniques.

Short-Term Lineage Tracing and Transcriptomics to

Assess Cell-State Transitions

The first two examples of these combinatorial studies use imag-

ing to perform lineage tracing and obtain phenotypic information

from either single-cell mRNA sequencing or single-molecule

fluorescent in situ hybridization (smFISH) (Hormoz et al., 2016;

Kimmerling et al., 2016). In the first of these studies, the authors

were able to assess the embryonic stem cell (ESC) state and

quantify cell-state transitions between different ESC states

(Hormoz et al., 2016). In the second study, the biggest

determinant of transcriptome heterogeneity was the amount of

time since the last cell division rather than the lineage relation

between cells (Kimmerling et al., 2016). This suggests that, at

least on a short timescale, cell intrinsic processes, such as cell

division, confound the influence of genotypic relations on the

transcriptome level.

Memory by engineered mutagenesis with optical in situ

readout (MEMOIR) is another technique that combines the po-

wer of genetic lineage tracing with the acquisition of phenotypic

information (Frieda et al., 2017). Here, a collection of transgenes

that consist of multiple gRNA target sequences is integrated into

the genome. These transgenes are expressed in cells and can

be visualized using seqFISH, a high throughput adaptation of

smFISH (Lubeck et al., 2014; Shah et al., 2016). Upon the

expression of a collection of gRNAs targeting each of the trans-

genes, some of the transgenes will collapse and therefore can no

longer be identified through seqFISH. However, therewill be cell-

to-cell variability in which target sequences collapse. Therefore

the combination of collapsed and uncollapsed gRNA sequences

in each single cell acts as a heritable barcode, which can be used

for lineage tracing. MEMOIR can be combined with seqFISH for

the detection of regular RNA molecules, allowing the acquisition

of phenotypic information. The advantage of MEMOIR is that

readout of the lineage and the transcriptome occurs in situ,

which maintains the spatial relation of cells, thereby adding

another dimension of complexity to the data.
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Investigating Reprogramming Efficiency by Combining

Viral Barcoding with Single-Cell Transcriptomics

As mentioned earlier, lineage tracing is often done through

viral barcoding of cell populations . The first study to combine

viral barcoding with single-cell transcriptomics utilized a 10-nt

random lineage barcode in the 30 UTR of a tdTomato gene that

is easily detected by single-cell mRNA sequencing (Yao et al.,

2017). Viruses harboring the barcoded tdTomato gene were

used to infect cells at day 26 of an in vitromodel for neural differ-

entiation. At day 54, the barcodes showed a clonal segregation

of cortical precursors and mid/hindbrain precursors. This sug-

gests that specification of those cell types occurred prior to la-

beling (day 26), which is confirmed by a transcriptome-derived

lineage tree that also predicts segregation of cortical and mid/

hindbrain precursors occurring prior to day 26. In a similar study

(Biddy et al., 2017), endodermal reprogramming of fibroblast

cells was followed over a period of 4 weeks. Reprogramming

of these fibroblasts was shown to be highly heterogeneous.

Many different end states of reprogramming were observed

even within a single clone. Despite the successful reprogram-

ming of many cells in the concluding experiment, the clonal di-

versity was limited, indicating that most of the reprogrammed

cells came from the same founder cell.

Delineating Zebrafish Development through a

Combination of Single-Cell Transcriptomics and

CRISPR-Cas9-Based Lineage Tracing

As described above, CRISPR-Cas9-induced scars can be used

as a heritable barcode throughout development. The first three

studies uniting the power of CRISPR-Cas9-induced scars

with single-cell transcriptomics for lineage tracing have recently

been published.

In the first of these studies, Spanjaard et al. (2018) induce

scars in a red fluorescent protein (RFP) transgene in zebrafish

embryos. Once most of the organs have formed 5 days

post-fertilization, scars and transcriptomes are acquired using

single-cell mRNA sequencing. Phylogenetic trees can then be

constructed based on the distribution of scars across all cells,

i.e., cells sharing multiple scars are probably more closely

related than cells not sharing any scars. Cell-type inference is

performed based on the transcriptome of the same single cells,

allowing the authors to investigate the genetic relation between

cells from different germ layers, organs, and even cell types

within an organ. This study confirms the early split of endoderm,

mesoderm, and ectoderm-derived lineages during zebrafish

development. Furthermore, in depth analysis of hearth develop-

ment showed an early separation in the lineages contributing to

the myocardial and endocardial lineages.

In a similar study, Raj et al. (2018) investigate the development

of the zebrafish brain. The authors developed a heat-shock-

inducible version of the GESTALT fish (McKenna et al., 2016),

termed scGESTALT, allowing scars to be introduced at multiple

time points. The first iteration of scarring takes place upon injec-

tion of a set of 4 gRNAs (gRNAs 1–4) into the fertilized oocyte.

The second iteration, takes place upon heat-shock induction of

gRNAs 5–9. The two iterations of scarring allow for increased

resolution throughout development. Scars are identified from

the mRNA of the transgene harboring the 9 gRNA target

sequences. Phylogenetic tree reconstruction shows that the

major areas of the brain (left and right forebrain, left and right
hindbrain) contain distinct clones, indicating early cell-fate spec-

ification for those areas. ApplyingMonocle2 to the data reveals a

trajectory from neural progenitors into cerebral granule cells. The

overlaying of the genetic lineage information from the scars

shows that cells from the same clone populate the entire trajec-

tory, indicating that the clones that gave rise to the mature cells

are still present in the pool of progenitors.

In a third study, Alemany et al. (2018) use a similar system to

study the clonal history of the hematopoietic system, different

regions of the brain, the eyes, and the caudal fin. The authors

inject either Cas9 protein or Cas9 mRNA into the fertilized

embryo, inducing scars until 3 or 12 hr post fertilization (hpf)

respectively. In the hematopoietic system, most clones are

dispersed over all cell types, indicating that progenitors of

the hematopoietic system arise once scarring is finished after

12 hpf. Furthermore, only a handful of distinct clones contribute

to the hematopoietic system. This finding indicates that at the

end of scarring (12 hpf), only a small proportion of cells give

rise to the hematopoietic system but not to any of the other

organs. In contrast to the hematopoietic system, where clones

are shared across all cell types, clones in the midbrain are spe-

cific to either the left or the right half when scarring occurs until

12 hpf, whereas clones are shared between the brain halves

when scarring occurs until 3 hpf. For the eyes, there is no overlap

in clones between left and right eye independent of protein

or mRNA Cas9 injection. This suggests that there is a difference

in timing between specification of cells contributing to the eyes,

the midbrain, and the hematopoietic system. Another interesting

finding is that a portion of the macrophages in the zebrafish fin

contain no overlapping scars with the rest of the hematopoietic

system but do share scars with mesenchymal and epidermal

cell types, suggesting that these resident macrophages might

be of non-hematopoietic origin. These three studies are the first

in vivo examples that combine single-cell lineage tracing of many

parallel lineages with single-cell transcriptomics and provide a

glimpse of what can be achieved with integrated techniques.

In vivo genetic lineage tracing through CRISPR-Cas9 in com-

bination with single-cell transcriptomics has so far only been

described in zebrafish. However, a mouse model harboring the

homing CRISPR lineage tracing system has been developed

(MARC1 mouse) (Kalhor et al., 2018). Although single-cell scar

detection and transcriptomics have not been achieved, this will

most likely be developed in the near future. The Polylox system

is also promising as it can be easily combined with existing

Cre lines to perform lineage tracing in mouse models.

The combinatorial strategies mentioned here all use prospec-

tive lineage tracing, which requires genome editing to introduce

the traceable elements, limiting the use of these technologies to

model organisms or in vitro systems. Therefore, the next big

step in lineage tracing will result from the combination of retro-

spective genetic lineage tracing techniques with single-cell tran-

scriptomics. This will allow researchers to perform lineage tracing

and transcriptomicswithout altering the genomeof the study sub-

ject, whichmakes it possible to use human samples and opens up

manynewavenues for studyinghumandevelopment anddisease.

Future Directions
Combinatorial methods for single-cell transcriptomics and

genetic lineage tracing are only just starting to be used. In the
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near future, their use will probably expand from cell culture

models and zebrafish to other model organisms and human

samples. One of the many fields where this combinatorial

technique could play an important role is in cancer research.

As described above, tumors are heterogeneous in their gene-

expression profiles (Patel et al., 2014; Tirosh et al., 2016a,

2016b) and often contain multiple distinct genetic clones

(Casasent et al., 2018; Gao et al., 2016; Navin et al., 2011;

Wang et al., 2014). However, the extent to which distinct genetic

clones differ in their transcriptome remains largely unknown.

Furthermore, combinatorial techniques might prove greatly

useful in understanding clonal dynamics, drug resistance, and

metastatic properties of cancer cells while relating those proper-

ties to the cancer cells transcriptome.

Another field where combinatorial methods could provide

invaluable new insights is in understanding the dynamics of

tissue homeostasis. For instance, the classical differentiation

tree through which hematopoietic stem cells differentiate into

the mature cell types of the blood has recently come under

debate. Both single-cell transcriptomics studies (Jaitin et al.,

2014; Paul et al., 2015) and single-cell lineage tracing studies

(Rodriguez-Fraticelli et al., 2018; Sun et al., 2014), have shown

that the classical lineage tree, where stem cells have unlimited

potential and the multiple progenitor populations each have a

predetermined fate, may be inaccurate. It is becoming increas-

ingly apparent that, even within the stem cell compartment, cells

have a bias toward a certain fate, while progenitor populations

are not as restricted in their fate as previously thought. Therefore,

the idea of a differentiation tree in which all of the stem and pro-

genitor populations are separated and differentiation occurs as

discrete steps along the tree is changing to a tree where differen-

tiation is a continuous process, with stem and progenitor cells

being biased toward a certain fate (Laurenti and Göttgens,

2018). Furthermore, both single-cell transcriptomics (Jaitin

et al., 2014; Paul et al., 2015) and single-cell genetic lineage

tracing studies (Rodriguez-Fraticelli et al., 2018; Sun et al.,

2014) have strongly suggested that hematopoietic differentiation

in steady-state homeostasis is different from differentiation

upon transplantation (Carrelha et al., 2018). Combinatorial

methods will aid further investigation, since the single-cell

gene-expression profiles allow for detailed cell-type classifica-

tion while the genetic lineage tracing reveals the clonal relation-

ships of the cells.

Concluding Remarks
The development of next-generation sequencing technology has

allowed for tremendous advances both in the field of lineage

tracing and the field of single-cell transcriptomics. Acquiring sin-

gle-cell transcriptome profiles from thousands of cells can be

accomplished within just a few days. To gain knowledge from

these datasets, many algorithms have been developed that

predict lineage trajectories based on single-cell transcriptome

profiles. This advance allows for a more detailed reconstruction

of tissue development and homeostasis despite not necessarily

reflecting the underlying genetic relationships between cells.

Advances in single-cell genetic lineage tracing now allow for

the tracking of thousands of single cells in several different

model organisms. Over the past year, several publications

showcase the true potential of combining transcriptomics with
10 Cell Stem Cell 23, August 2, 2018
genetic lineage tracing at single-cell resolution. These tech-

niques are powerful new additions to the biologists’ toolbox

and will contribute to better understanding of embryonic devel-

opment, tissue homeostasis, and pathologies.
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Stubbington, M.J.T., Lönnberg, T., Proserpio, V., Clare, S., Speak, A.O., Dou-
gan, G., and Teichmann, S.A. (2016). T cell fate and clonality inference from
single-cell transcriptomes. Nat. Methods 13, 329–332.

Sun, J., Ramos, A., Chapman, B., Johnnidis, J.B., Le, L., Ho, Y.J., Klein, A.,
Hofmann, O., and Camargo, F.D. (2014). Clonal dynamics of native haemato-
poiesis. Nature 514, 322–327.

Tang, F., Barbacioru, C., Wang, Y., Nordman, E., Lee, C., Xu, N., Wang, X.,
Bodeau, J., Tuch, B.B., Siddiqui, A., et al. (2009). mRNA-Seq whole-transcrip-
tome analysis of a single cell. Nat. Methods 6, 377–382.

Tang, Q., Iyer, S., Lobbardi, R., Moore, J.C., Chen, H., Lareau, C., Hebert, C.,
Shaw, M.L., Neftel, C., Suva, M.L., et al. (2017). Dissecting hematopoietic and
renal cell heterogeneity in adult zebrafish at single-cell resolution using RNA
sequencing. J. Exp. Med. 214, 2875–2887.

Tirosh, I., Izar, B., Prakadan, S.M., Wadsworth, M.H., 2nd, Treacy, D.,
Trombetta, J.J., Rotem, A., Rodman, C., Lian, C., Murphy, G., et al. (2016a).
Dissecting the multicellular ecosystem of metastatic melanoma by single-
cell RNA-seq. Science 352, 189–196.

Tirosh, I., Venteicher, A.S., Hebert, C., Escalante, L.E., Patel, A.P., Yizhak, K.,
Fisher, J.M., Rodman, C., Mount, C., Filbin, M.G., et al. (2016b). Single-cell
RNA-seq supports a developmental hierarchy in human oligodendroglioma.
Nature 539, 309–313.

Trapnell, C., Cacchiarelli, D., Grimsby, J., Pokharel, P., Li, S., Morse, M.,
Lennon, N.J., Livak, K.J., Mikkelsen, T.S., and Rinn, J.L. (2014). The dynamics
and regulators of cell fate decisions are revealed by pseudotemporal ordering
of single cells. Nat. Biotechnol. 32, 381–386.

Treutlein, B., Lee, Q.Y., Camp, J.G., Mall, M., Koh, W., Shariati, S.A., Sim, S.,
Neff, N.F., Skotheim, J.M., Wernig, M., and Quake, S.R. (2016). Dissecting
direct reprogramming from fibroblast to neuron using single-cell RNA-seq.
Nature 534, 391–395.

Tsang, J.C.H., Vong, J.S.L., Ji, L., Poon, L.C.Y., Jiang, P., Lui, K.O., Ni, Y.B.,
To, K.F., Cheng, Y.K.Y., Chiu, R.W.K., and Lo, Y.M.D. (2017). Integrative sin-
gle-cell and cell-free plasma RNA transcriptomics elucidates placental cellular
dynamics. Proc. Natl. Acad. Sci. USA 114, 7786–7795.

Turner, D.L., and Cepko, C.L. (1987). A common progenitor for neurons and
glia persists in rat retina late in development. Nature 328, 131–136.

van Dijk, D., Nainys, J., Sharma, R., Kathail, P., Carr, A.J., Moon, K.R., Mazutis,
L.,Wolf, G., Krishnaswamy, S., and Pe’er, D. (2017). MAGIC: A diffusion-based
imputation method reveals gene-gene interactions in single-cell RNA-
sequencing data. bioRxiv. Published online February 25, 2017. https://doi.
org/10.1101/111591.

van Heijst, J.W., Gerlach, C., Swart, E., Sie, D., Nunes-Alves, C., Kerkhoven,
R.M., Arens, R., Correia-Neves, M., Schepers, K., and Schumacher, T.N.
(2009). Recruitment of antigen-specific CD8+ T cells in response to infection
is markedly efficient. Science 325, 1265–1269.

Varshney, G.K., Pei, W., LaFave, M.C., Idol, J., Xu, L., Gallardo, V., Carrington,
B., Bishop, K., Jones, M., Li, M., et al. (2015). High-throughput gene targeting
and phenotyping in zebrafish using CRISPR/Cas9. Genome Res. 25,
1030–1042.

Verovskaya, E., Broekhuis, M.J., Zwart, E., Ritsema, M., van Os, R., de Haan,
G., and Bystrykh, L.V. (2013). Heterogeneity of young and aged murine
hematopoietic stem cells revealed by quantitative clonal analysis using cellular
barcoding. Blood 122, 523–532.

Wang, Y., Waters, J., Leung, M.L., Unruh, A., Roh, W., Shi, X., Chen, K.,
Scheet, P., Vattathil, S., Liang, H., et al. (2014). Clonal evolution in breast can-
cer revealed by single nucleus genome sequencing. Nature 512, 155–160.
Cell Stem Cell 23, August 2, 2018 13

http://refhub.elsevier.com/S1934-5909(18)30176-0/sref92
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref92
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref92
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref92
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref93
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref93
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref93
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref93
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref94
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref94
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref94
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref95
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref95
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref95
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref95
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref96
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref96
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref97
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref97
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref97
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref98
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref98
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref98
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref99
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref99
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref99
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref100
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref100
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref100
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref101
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref101
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref101
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref101
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref102
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref102
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref102
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref103
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref103
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref103
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref104
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref104
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref104
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref104
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref105
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref105
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref106
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref106
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref107
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref107
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref108
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref108
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref108
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref108
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref109
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref109
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref109
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref109
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref110
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref110
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref110
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref111
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref111
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref111
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref111
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref112
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref112
https://doi.org/10.1038/nbt/4124
https://doi.org/10.1101/128843
https://doi.org/10.1101/128843
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref115
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref115
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref115
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref116
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref116
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref116
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref117
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref117
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref117
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref118
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref118
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref118
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref118
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref119
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref119
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref119
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref119
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref120
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref120
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref120
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref120
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref121
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref121
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref121
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref121
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref122
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref122
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref122
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref122
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref123
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref123
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref123
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref123
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref124
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref124
https://doi.org/10.1101/111591
https://doi.org/10.1101/111591
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref126
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref126
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref126
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref126
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref127
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref127
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref127
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref127
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref128
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref128
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref128
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref128
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref129
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref129
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref129


Cell Stem Cell

Review

Please cite this article in press as: Kester and van Oudenaarden, Single-Cell Transcriptomics Meets Lineage Tracing, Cell Stem Cell (2018), https://
doi.org/10.1016/j.stem.2018.04.014
Weinreb, C., Wolock, S., Tusi, B.K., Socolovsky, M., and Klein, A.M. (2018).
Fundamental limits on dynamic inference from single-cell snapshots.
Proc. Natl. Acad. Sci. USA 115, 2467–2476.

Weissman, T.A., and Pan, Y.A. (2015). Brainbow: New resources and emerging
biological applications for multicolor genetic labeling and analysis. Genetics
199, 293–306.

Wolf, F.A., Hamey, F., Plass, M., Solana, J., Dahlin, J.S., Gottgens, B.,
Rajewsky, N., Simon, L., and Theis, F.J. (2017). Graph abstraction reconciles
clustering with trajectory inference through a topology preserving map of
single cells. bioRxiv. Published online October 25, 2017. https://doi.org/10.
1101/208819.

Woodworth, M.B., Girskis, K.M., and Walsh, C.A. (2017). Building a lineage
from single cells: Genetic techniques for cell lineage tracking. Nat. Rev. Genet.
18, 230–244.

Xu, X., Hou, Y., Yin, X., Bao, L., Tang, A., Song, L., Li, F., Tsang, S., Wu, K., Wu,
H., et al. (2012). Single-cell exome sequencing reveals single-nucleotide
mutation characteristics of a kidney tumor. Cell 148, 886–895.
14 Cell Stem Cell 23, August 2, 2018
Yao, Z., Mich, J.K., Ku, S., Menon, V., Krostag, A.R., Martinez, R.A.,
Furchtgott, L., Mulholland, H., Bort, S., Fuqua, M.A., et al. (2017). A single-
cell roadmap of lineage bifurcation in human esc models of embryonic brain
development. Cell Stem Cell 20, 120–134.

Yuan, G.C., Cai, L., Elowitz, M., Enver, T., Fan, G., Guo, G., Irizarry, R., Kharch-
enko, P., Kim, J., Orkin, S., et al. (2017). Challenges and emerging directions in
single-cell analysis. Genome Biol. 18, 84.

Zafar, H., Wang, Y., Nakhleh, L., Navin, N., and Chen, K. (2016). Monovar:
Single-nucleotide variant detection in single cells. Nat. Methods 13, 505–507.
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G., Juréus, A., Marques, S., Munguba, H., He, L., Betsholtz, C., et al. (2015).
Brain structure. Cell types in the mouse cortex and hippocampus revealed
by single-cell RNA-seq. Science 347, 1138–1142.

Zong, H., Espinosa, J.S., Su, H.H., Muzumdar, M.D., and Luo, L. (2005).
Mosaic analysis with double markers in mice. Cell 121, 479–492.

http://refhub.elsevier.com/S1934-5909(18)30176-0/sref130
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref130
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref130
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref131
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref131
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref131
https://doi.org/10.1101/208819
https://doi.org/10.1101/208819
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref133
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref133
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref133
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref134
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref134
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref134
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref135
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref135
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref135
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref135
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref136
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref136
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref136
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref137
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref137
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref138
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref138
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref138
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref138
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref139
http://refhub.elsevier.com/S1934-5909(18)30176-0/sref139

	Single-Cell Transcriptomics Meets Lineage Tracing
	Advances in Single-Cell mRNA Sequencing Technologies
	Differentiation Trajectory Reconstruction Algorithms
	Dimensionality Reduction-Based Algorithms
	Nearest Neighbor Graph-Based Algorithms
	Other Lineage Reconstruction Algorithms

	Single-Cell Genetic Lineage Tracing
	Viral Barcoding-Based Lineage Tracing
	Cre-Lox-Based Lineage Tracing
	CRISPR-Cas9 Genome Editing-Based Lineage Tracing

	Retrospective Lineage Tracing
	Retrospective Lineage Tracing through CNVs
	Retrospective Lineage Tracing through SNV, Indels, and Repeat Regions
	Retrospective Lineage Tracing through Epigenetic Marks

	Combinatorial Techniques for Transcriptomics and Lineage Tracing
	Short-Term Lineage Tracing and Transcriptomics to Assess Cell-State Transitions
	Investigating Reprogramming Efficiency by Combining Viral Barcoding with Single-Cell Transcriptomics
	Delineating Zebrafish Development through a Combination of Single-Cell Transcriptomics and CRISPR-Cas9-Based Lineage Tracing

	Future Directions
	Concluding Remarks
	Acknowledgments
	References


