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SUMMARY

To understand organ function, it is important to have
an inventory of its cell types and of their correspond-
ing marker genes. This is a particularly challenging
task for human tissues like the pancreas, because
reliable markers are limited. Hence, transcriptome-
wide studies are typically done on pooled islets of
Langerhans, obscuring contributions from rare cell
types and of potential subpopulations. To overcome
this challenge, we developed an automated platform
that uses FACS, robotics, and theCEL-Seq2 protocol
to obtain the transcriptomes of thousands of single
pancreatic cells from deceased organ donors, allow-
ing in silico purification of all main pancreatic cell
types. We identify cell type-specific transcription
factors and a subpopulation of REG3A-positive
acinar cells. We also show that CD24 and TM4SF4
expression can be used to sort live alpha and beta
cells with high purity. This resource will be useful
for developing a deeper understanding of pancreatic
biology and pathophysiology of diabetes mellitus.

INTRODUCTION

Most organs consist of a variety of cell typeswith interdependent

functions. To understand organ function and disease, genome-

wide information on each cell type is crucial. Studies on pooled

material detect global gene expression patterns but represent an

average dominated by the most abundant cell types. With the

advent of single-cell transcriptomics, it is possible to determine

the transcriptome of individual cells, allowing the identification

of cell types in an unbiasedmanner (Grün and vanOudenaarden,

2015; Kolodziejczyk et al., 2015; Trapnell, 2015; Wang and

Navin, 2015). Initial single-cell transcriptomic studies were per-

formed on cultured cells (Deng et al., 2014; Hashimshony

et al., 2012; Islam et al., 2011; Klein et al., 2015; Shalek et al.,

2013; Tang et al., 2010). Subsequent studies described cell
Cell Syste
types in the mouse lung (Treutlein et al., 2014), spleen (Jaitin

et al., 2014), brain (Zeisel et al., 2015), retina (Macosko et al.,

2015), small intestine (Grün et al., 2015), and pancreas (Xin

et al., 2016). Studies on human tissue have so far been limited

to fetal neurons (Johnson et al., 2015), glioblastomas (Patel

et al., 2014), and two sets of human pancreas cells (Li et al.,

2016; Wang et al., 2016). We have used single-cell sequencing

of the human pancreas to reveal subpopulations of cells that

show potential as progenitors (Grün et al., 2016). These studies

described manually processed samples and/or low numbers

of cells, which limited the number of detected genes. Here, we

developed a more efficient, high-throughput method to

sequence primary human cells of all pancreatic cell types.

The pancreas functions as an exocrine and endocrine gland.

The exocrine compartment consists of acinar cells producing

digestive enzymes and ductal cells forming channels that drain

into the duodenum. The endocrine compartment consists of

alpha, beta, delta, pancreatic polypeptide (PP), and epsilon cells

that are found in the islets of Langerhans. Insulin-producing beta

cells and glucagon-producing alpha cells play major roles in

glucose homeostasis, and islet dysfunction is the hallmark of

diabetesmellitus, a chronicmetabolic disorder affecting approx-

imately 9% of the adult population worldwide (WHO, 2014).

Functional analysis and genetic profiling are typically performed

on whole islets, masking the contribution of individual cell types

to pancreas biology and disease (Bugliani et al., 2013; Cnop

et al., 2014; Eizirik et al., 2012). To study heterogeneity and

classify subpopulations within known cell types, single-cell

resolution is essential. We developed a high-throughput

approach for single-cell sequencing based on the single-cell

RNA-seq by multiplexed linear amplification2 (CEL-seq2) proto-

col (Hashimshony et al., 2016) to create a single-cell transcrip-

tome atlas of the human pancreas. Our method implements

fluorescence-activated cell sorting (FACS), which allows the

user to work with low amounts of starting material. This dataset

provides an unbiased view of cell types in the human pancreas at

single-cell resolution, enabling comparison of gene expression

patterns among cell types and detection of subpopulations

within them. This resource can be mined for genes involved in

pancreatic function to define novel therapeutic targets for dis-

eases such as diabetes mellitus.
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RESULTS

SORT-Seq Allows Deep Sequencing of Human Pancreas
Cells
To assay the transcriptomes of the various human pancreatic

cell types, we obtained human pancreas material from four

deceased organ donors (Figure 1A). Isolation of the islets of

Langerhans yielded 55%–95% islet purity (Table S1). The non-

islet cells in these preparations mainly consisted of exocrine

cells. After a culture period of 3–5 days, the islets were dispersed

for FACS, followed by single-cell sequencing. Previously, we

sorted cells from five donors, which were processed manually

by single-cell RNA-seq by multiplexed linear amplification

(CEL-Seq) as described (Grün et al., 2016). These yielded an

average of 4,262 unique transcripts and a median of 1,958 de-

tected genes per cell (Figures S1A and S1B) when sequencing

at approximately 90.000 reads per cell. While useful to determine

interesting progenitor cells and describe general differences be-

tween cell types, this dataset lacked the depth to fully describe

the transcriptome of each pancreatic cell type. For example,

comparing expression across endocrine cell types resulted in

low numbers of differentially expressed genes (Figure S1C).

To more efficiently capture single-cell transcriptomes, we

used FACS and robotics liquid handling to perform automated

single-cell sequencing based on the CEL-Seq2 protocol (Ha-

shimshony et al., 2016). We refer to this platform as SORT-

seq (SOrting and Robot-assisted Transcriptome SEQuencing)

(Figure 1A). Briefly, live single cells (based on DAPI and scatter

properties) are sorted into 384-well plates with 5 mL of Vapor-

Lock oil containing a droplet of 100 nL of CEL-seq primers,

spike-ins, and dinucleotide triphosphates (dNTPs). For cDNA

construction, cells are first lysed by heat, after which a robotic

liquid handler dispenses reverse transcription (RT) and sec-

ond-strand mix. Cells are then pooled, and the aqueous phase

is extracted from the oil. The CEL-Seq2 protocol can be fol-

lowed from this point onward. Compared to the manual method,

the percentage of reads that could be mapped to the reference

transcriptome increased from 15% to 35%. In addition, the

number of unique transcripts per cell increased (median of

14,604 compared to 4,262) (Figure S1D), as did the number of

genes detected per cell (median of 4,497 compared to 1,958)

while sequencing an average of 41.000 reads per cell, half the

depth used for the manual method (Figure S1E). This resulted

in more complex single-cell libraries with more differentially ex-

pressed genes between cell types (Figure S1F).

To investigate whether we could detect the expected pancre-

atic cell types, we used StemID, an approach we developed for

inferring the existence of stem cell populations from single-cell
Figure 1. SORT-Seq Allows for Deep Sequencing of Human Pancreas

(A) Experimental workflow for SORT-seq. Islets were isolated from human dono

taining 100 nL of CEL-seq2 primers, dNTPs, and spike-ins. The RT mix was then d

and amplified before RNA library preparation.

(B) Visualization of k-medoid clustering and cell-to-cell distances using t-SNEs. Ea

type names are indicated with their corresponding cluster or clusters.

(C) t-SNE map highlighting donor source. Each color represents one donor.

(D) t-SNE maps highlighting the expression of marker genes for each of the six m

(E) Tables denoting the top ten differentially expressed genes and transcription

(p < 10�6). Genes whose cell-type specificity was previously unknown in the hum
transcriptomic data (Grün et al., 2016). StemID calculates all

pairwise cell-to-cell distances (1 � Pearson correlation) and

uses this to cluster similar cells into clusters that correspond to

the cell types present in the tissue (Figure S1G). This resulted

in well-separated cell clusters with low intra-cluster and high in-

ter-cluster cell-to-cell distances, as visualized in t-distributed

stochastic neighbor embedding (t-SNE) maps (Figure 1B) (van

der Maaten and Hinton, 2008). These maps were also used to

highlight expression of specific genes across all cells (Figure 1D).

To test whether the donor source influenced cluster formation,

we plot donor contribution to the clusters in Figure 1C, showing

that none of the clusters consist of cells from only one donor.

When we compared all cells from each cell type of one donor

to that of all others, we did not find major differences between

donors. Most differentially expressed genes differed by less

than 2-fold. As expected, XIST was upregulated in all cell types

of D30 (Table S2), the only female donor of the set. The donor-in-

dependent clustering shows StemID groups cells based on cell

type, rather than donor.

We found the clusters to highly expressmarkers for all pancre-

atic cell types (Figure 1D). We found cluster-specific expression

of GCG (alpha cells), INS (beta), SST (delta), PPY (PP), PRSS1

(acinar), KRT19 (duct), and COL1A1 (mesenchyme) (Figures 1D

and S1H). Because the algorithm did not distinguish clusters

with either epsilon or endothelial cells, we looked for expression

of the markers GHRL or ESAM. We found two clusters of cells

exclusively expressing these markers and manually annotated

them as epsilon and endothelial cells (Figure 1B).

We also detected the expression of MAFA and MAFB, tran-

scriptional regulators important for determining the identity of

endocrine cell types (Nishimura et al., 2006) (Figure 1D). MAFA

expression is restricted to beta cells, while MAFB expression is

found in both alpha and beta cells, as previously reported in

mice (Dai et al., 2012).

We next set out to generate a resource with which to compare

pancreatic cell types and mine their transcriptomes for inter-

esting genes. To this end, we compared all alpha (clusters

expressing high GCG), beta, epsilon, delta, PP, duct, acinar,

mesenchymal, and endothelial cells based on their distinct clus-

tering from other cell types. Each group of cells was compared to

all other cell groups, yielding a list of differentially expressed

genes. The top ten of each list can be found in Figures 1E and

S1I, and the full list is in Table S3. We then selected only those

genes that have been reported to function as transcription

factors using the TFcheckpoint database (Table S4) (Chawla

et al., 2013). Several genes and transcription factors found

here have never been reported as markers for specific cell types

of the human pancreas (Figure 1E).
Cells

rs. Cells were dispersed and sorted into 384-well plates with mineral oil, con-

istributed by Nanodrop II. After second-strand synthesis, material was pooled

ch dot represents a single cell. Colors and numbers indicate clusters, and cell-

ain pancreatic cell types. Transcript counts are given in a linear scale.

factors (TFs) when comparing one cell type to all other cells in the dataset

an pancreas are marked in red.
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Apart from the classically known alpha cell transcription fac-

tors IRX2, ARX (Dorrell et al., 2011b), and PGR (Doglioni et al.,

1990), our analysis reveals transcription factors FEV, PTGER3

(Kimple et al., 2013), SMARCA1 (Rankin and Kushner, 2010),

HMGB3, and RFX6 (Piccand et al., 2014) that, to our knowledge,

have not been reported to be enriched in human alpha cells and

have been previously implicated in beta cell function. Some of

these factors have broader expression across other endocrine

cell types, such as RFX6, but they are most highly expressed

in alpha cells.

Classical beta cell markers like INS, MAFA, and PDX1 (Kul-

karni, 2004) top the beta cell list, and we detect PFKFB2 (Arden

et al., 2008), a gene thought to regulate insulin secretion, and the

transcription factor SIX2. To our knowledge, neither PFKFB2 nor

SIX2 have been reported previously in human beta cells. SIX2

is known to interact with the transcription factor TCF7L2 (Xu

et al., 2014), a well-known SNP for type 2 diabetes (Grant

et al., 2006). This makes it interesting for further investigations

in the context of beta cell function.

Apart from the classical SST and HHEX expression in delta

cells (Zhang et al., 2014), genes like LEPR and GHSR imply a

possible role of leptin and ghrelin on delta cell function. PP cells

have substantial expression of genes related to neuronal cells,

which hints at the developmental proximity of PP and neuronal

cells. This has been previously described by others in the context

of beta cells (Arntfield and van der Kooy, 2011; Le Roith et al.,

1982)

In summary, these gene lists confirm markers and reveal gene

expression patterns in the endocrine cell types that can be

further investigated for their roles in cellular identity and function.

Cluster-Restricted Gene Expression Patterns and
Identification of Cell-Type-Specific Genes
We next analyzed each cluster in detail to see whether the re-

maining differentially expressed genes corroborated the initial

identification of the six major pancreatic cell types. To investi-

gate to what extent gene expression patterns are shared

among cell types, we focused on the expression of both the

top differentially expressed genes and the classical marker

genes (Figure 2A). In particular, the expression of hormones

was restricted to individual clusters, taking up one-fifth of the

transcriptome, while being near zero in other clusters. For

most clusters, the top differentially expressed genes were

documented markers (Table S3). For example, INS and IAPP

were co-expressed in beta cells, LOXL4 was expressed with

GCG (alpha cells), and PNLIP was expressed with PRSS1.

PRG4 was most highly expressed in delta cells after SST.

Ductal markers SPP1 and KRT19 were relatively lowly ex-

pressed but limited to the ductal cluster. Further inspection of

the top differentially expressed genes per cluster yielded new

cell-type-specific genes, such as ALDH1A1, which was en-

riched in alpha cells and co-expressed with GCG (Figures

S2C and S2D).

Going further down the list of differentially expressed genes

continued to show cell type-restricted patterns (Figure S2A).

To test whether we could use StemID clustering to compare

different types of cells, we determined differentially expressed

genes between all endocrine and exocrine cells. This yielded

2,858 genes that were differentially expressed (p < 10�6
4 Cell Systems 3, 1–10, October 26, 2016
after Benjamini-Hochberg correction). Clear separation of

endocrine and exocrine was visible by plotting the top 100 differ-

entially expressed genes (Figure S2B). This list consisted of

many genes related to endocrine function, proving single-cell

sequencing yields useful data on specific pancreatic cell types.

This allowed us to continue exploring differences between

more closely related cell types such as alpha and beta cells,

which yielded a list of 1,376 differentially expressed genes

(p < 10�6) (Figure 2B).

Plotting these differences in expression patterns showed clear

cell-type-specific patterns (Figure 2C). Not surprisingly, canoni-

cal marker genes for alpha and beta cells (GCG, MAFA, IAPP,

CHGB, INS, INS-IGF2, SCG2, PCSK1, and PCSK2) were in the

list, as were genes found in studies that analyzed enriched pop-

ulations of alpha or beta cells, such as TTR, which is specific in

mouse alpha cells (Dorrell et al., 2011a);NPTX2 in beta cells (Fig-

ure S2A) (Nica et al., 2013); and group-specific component (GC)

in human alpha cells (Ackermann et al., 2016). We also identified

several previously unreported cell-type-specific genes for both

alpha cells (CRYBA2, TM4SF4, and ALDH1A1) and beta cells

(ID1, RBP4, SQSTM1, MT1X, FTL, and FTH1) (Ackermann

et al., 2016; Benner et al., 2014). Many of these beta cell-specific

genes have been linked to Type 2 diabetes (T2D) or to oxidative

and/or endoplasmic reticulum (ER) stress responses (Åkerfeldt

and Laybutt, 2011; Chen et al., 2001; Orino et al., 2001; Yang

et al., 2005). To validate our results, we visualized protein levels

of FTL and ALDH1A1 in tissue sections of human pancreas. FTL

expression was visible in insulin-producing cells and absent

from GCG-positive alpha cells in the islets of Langerhans (Fig-

ure 2D). ALDHI1A1 expression appeared to be quite similar in

acinar cells and alpha cells, whereas in general, higher mRNA

expression was observed in alpha cells (Figures S2C and S2D).

Within the islets of Langerhans, we detected ALDH1A1 expres-

sion only in glucagon-positive alpha cells, not in other cells in

the islets.

GO-Term Analysis Reveals Cell-Type-Specific Gene
Expression Patterns Relevant to Diabetes and Glucose
Metabolism
We used EnrichR (Chen et al., 2013) to perform gene ontology

(GO)-term analysis on the full list of genes differentially ex-

pressed in each cell type compared to all other pancreatic

cell types. We determined the top 15 enriched GO terms for

alpha, beta, delta, and PP cells (Figure S3A). In addition, we

provide the lists of GO terms for each type, along with the

genes that are involved in this GO term (Table S5). Parsing

the file for alpha cell-related GO terms shows the inositol re-

ceptor ITPR1 is involved in insulin secretion. ITPR1 has previ-

ously been associated with a diabetic phenotype in mice (Fig-

ure S3C) (Ye et al., 2011). GO terms, like negative regulation of

nervous system development, are highest in PP cells, indicating

these cells have a more neuronal nature than other cells. The

serotonin transporter SLC6A4 is found predominantly in PP

cells (Figure S3C) and has well-documented roles in neurons

and behavior (Murphy and Lesch, 2008). To focus on differ-

ences between cell types in more detail, we performed GO-

term analysis on gene sets obtained after comparing beta cells

to alpha, delta, and PP cells separately (Figure S3B). In partic-

ular, delta cells show more hits in behavior and synaptic



Figure 2. Cluster-Restricted Gene Expression Patterns and Identification of Cell-Type-Specific Genes

(A) Expression of well-known marker genes (top) and the most differentially expressed gene (bottom) in each of the six main pancreatic cell types. If the most

differentially expressed gene is also a canonical marker gene, the next most differentially expressed gene is shown. Gene expression values are plotted on the

y axis. Each bar represents a cell, and cells are grouped by cluster with a specific color in the following order: alpha, beta, delta, PP, duct, and acinar.

(B) Differential gene expression analysis between alpha and beta cells reveals 1,376 differentially expressed genes. Gray dots indicate genes; red dots indicate

significant genes (p < 10�6). The y axis indicates the log2 fold change, and the x axis shows the mean transcript count over both groups of cells.

(C) Heatmap of the top 100 differentially expressed genes between alpha and beta cells. Rows are genes, and columns are cells. Log2 expression of transcript

counts for genes is plotted. Columns are ordered based on cell type (alpha on the left and beta on the right). Genes are grouped based on hierarchical clustering.

(D) Immunohistochemistry for ferritin light subunit (FTL, green) glucagon (GCG, gray), and insulin (INS, red) with counterstaining for DAPI (blue) on human

pancreatic tissue sections. Scale bar represents 25 mM.
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Figure 3. Outlier Identification Reveals Het-

erogeneity within Acinar and Beta Cells

(A) t-SNEmap of RaceID clusters after clustering of

only beta cells.

(B) t-SNEmap highlighting the expression of FTH1.

(C) t-SNEmap of RaceID clusters after clustering of

only acinar cells.

(D) t-SNE map highlighting the expression of

REG3A.

(E) Immunohistochemistry for REG3A (green),

trypsin (red), and insulin (gray), with counter-

staining for DAPI (blue). Scale bar represents

75 mM.
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transmission. The ghrelin receptor GHSR is involved in several

of these processes. This receptor is only present in delta cells

(Figure S3C), indicating a role for ghrelin in delta cell function,

which has indeed been demonstrated in mice (DiGruccio

et al., 2016). These results are an example of how genes

obtained in this resource can be used for GO-term analysis.

By zooming in on specific genes from interesting terms, we

can generate hypotheses regarding cell-type-specific pro-

cesses in the human pancreas.

Outlier Identification Reveals Heterogeneity within
Acinar and Beta Cells
We set out to analyze cellular heterogeneity by detecting outliers

within specific populations of cells using the RaceID algorithm

(Grün et al., 2015). The most striking results were found in beta

and acinar cells, in which we found subpopulations of cells

with distinct gene expression patterns. In beta cells, the most

significant genes dictating this heterogeneity were SRXN1,

SQSTM1, and three ferritin subunits: FTH1P3, FTH1, and FTL

(Figures 3A and S4A). All these genes were highly expressed in

cluster 2 (Figure S4A) and are implicated in response to ER

and oxidative stress (Orino et al., 2001; Zhou et al., 2015; Ranta-

nen et al., 2013). The main acinar cluster split into four clusters,

of which cluster 2 showed the high levels of REG3A expres-

sion (Figures 3C, 3D, and S4B). Meanwhile, the acinar marker

PRSS1 was expressed in all clusters but was highest in a group

of cells in clusters 3 and 4 (Figure S4C).
6 Cell Systems 3, 1–10, October 26, 2016
To confirm the existence of subpopula-

tions of REG3A-positive acinar cells,

we stained sections of human pancreas

for REG3A and PRSS1. Scattered individ-

ual REG3A/PRSS1 double-positive cells

were observed (Figure S4D) in acinar

tissue. Interestingly, we also detected

large clusters of brightly REG3A/PRSS1-

positive acinar cells close to the islets of

Langerhans (Figure 3E).

To characterize subpopulations ob-

tained in silico in more depth, we aver-

aged the expression profiles of all

single cells belonging to the different

subpopulations. By averaging and pool-

ing the transcriptomes from these

groups of cells, we achieve transcrip-
tome coverage that is similar to that of bulk sequencing exper-

iments (Table S6).

In summary, we detected subpopulations of beta cells ex-

pressing higher levels of FTH1 and validated acinar subpopula-

tions expressing high levels of REG3A. This subtype of acinar

cell merits more investigation, because the role of REG3A in

pancreas biology is unclear.

Enrichment of Alpha and Beta Cells Based on Cell-
Surface Markers
We next mined our transcriptome resource for novel cell-surface

markers to enrich specific pancreatic cell types using live-cell

sorting. As a proof of principle, we set out to deplete the exocrine

fraction from islet isolations of low purity. We found cell-surface

markers CD24 and CD44 were restricted to acinar and ductal

clusters (Figure 4A). Next, we prepared six FACS libraries, two

with only live cells and four with negative selection for CD24

and CD44 (Figure 4B). This yielded compact clusters of cells

that correspond to the main pancreatic cell types (Figure S5B).

Nearly all endocrine cells were derived from the negatively

selected libraries (Figure S5A), demonstrating the efficiency of

the predicted cell-surface markers. Alpha cells seemed to be

preferentially enriched with this strategy (Figure S5A).

To test whether we could enrich for one pancreatic cell type,

we explored alpha cell-surface markers, finding TM4SF4, a tet-

raspanin family member that has been linked to pancreatic

development (Anderson et al., 2011) and to be specifically



Figure 4. Enrichment of Alpha and Beta Cells Based on Cell-Surface Markers

(A) t-SNE map highlighting the combined expression of CD24 and CD44.

(B) Results of FACS enrichment based on selection against CD24/CD44. Two libraries were selected for live staining (/), and four were selected against CD24 and

CD44 expression (�/�). The y axis indicates the portion of the library consisting of a particular cell type. Colors indicate cell types.

(C) t-SNE map highlighting the expression of TM4SF4.

(D) Imagestream analysis of dispersed, fixed single-cells from human pancreas. The left panels show a bright field image of the cell and then immunostaining

against glucagon (green) and Tm4sf4 (red). The lower panel shows insulin in green.

(E) t-SNE map highlighting libraries from a TM4SF4/CD24 sort. Cells that were not stained are in pink. Cells sorted for TM4SF4+/CD24� are in green and for

TM4SF4�/CD24� are in blue.

(F) Results of FACS enrichment based on selection for TM4SF4/CD24. Four libraries were selected for live staining (/). Two libraries were TM4SF4+/CD24� (+/�),

and two were TM4SF4�/CD24� (�/�). The y axis indicates the portion of the library consisting of a particular cell type. Colors indicate cell types.

Please cite this article in press as: Muraro et al., A Single-Cell Transcriptome Atlas of the Human Pancreas, Cell Systems (2016), http://dx.doi.org/
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expressed in alpha cells, with sparse expression in PP cells

(Figure 4C). To verify the membrane-localized expression of

TM4SF4 in alpha cells, we performed imaging flow cytometry

analysis on fixed cells that were co-stained with either glucagon

or insulin and TM4SF4 antibodies.We found TM4SF4 to be local-

ized at themembrane of alpha cells but not that of beta cells (Fig-

ure 4D). To test whether this antibody can be used to enrich for

alpha cells, we processed eight libraries from an endocrine-rich
islet extraction (Table S1): four libraries were composed of

live cells, two were CD24�/TM4SF4+, and two were CD24�/

TM4SF4�. We found the main endocrine pancreatic cell types

after clustering (Figure S5C). Libraries sorted for TM4SF4 con-

sisted of >85% alpha cells. When selecting against TM4SF4

and CD24, alpha cells were depleted from the resulting popula-

tion and enrichment for beta cells became possible with similar

purity (Figure 4F).
Cell Systems 3, 1–10, October 26, 2016 7
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In conclusion, this shows that our resource can be used to

mine for genes with a specific subcellular location in a pancre-

atic cell type of choice. Table S7 provides a list of cell-type-

enriched cell-surface markers in each of the main pancreatic

cell types.

DISCUSSION

Scarcity of material, lack of reliable cell-surface markers, and

analysis of pooled populations of cells often hamper analysis

of human organ cell-type composition. Most importantly,

methods relying on pooled cells average gene expression pro-

files over thousands of cells, masking any heterogeneity to be

found within one cell type and potentially missing interesting in-

termediate cell types. To overcome these challenges, we have

sequenced single cells from donor pancreata from four donors

using SORT-seq, a FACS-compatible, automated version of

the CEL-Seq2 protocol. We readily detected several clusters

corresponding to the canonical pancreatic cell types, allowing

us to purify cell types in silico for further analysis.

Due to consideration for transplantation, the islets obtained for

this study were cultured for 3–5 days before dispersion to single

cells and FACS. Culture conditions might affect the varied

pancreatic cell types differently (progenitor cells are more likely

to be affected than terminally differentiated cell types). However,

shorter culture times for human islets are difficult to achieve, and

we could not detect any major biases among donors, irrespec-

tive of their culture times.

Because the efficiency of single-cell sequencing (especially

when using manual TRIzol-based methods) is on the order of

10% (Grün et al., 2014), lowly expressed genes are detected

only sporadically. However, sequencing many cells enabled us

to detect transcription factors, rare cell types, and heterogeneity

within canonical pancreatic cell types such as acinar and beta

cells. To further test the predictive power of this resource, we

describe a panel of cell-surface markers specifically expressed

in exocrine or alpha cells. Using these markers, we were able

to enrich for endocrine, alpha, and beta cells.

In conclusion, we present this dataset as a resource that

can be used to study pancreas composition and function. We

envision broad applicability of this single-cell transcriptome

atlas of the human pancreas to improve our understanding of

pancreas biology and diabetes research.
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Rantanen, K., Pursiheimo, J.-P., Högel, H., Miikkulainen, P., Sundström, J.,

and Jaakkola, P.M. (2013). p62/SQSTM1 regulates cellular oxygen sensing

by attenuating PHD3 activity through aggregate sequestration and enhanced

degradation. J. Cell Sci. 126, 1144–1154.

Ricordi, C., Lacy, P.E., Finke, E.H., Olack, B.J., and Scharp, D.W. (1988).

Automated method for isolation of human pancreatic islets. Diabetes 37,

413–420.

Shalek, A.K., Satija, R., Adiconis, X., Gertner, R.S., Gaublomme, J.T.,

Raychowdhury, R., Schwartz, S., Yosef, N., Malboeuf, C., Lu, D., et al.

(2013). Single-cell transcriptomics reveals bimodality in expression and

splicing in immune cells. Nature 498, 236–240.

Tang, F., Barbacioru, C., Bao, S., Lee, C., Nordman, E., Wang, X., Lao, K., and

Surani, M.A. (2010). Tracing the derivation of embryonic stem cells from the in-

ner cell mass by single-cell RNA-seq analysis. Cell Stem Cell 6, 468–478.
Cell Systems 3, 1–10, October 26, 2016 9

http://refhub.elsevier.com/S2405-4712(16)30292-7/sref10
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref10
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref10
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref11
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref11
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref11
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref12
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref12
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref12
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref12
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref13
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref13
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref13
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref13
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref14
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref14
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref14
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref15
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref15
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref15
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref15
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref15
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref16
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref16
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref16
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref17
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref17
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref17
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref17
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref18
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref18
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref18
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref18
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref19
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref19
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref19
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref19
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref19
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref20
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref20
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref20
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref20
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref21
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref21
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref22
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref22
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref23
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref23
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref23
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref24
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref24
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref24
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref24
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref25
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref25
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref26
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref26
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref26
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref26
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref27
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref27
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref27
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref28
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref28
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref28
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref28
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref29
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref29
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref29
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref30
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref30
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref30
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref30
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref31
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref31
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref31
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref32
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref32
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref32
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref33
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref33
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref34
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref34
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref34
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref35
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref35
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref36
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref36
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref36
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref37
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref37
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref37
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref37
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref38
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref38
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref39
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref39
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref39
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref39
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref40
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref40
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref40
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref41
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref41
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref42
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref42
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref42
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref42
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref43
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref43
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref43
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref44
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref44
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref45
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref45
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref45
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref45
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref46
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref46
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref46
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref47
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref47
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref47
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref47
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref48
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref48
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref48


Please cite this article in press as: Muraro et al., A Single-Cell Transcriptome Atlas of the Human Pancreas, Cell Systems (2016), http://dx.doi.org/
10.1016/j.cels.2016.09.002
Trapnell, C. (2015). Defining cell types and states with single-cell genomics.

Genome Res. 25, 1491–1498.

Treutlein, B., Brownfield, D.G., Wu, A.R., Neff, N.F., Mantalas, G.L., Espinoza,

F.H., Desai, T.J., Krasnow, M.A., and Quake, S.R. (2014). Reconstructing line-

age hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature

509, 371–375.

van der Maaten, L., and Hinton, G. (2008). Visualizing data using t-SNE.

J. Mach. Learn. Res. 9, 2579–2605.

Wang, Y., and Navin, N.E. (2015). Advances and applications of single-cell

sequencing technologies. Mol. Cell 58, 598–609.

Wang, Y.J., Schug, J., Won, K.J., Liu, C., Naji, A., Avrahami, D., Golson, M.L.,

and Kaestner, K.H. (2016). Single cell transcriptomics of the human endocrine

pancreas. Diabetes, db160405, http://dx.doi.org/10.2337/db16-0405, Epub

ahead of print.

WHO (2014). Global status report on noncommunicable diseases 2014. World

Health ---, 176.

Xin, Y., Kim, J., Ni, M., Wei, Y., Okamoto, H., Lee, J., Adler, C., Cavino, K.,

Murphy, A.J., Yancopoulos, G.D., et al. (2016). Use of the FluidigmC1 platform

for RNA sequencing of single mouse pancreatic islet cells. Proc. Natl. Acad.

Sci. USA 113, 3293–3298.
10 Cell Systems 3, 1–10, October 26, 2016
Xu, J., Liu, H., Park, J.-S., Lan, Y., and Jiang, R. (2014). Osr1 acts downstream

of and interacts synergistically with Six2 to maintain nephron progenitor cells

during kidney organogenesis. Development 141, 1442–1452.

Yang, Q., Graham, T.E., Mody, N., Preitner, F., Peroni, O.D., Zabolotny, J.M.,

Kotani, K., Quadro, L., and Kahn, B.B. (2005). Serum retinol binding protein 4

contributes to insulin resistance in obesity and type 2 diabetes. Nature 436,

356–362.

Ye, R., Ni, M., Wang, M., Luo, S., Zhu, G., Chow, R.H., and Lee, A.S. (2011).

Inositol 1,4,5-trisphosphate receptor 1 mutation perturbs glucose homeosta-

sis and enhances susceptibility to diet-induced diabetes. J. Endocrinol. 210,

209–217.

Zhang, J., McKenna, L.B., Bogue, C.W., and Kaestner, K.H. (2014). The dia-

betes gene Hhex maintains d-cell differentiation and islet function. Genes

Dev. 28, 829–834.

Zhou, Y., Duan, S., Zhou, Y., Yu, S., Wu, J., Wu, X., Zhao, J., and Zhao, Y.

(2015). Sulfiredoxin-1 attenuates oxidative stress via Nrf2/ARE pathway

and 2-Cys Prdxs after oxygen-glucose deprivation in astrocytes. J. Mol.

Neurosci. 55, 941–950.

Zeisel, A., Munoz-Manchado, A.B., Codeluppi, S., Lonnerberg, P., La Manno,

G., Jureus, A., Marques, S., Munguba, H., He, L., Betsholtz, C., et al. (2015).

Cell types in the mouse cortex and hippocampus revealed by single-cell

RNA-seq. Science 347, 1138–1142.

http://refhub.elsevier.com/S2405-4712(16)30292-7/sref49
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref49
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref50
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref50
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref50
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref50
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref51
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref51
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref52
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref52
http://dx.doi.org/10.2337/db16-0405
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref54
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref54
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref55
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref55
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref55
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref55
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref56
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref56
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref56
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref57
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref57
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref57
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref57
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref58
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref58
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref58
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref58
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref59
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref59
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref59
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref60
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref60
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref60
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref60
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref61
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref61
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref61
http://refhub.elsevier.com/S2405-4712(16)30292-7/sref61


Please cite this article in press as: Muraro et al., A Single-Cell Transcriptome Atlas of the Human Pancreas, Cell Systems (2016), http://dx.doi.org/
10.1016/j.cels.2016.09.002
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit anti-Ftl Abcam ab69090; RRID: AB_1523609

Mouse anti-Glucagon Abcam ab10988; RRID: AB_297642

Guinea pig anti-Insulin Abcam ab7842; RRID: AB_306130

Mouse anti-trypsin-1 Santacruz sc-137077; RRID: AB_2300318

Rabbit anti-Reg3a Abcam ab134309

Rabbit anti-Aldh1a1 Abcam ab23375; RRID: AB_2224009

TM4SF4-APC BD FAB7998A

FITC-mouse anti Human CD24 Clone ML5 BD 560992; RRID: AB_10562033

PE-mouse anti CD44(156-3C11) Cell Signaling 8724S; RRID: AB_10829611

Chemicals, Peptides, and Recombinant Proteins

CMRL 1066 medium Mediatech 99663-CV

Accutase StemCell Technologies, Inc. 07920

Vapor-lock QIAGEN 981611

Critical Commercial Assays

BD Cytofix/Cytoperm Fixation/Permeabilization Kit BD 554717

Thermo Scientific reagents for CEL-Seq2 Hashimshony et al., 2016 N/A

Deposited Data

Single-cell mRNA sequencing of cells from the pancreas of 4 human donors this paper GEO: GSE85241

Sequence-Based Reagents

Reagents for library prep from CEL-Seq2 Hashimshony et al., 2016 N/A

Software and Algorithms

IDEAS software EMD Millipore N/A

StemID algorithm Grün et al., 2016 N/A

Rstudio software Version 0.99.491

Bwa Li and Durbin, 2009 N/A

Other

Nanodrop II liquid handling platform (or any other liquid handling platform that

can dispense sub-microliter quantities quickly into 384-well plates

Innovadyne N/A

SP8 confocal microscope Leica N/A

Amnis ImagestreamX Mark II Imaging Flow cytometer EMD Millipore N/A

384-well plates for sorting and SORT-Seq protocol Biorad HSP3801

FACSJazz (or any other FACS-machine that can sort into 384-well plates) BD N/A
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests may be directed to primary contact Alexander van Oudenaarden, Hubrecht Institute

(a.vanoudenaarden@hubrecht.eu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human cadaveric donor pancreata were procured through a multiorgan donor program. Pancreatic tissue was only used if

the pancreas could not be used for clinical pancreas or islet transplantation, only if research consent was given and according to

national laws. In total, 4 human donor pancreata were procured (3 male, 1 female). See Table S1 for details on donor age, sex

and BMI.
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METHOD DETAILS

Human Islet Isolation, Dispersion, and Sorting
Human islet isolations from pancreatic tissue were performed in the islet isolation facility of the Leiden University Medical Center

according to a modified protocol originally described by Ricordi et al., (1988). Islets were cultured in CMRL 1066 medium

(5.5 mM glucose) (Mediatech) supplemented with 10% human serum, 20 mg/ml ciprofloxacin, 50 mg/ml gentamycin, 2 mM L-gluta-

min, 0.25 mg/ml fungizone, 10 mMHEPES and 1.2 mg/ml nicotinamide for 3-6 days. Islets were maintained in culture at 37�C in a 5%

CO2 humidified atmosphere. Medium was refreshed the day after isolation and every 2-3 days thereafter until cell sorting. The islets

were cultured for 3.-5 days after islet isolation. Culture time depended on the decision time needed for considering islets for trans-

plantation and FACS.

For cell sorting cultured Islets were briefly washed in cold PBS. The islet pellet was then suspended in 1 ml of Accutase (Stemcell

technologies) per 5000 islet equivalents and incubated at 37 degrees with gentle intermittent shaking for 8-10min until the islets were

dispersed into single cells. The digestion process was stopped using an excess volume of cold RPMI medium containing 10% FCS.

The dispersed tissue was washed briefly with cold PBS followed by filtering through a sieve to get rid of any debris and undigested

material. DAPI was added to access the viability of the cells. The tissue was stored on ice until sorting using a FACS Aria II or

FACSJazz (BD biosciences). Live single cells (based on DAPI exclusion and forward/side scatter properties) were sorted into

384-well hard shell plates (Biorad) with 5 ml of vapor-lock (QIAGEN) containing 100-200 nl of RT primers, dNTPs and synthetic

mRNA Spike-Ins and immediately spun down and frozen to�80�C. For cells sorted on cell surface markers; filtered, dispersed cells

were incubated with FITC-CD24 (BD, 560992), PE-CD44 (Cell signaling, 8724S) and/or APC-TM4SF4 (BD, FAB7998A) antibodies for

30 min post dispersion on ice, followed by brief washing and sorting as above.

Single-Cell mRNA Sequencing of Single Cells
For SORT-seq, cells were lysed by 5min at 65�C, after which RT and second strandmixes were dispersed with the Nanodrop II liquid

handling platform (GC biotech). Aqueous phase was separated from the oil phase after pooling all cells in one library, followed by IVT

transcription. The CEL-Seq2 protocol was used for library prep. Primers consisted of a 24 bp polyT stretch, a 4bp randommolecular

barcode (UMI), a cell-specific 8bp barcode, the 50 Illumina TruSeq small RNA kit adaptor and a T7 promoter. mRNA of each cell was

then reverse transcribed, converted to double-stranded cDNA, pooled and in vitro transcribed for linear following the CEL-Seq 2

protocol (Hashimshony et al., 2016). Illumina sequencing libraries were then prepared with the TruSeq small RNA primers (Illumina)

and sequenced paired-end at 75 bp read length the Illumina NextSeq.

Immunofluorescence and Imaging Flow Cytometry
Pancreatic tissue samples were fixed overnight in 4% formaldehyde (Klinipath), stored in 70% ethanol, and subsequently embedded

in paraffin. Sections were deparaffinized in xylene and rehydrated in a series of ethanol, followed by heat assisted antigen retrieval

in citric buffer (pH 6.0). Sections were blocked by incubating with 2% normal donkey serum and 1% lamb serum in PBS. Primary

antibodies included rabbit anti-FTL (ab69090), mouse anti-Glucagon (ab10988) and guinea pig anti-Insulin (ab7842), mouse anti-

trypsin-1 (sc-137077), rabbit anti-REG3a (ab134309) and rabbit anti-ALDH1A1 (ab23375). Sections were incubated in with primary

antibody in PBS/1% lamb serum at 4�C overnight. Alexa Fluor 488-, 568- and 647- conjugated secondary antibodies against rabbit,

mouse, and guinea pig IgG as appropiate (Life Technologies A11008, A10037 and A21450) were diluted 1:200 and incubated at room

temperature for 1 hr. Nuclear counterstaining was done with DAPI and by additionally embedding with DAPI vectashield (Vector

Laboratories #H-1500). Imaging was done on a Leica SP8 confocal microscope using hybrid detectors.

TM4SF4 staining on alpha versus the beta cells was performed on fixed, stained single cells from dispersed human islets.

Dispersed Islet cells were fixed with 4%PFA and washed using 2% FCS/PBS, followed by permeabilization using Perm/Wash buffer

from BD Cytofix/Cytoperm Fixation/Permeabilization Kit (Cat. 554717) 15 min at room temperature. The samples were incubated

with antibodies diluted in Perm/Wash buffer rabbit anti glucagon (1:200) or guinea pig anti insulin (1:200) or anti TM4SF4-APC

(1:50) for 30 min at room temperature. Alexa Fluor 488- conjugated secondary antibodies (directly or in biotin-streptavidin system)

against rabbit, and guinea pig as appropriate (Life Technologies A11008) were diluted 1:200 and incubated at room temperature

for 30 min. These samples were imaged using Amnis ImagestreamX Mark II Imaging Flow cytometer (EMD Millipore, WA USA)

with 488 nm and 642 nm lasers respectively. Analysis was done using the IDEAS software.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data Analysis
Paired-end reads from illumina sequencing were aligned to the human transcriptome with BWA (Li and Durbin, 2009). Read 1 was

used for assigning reads to correct cells and libraries, while read 2 was mapped to gene models. Reads that mapped equally well

to multiple locations were discarded. Read counts were first corrected for UMI barcode by removing duplicate reads that had

identical combinations of library, cellular, and molecular barcodes and were mapped to the same gene. Transcript counts were

then adjusted to the expected number of molecules based on counts, 256 possible UMI’s and poissonian counting statistics.

Samples were normalized by downsampling to a minimum number of 6000 transcripts. StemID was used to cluster cells and

to perform outlier analysis. Differentially expressed genes between two subgroups of cells were identified similar to a previously
e2 Cell Systems 3, 1–10.e1–e3, October 26, 2016
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published method (Anders and Huber, 2010). First, a negative binomial distribution was calculated reflecting the gene expression

variability within each subgroup based on the background model for the expected transcript count variability computed by StemID

(Grün et al., 2016). Using these distributions a p value for the observed difference in transcript counts between the two subgroups is

computed as described in Anders and Huber (2010). These p values were corrected for multiple testing by the Benjamini-Hochberg

method.

DATA AND SOFTWARE AVAILABILITY

Software
The StemID algorithm and custom scripts (Data S1) were run with RStudio, version 0.99.491.

Data Resources
The accession number for the single-cell sequencing data described in this study is GEO: GSE85241.
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