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SUMMARY

Much of current molecular and cell biology research
relies on the ability to purify cell types by fluores-
cence-activated cell sorting (FACS). FACS typically
relies on the ability to label cell types of interest
with antibodies or fluorescent transgenic constructs.
However, antibody availability is often limited, and
genetic manipulation is labor intensive or impossible
in the case of primary human tissue. To date, no sys-
tematic method exists to enrich for cell types without
a priori knowledge of cell-type markers. Here, we
propose GateID, a computational method that com-
bines single-cell transcriptomics with FACS index
sorting to purify cell types of choice using only native
cellular properties such as cell size, granularity, and
mitochondrial content. We validate GateID by purify-
ing various cell types from zebrafish kidney marrow
and the human pancreas to high purity without re-
sorting to specific antibodies or transgenes.
INTRODUCTION

Purification of cell types present in heterogenous tissues is a

central goal for biologists. Fluorescence-activated cell sorting

(FACS) is the method of choice to isolate up to millions of single

cells based onmany cellular parameters. Over the years, flow cy-

tometry became an important tool to study the cellular heteroge-

neity of many complex tissues, especially in the field of cellular

immunology (reviewed by O’Donnell et al., 2013). In a flow cy-

tometer, light scatter parameters can be used to segregate sin-

gle cells based on general cellular properties such as size and

granularity. For example, hematopoietic cell types are known

to occupy distinct areas in forward and side scatter space, which

allows their isolation (Balla et al., 2010; DeRosa et al., 2001; Freel

et al., 2010; Ost et al., 1998; Salzman et al., 1975). Additionally,

FACS can be used to separate single cells based on the expres-

sion of a specific protein when cells are labeled with fluorescent

transgenic constructs or fluorescently coupled antibodies raised
Cell 179, 527–542, Oc
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against that protein (Rodriguez et al., 2017). Although demon-

strated to be powerful, these purification strategies require a pri-

ori knowledge of a cell-specific marker and depend on the

availability of antibodies and/or transgenic constructs. For

example, purification of hematopoietic stem and progenitor cells

(HSPCs) is crucial to study and treat blood-related disorders.

However, no HSPC-specific marker is currently available, and

HSPCs can only be enriched using elaborate sorting strategies

that achieve imperfect purities (Balazs et al., 2006; Bertrand

et al., 2008; Iwasaki et al., 2010; Kiel et al., 2005; Ma et al.,

2011; Osawa et al., 1996; Spangrude et al., 1988). Similarly,

the isolation of a and b cells from the human pancreas is essen-

tial for diabetes research. Despite efforts, antibody discovery

has been hampered by trial-and-error methods that do not

deliver pure populations (Banerjee and Otonkoski, 2009; Dorrell

et al., 2011, 2016). Recently, intelligent image-activated cell sort-

ing (IACS) demonstrated the ability to perform real-time high-

throughput cell microscopy analysis prior to cell sorting (Nitta

et al., 2018). IACS reported high specificity and sensitivity in

identifying targeted populations based on parameters such as

intracellular protein localization and cell-cell interaction.

Although a significant instrument innovation, the use of IACS re-

mains limited because of the need to engineer a highly complex

instrument. Additionally, IACS does not eliminate the need for

prior knowledge of the targeted population and reports sorting

purities below 80%. Overall, no universal sorting strategy appli-

cable in many tissues and model organisms exists, making puri-

fication of many cell types imperfect or impossible.

Sorting decisions are taken based on gate combinations that

select the desired population based on the scatter and fluores-

cence intensity values of choice. Gate placement happens

manually and is therefore highly variable between samples and

error prone. Several methods have been developed with the

aim to automate the gating process, such as CCAST or SPADE

(reviewed by Anchang and Plevritis, 2016). Although these

methods bring an automated step to the gate design, they are

limited to datasets with prior knowledge of the tissue cellular

composition and rely on potential markers for the cell type of

choice, ignoring all other available FACS parameters.

Single-cell RNA-sequencing (scRNA-seq) has become the

method of choice to study cellular heterogeneity within complex
tober 3, 2019 ª 2019 The Author(s). Published by Elsevier Inc. 527
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. GateID Workflow

In step 1, the GateID TD is generated.

(A) Live single cells from the organ of interest are sorted in an unbiased manner, and index data for all available channels are recorded.

(B) Single cells sorted in (A) are sequenced to determine the cell type composition of the organ.

(C) The TD is generated after merging the FACS index data and the cell type information for each single cell.

In step 2, the gates are computationally designed for the desired cell type.

(D) Gates are computed for each possible combination of channels.

(E) The best combination of gates is chosen to maximize the yield and purity of the desired cell type.

In step 3, GateID-predicted gates are tested experimentally.

(F) The predicted gates are normalized to the new experimental dataset.

(G) Single cells in GateID gates are sorted.

(H) After scRNA-seq, cell types present in the GateID-enriched library are determined, and the experimental purity is calculated by comparison with the

unenriched library.

See also Figure S7H and STAR Methods.
tissues (reviewed by Choi and Kim, 2019; Grün and van Oude-

naarden, 2015; Kiselev et al., 2019; Svensson et al., 2018)).

Importantly, scRNA-seq datasets have been used to find new

and more specific markers for cell types composing heteroge-

nous tissues. For instance, human pancreatic tissue has been

widely studied to discover novel markers for all cell types present
528 Cell 179, 527–542, October 3, 2019
in thepancreas (Baronet al., 2016; Engeet al., 2017;Muraroet al.,

2016;Segerstolpe et al., 2016; Tritschler et al., 2017). Thesedata-

sets have alsobeenmined for novel cell surfacemarkers to enrich

acells to 85%purity (Muraroet al., 2016). In a similarmanner, new

surface markers for human blood cell types were uncovered

(Björklundet al., 2016; Villani et al., 2017). Furthermore,CITE-Seq
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(cellular indexingof transcriptomes andepitopesby sequencing),

a method allowing transcriptome and epitope profiling in single

cells, was developed to link mRNA and protein expression

(Stoeckius et al., 2017). Overall, the large diversity of available

scRNA-seq datasets and the need for better solutions to purify

cell types led to the creation of CellMarker, a resource for cell

type markers in many mouse and human tissues (Zhang et al.,

2019). Although a valuable resource, cell type purification is still

limited tocell types forwhich commercial antibodies are available

or for which transgene construction is an option.

To solve this challenge,weset out todevise amethod that could

purify cell types of choice without a priori knowledge of cell type

markers and would rely on general cellular properties. To achieve

this, we combined high-throughput measurements of many

cellular properties by FACS with unbiased cell type identification

by scRNA-seq. This allowed us to find the best cellular parameters

topurify any cell type, as identified by scRNA-seq, of our tissues of

interest. To achieve this goal, we developed GateID, a computa-

tional method that predicts unintuitive combinations of FACS

gates to purify cell types of choice. GateID (1) uses scRNA-seq

for unbiased cell type identification rather than on a limited set of

known cell markers; (2) is antibody and transgene free and solely

relies on general cellular properties such as, but not restricted to,

cell refractive index, granularity, nuclear staining, cellular prolifera-

tion, and mitochondrial activity; and (3) offers automated gate

design and placement, which eliminates manual gating strategies

andcorrects for biological and technical variability betweenexper-

iments. UsingGateID,wepurified various cell types fromzebrafish

kidney marrow, including HSPCs, solely based on their general

cellular properties. Additionally, we isolated live a and b cells

from the human pancreas up to 100% purity and demonstrated

thatGateID-sortedcellscanbeused fordownstreamexperiments,

such as methylome profiling.

RESULTS

GateID Design
GateID is an optimization algorithm that combines the FACS in-

dex and transcriptome information of many single cells to predict
Figure 2. Proof of Principle: Enrichment of Zebrafish Eosinophils Usin
(A) GateID-predicted gates to isolate eosinophils from unstainedWKMonBD FAC

cells (eosinophils) present in TD1, and blue points show undesired cells present in

sorted.

(B) Contour plots of unstained WKM cells showing experimental sorting gates fo

eosinophil enrichment experiments) on BD FACSJazz. Gates in black represent G

normalized sorting gates. Sorted cells passed through normalized gate 1 and ga

(C) t-SNEmap of the complete zebrafishWKM dataset (all WKM TDs and enrichm

based on cell type.

(D) Barplots and t-SNE maps showing the outcome of GateID eosinophil enrichm

were predicted on unstained TD1. In the barplots, numbers within the bars indic

above the bars indicate the cell type fold enrichment between the unenriched and

the WKM dataset. For each experiment, black dots represent single cells in the un

cells in the GateID-enriched library for the same experiment.

(E) Left panel: principal-component analysis (PCA) of zebrafish WKM TD1 (unsta

colored based on cell type identification from scRNA-seq. The ellipses represent n

panel: PC1 and PC2 loadings. Each point represents a FACS channel measured

(F) Curves showing the trade-off between yield and purity of GateID solutions for

unstained (dashed line) cells from the same zebrafish WKM (WKM 7).

See also Figures S1 and S2 and Tables S1 and S2.

530 Cell 179, 527–542, October 3, 2019
non-intuitive combinations of FACS gates capable of purifying a

transcriptionally distinct cell type. Importantly, gate prediction

using GateID is solely data driven and does not require a priori

information about FACS gates, cell types, and cellular markers.

The GateID workflow starts with generating a training dataset

(TD) of the organ or tissue of interest (Figure 1, step 1). To this

end, single live cells are sorted while recording index data in all

available scatter and fluorescence channels (Figure 1, step

1A). Next, the transcriptome of all sorted single cells is

sequenced using SORT-Seq (sorting and robot-assisted tran-

scriptome sequencing), and the cell type composition of the or-

gan/tissue of interest is determined (Figure 1, step 1B; Muraro

et al., 2016). The TD is generated by merging the index sorting

parameters with the cell type information obtained by scRNA-

seq for each cell (Figure 1, step 1C). After defining the desired

cell type, the computational gate design occurs (Figure 1, step

2). At the core of GateID is an optimization algorithm that at-

tempts to predict gates to obtain the maximum number of

desired cells while minimizing the number of undesired cells. It

iterates this procedure through all combinations of FACS chan-

nels and, subsequently, through combinations of gates to pre-

dict the best gates in terms of purity and yield (Figure 1, steps

2D and 2E; STAR Methods). Finally, the GateID-predicted gates

are experimentally validated using a new sample of the organ or

tissue of interest (Figure 1, step 3). Predicted gates are normal-

ized to the new experimental dataset to correct for biological in-

ter-individual variability and FACS technical variability (Figure 1,

step 3F; STAR Methods). Single cells passing through normal-

ized GateID gates are sorted and sequenced using scRNA-seq

(Figure 1, steps 3G and 3H). The cell type composition of the

GateID-enriched library is determined by clustering all cells puri-

fied by GateID gates as well as an unenriched set of cells. Using

this complete dataset, the experimental purity of each GateID-

enriched library is calculated.

GateID Allows Purification of Zebrafish Eosinophils
First, we focused on zebrafish whole-kidney marrow (WKM), the

primary site of production of hematopoietic cells in zebrafish

(Murayama et al., 2006). Their isolation relies on a limited number
g GateID
SJazz. Gates were predicted on unstainedWKMTD1. Red points show desired

the other gate. A blue undesired cell in a gate denotes an impure cell that will be

r eosinophils for the WKM 2 experiment (representative example for WKM 1–3

ateID-predicted gates prior to normalization, whereas red gates show GateID-

te 2. Percentages of events within each gate are indicated.

ent experiment datasets of this study, n = 15,984 cells). Single cells are colored

ents for three independent experiments (WKM 1–3) on BD FACSJazz. Gates

ate the percentage of eosinophils in the corresponding library, and numbers

GateID enriched library. On the t-SNEmaps, gray points represent all cells from

enriched library for a given experiment, whereas colored dots represent single

ined, BD FACSJazz). Each point represents a single cell, and single cells are

ormal contour lines that contain 50% of the data points for each cell type. Right

by the BD FACSJazz.

HSPCs, lymphocytes, monocytes, and eosinophils on stained (solid line) and
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of antibodies, transgenic lines, or manual gating subject to high

variability (Traver et al., 2003; Wittamer et al., 2011). To assess

whether GateID could be a more attractive method, we gener-

ated a TD1 of single live WKM hematopoietic cells (DAPI�) by

merging FACS index data in 12 dimensions (BD FACSJazz)

and cell type information for 1,252 cells from 3 zebrafish. Using

cell clustering and knownmarkers, we identified 7 hematopoietic

cell types (Carmona et al., 2017; Grün et al., 2016; Kobayashi

et al., 2010; Macaulay et al., 2016; Moore et al., 2016; Figures

S1A–S1C; STAR Methods) and first aimed to enrich for eosino-

phils. GateID predicted a purity of 79.3% and a yield of 46.9%

to isolate eosinophils using a combination of two gates (Figures

2A and S1D; Table S1). We define the purity of a set of GateID

gates as the number of desired cells in the gates divided by

the total number of cells in the gates. Additionally, the yield of

GateID is the number of desired cells in the gates divided by

the number of desired cells in our tissue of interest. We verified

that 46.9% of eosinophils selected by GateID-predicted gates

were not representing a transcriptionally distinct population of

eosinophils (Figure S1E). To experimentally validate the pre-

dicted gates, we sorted GateID-enriched and unenriched single

cells from three independent WKMs (Figure 2B). Predicted gates

were normalized to each newWKM to correct for inter-individual

and technical variability (Figure 2B; STAR Methods). After

scRNA-seq, to ensure high confidence in our cell type identifica-

tion and purity estimates, we clustered all of our zebrafishGateID

experiments together (WKM 1–15, TD1–3), resulting in 15,984

single cells (Figures 2C and S1F; STARMethods). We calculated

the experimental purity of all of our WKM experiments based on

this full dataset. The above-mentioned eosinophil enrichment ex-

periments achieved an experimental purity of between 68.9%

and 78%, even with eosinophil content as low as 0.6% in the un-

enriched population (Figure 2D, barplots; n = 3). The reason why

experimental purity can vary from predicted values lies in the in-

dividual variation that can be observed in both cell type compo-

sition and FACS measurements per experiment (Figures 2 and

S2A). Interestingly, we observed that contaminating cells inter-

mingled with enriched eosinophils in FACS space and were diffi-

cult to eliminate (Figure S2B). The contaminating population in all

experiments consisted mainly of monocytes. This is not surpris-

ing because eosinophils andmyeloid cells occupy partly overlap-

ping FACS regions (Balla et al., 2010). Importantly, enriched

eosinophils from each experiment clustered with eosinophils in

the unenriched population (Figure 2D, t-SNE [t-distributed sto-

chastic neighbor embedding] maps), showing that GateID-en-

riched cells capture the existing transcriptional variance in eosin-
Figure 3. General Dyes Enhance Hematopoietic Cell Type Segregation

(A) Left panel: PCA of zebrafish WKM TD2 (stained, BD FACSJazz). Each point r

fication from scRNA-seq. The ellipses represent normal contour lines that contain

Each point represents a FACS channel measured by the BD FACSJazz.

(B) Barplots and t-SNE map showing the outcome of GateID enrichments of eos

(C) Contour plots of stainedWKMcells showing experimental sorting gates for HSP

HSPC enrichment experiments) on BD FACSJazz. Sorted cells passed through g

(D) Projection of the sorted GateID HSPCs for WKM 10 in FSC height versus S

experiments).

(E) t-SNE map of zebrafish WKM TD2, where HSPCs inside and outside of GateI

(F–H) Barplots and t-SNE maps showing the outcome of HSPC enrichments for

See also Figures S3 and S4 and Table S1.

532 Cell 179, 527–542, October 3, 2019
ophils from the unenriched library. Finally, to compare GateID

with manual gating, we isolated eosinophils as described previ-

ously (Balla et al., 2010; Figure S2C). This manual gating yielded

lower enrichment compared with GateID and revealed stronger

myeloid contamination (Figures S2D and S2E).

General Cellular Properties Can Be Used to Further
Segregate Cell Types in FACS Space
Wenext aimed to isolate additional hematopoietic cell types from

WKM.Our TD1wasobtainedusingWKMcellswith a limited num-

ber of cells per individual, andGateIDwas unable to predict gates

with satisfyingpurity and yield for HSPCs, lymphocytes, ormono-

cytes (Figure S2F). Principal-component analysis (PCA) of the

FACS index data showed that most of the cell types intermingle

in PCA space (Figure 2E, left panel). When plotting the principal-

component loadings of the dataset, we observed that only for-

ward scatter (FSC) and side scatter (SCC) parameters contribute

to significant variability in PC spaceand that fluorescent channels

have a contribution close to zero (Figure 2E, right panel). We hy-

pothesized that enhancing cell type separation in FACS space

was necessary to purify additional hematopoietic cell types. We

aimed to keep GateID antibody- or transgene-free and therefore

chose to stain WKM cells with generic, easy-to-use cellular

dyes.We choseMitoTracker, a fluorescent dye that reflectsmito-

chondrial abundance and activity, and carboxyfluorescein succi-

nimidyl ester (CFSE),whichbinds tocytoplasmicproteins.Neither

dye stains any one cell type specifically. As validation, we used a

newWKM and split it in two parts, one of which was stained with

MitoTracker, CFSE, andDAPI (hereafter referred to as ‘‘stained’’),

whereas the other was stained only with DAPI (hereafter referred

to as ‘‘unstained’’).We sorted and performed scRNA-seq on both

libraries andevaluatedall two-gatecombinations forHSPCs, lym-

phocytes, monocytes, and eosinophils (Figure 2F). We observed

that unstained samples resulted in gates with lower yield and pu-

rity compared with stained samples.

GateID Allows Purification of Zebrafish HSPCs on
Distinct FACS Machines
We generated a new TD2 containing 1,202 stainedWKMcells on

a BD FACSJazz (Figure S3A). PCA showed that cell types were

more segregated, andwe found thatMitoTracker and CFSE fluo-

rescence channels ([488] 670/long pass [LP] and [488] 530/40,

respectively) highly contributed to this segregation (Figure 3A).

Additionally, we generated another stained WKM TD on a BD

FACSInflux. This TD3 contained 1,036 cells for which index

data were recorded in 27 dimensions (Figure S3B). We used
in FACS Space to Allow HSPC Purification with GateID

epresents a single cell, and single cells are colored based on cell type identi-

50% of the data points for each cell type. Right panel: PC1 and PC2 loadings.

inophils (WKM 4) on BD FACSJazz. Gates were predicted on stained TD2.

Cs for theWKM10 experiment (representative example forWKM 5, 10, and 15

ate 1 and gate 2. Percentages of events within each gate are indicated.

SC height (representative example for WKM 5, 10, and 15 HSPC enrichment

D gates are colored red and blue, respectively.

(F) WKM 5, (G) WKM 10, and (H) WKM 15 on BD FACSJazz.
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Figure 4. GateID Allows Purification of Zebrafish Lymphocytes

(A) Contour plots of stainedWKM cells showing experimental sorting gates for lymphocytes for theWKM 10 experiment (representative example for WKM 5, 6, 8,

and 10 lymphocyte enrichment experiments) on BD FACSJazz. Sorted cells passed through gate 1 and gate 2. Percentages of events within each gate are

indicated.

(legend continued on next page)
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TD2 and TD3 to design gates to enrich multiple hematopoietic

cell types and demonstrated that GateID performance would

be independent of the FACS machine of use. First, we repeated

the eosinophil enrichments using stained WKM cells and sorting

with a BD FACSJazz (Figure S3C). Notably, although GateID-

predicted gates are unconventional and humanly unintuitive,

we show that our gated and enriched population is transcription-

ally unbiased compared with unenriched cells and maps back in

the same region as the classical manual FACS gate (Balla et al.,

2010; Figures S3D and S3E). We obtained higher purities (85.4%

on average) compared with unstained cells (73.9% on average)

(Figure 3B; Figures S3F and S3G; n = 3). Next we used GateID

to predict gates to enrich for HSPCs. GateID predicted a yield

of 20% and a purity of 90.5% to isolate HSPCs on a BD

FACSJazz using a combination of two gates, one of them using

the MitoTracker fluorescence channel (Figure 3C). Not surpris-

ingly, the projection of GateID-enriched HSPCs on the classical

dimensions of FSC height and SSC height was similar to what is

published (Figure 3D; Balla et al., 2010). We validated that the

GateID-selected HSPCs clustered with the ones excluded by

GateID, proving unbiased gate prediction (Figure 3E). Experi-

mentally, we were able to enrich HSPCs to an average purity

of 89% (Figures 3F–3H; n = 3). Additionally, GateID predicted a

yield of 30% and purity of 98.6% to isolate HSPCs on a BD

FACSInflux (Figures S4A–S4C). We obtained purities averaging

67% and observed no bias toward a subset of HSPCs upon

GateID enrichment (Figures S4D–S4F; n = 3). Importantly, we

compared our transcriptomics method for cell type calling with

manual histological classification to calculate purities. We found

high correlation between both methods to calculate HSPC pu-

rities after enrichment using GateID (Figure S4G). Finally, to

benchmark GateID, we compared it with a classical method of

enriching HSPCs based on their low expression of CD41 (Fig-

ure S3H; Bertrand et al., 2008; Ma et al., 2011). Enriched HSPCs

from the CD41low fraction from CD41-eGFP transgenic zebrafish

yielded inferior purity compared with GateID-predicted gates

(Figures S3I and S3J). Surprisingly, the enriched HSPCs were

contaminated by neutrophils. This result suggested that neutro-

phils reside partially in the cd41low WKM fraction, an observation

that would have gone undetected without the combination of

single-cell FACS and transcriptome information.

GateID Allows Purification of Zebrafish Lymphocytes
and Monocytes
Next we used GateID to isolate lymphocytes (Figures 4A–4C).

Experimentally, with BD FACSJazz, we obtained unbiased

enrichment between 77% and 91.7% (Figures 4D–4G;

n = 4). In silico, we tested the efficiency of lymphocyte manual

gating because lymphocytes are characterized by their small

FSC height and SSC height properties (Figure S4H; Balla

et al., 2010). The manual gate yielded 60.9% purity and ex-

hibited HSPC contamination (Figure S4I). We then challenged
(B) Projection of the sorted GateID lymphocytes for WKM10 in FSC height vers

enrichment experiments).

(C) t-SNE map of zebrafish WKM TD2 where lymphocytes inside and outside of

(D–G) Barplots and t-SNE maps showing the outcome of lymphocyte enrichmen

See also Table S1.
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GateID to isolate a subset of myeloid cells on both BD

FACSJazz and BD FACSInflux. Neutrophils and monocytes

are strongly intermingled in side scatter height versus forward

scatter height (Balla et al., 2010). However, GateID made use

of the CFSE or MitoTracker dimensions to design gates to pu-

rify monocytes (see Figures 5A–5C for BD FACSInflux and Fig-

ures S5A–S5C for BD FACSJazz). We succeeded in enriching

monocytes to average purities of 87.1% on BD FACSInflux

and 79.7% on BD FACSJazz (Figures 5D–5F; Figures S5D–

S5F). We found the enriched populations to overlap with the

one present in the live population in t-SNE space for all exper-

iments and found neutrophils to be the highest source of

contamination. Importantly, we show that the performance

of GateID does not depend on the proportion of the desired

cell type in the tissue of interest because no correlation

(Pearson’s r = 0.07) was found between the achieved experi-

mental purity and the abundance of the cell type of interest in

all 22 of our WKM enrichment experiments (Figure 5G).

GateID Allows Purification of a and b Cells from the
Human Pancreas
Next we used GateID on primary human tissue with clinical

relevance. We and others have previously sequenced single

cells from islets of Langerhans obtained from human cadaveric

material to describe the transcriptomes of the major pancreatic

cell types (a, b, d, PP [pancreatic polypeptide], acinar, and

ductal cells) (reviewed in Carrano et al., 2017). Unfortunately,

isolating live a and b cells to high purity remains a challenge.

Although a screen for novel markers for human pancreatic

cell types resulted in purified populations of several pancreatic

cell types, d cell markers were found in the enriched b cell pop-

ulation compared with other cell types, indicating contamina-

tion from delta cells (see Table 1 in Dorrell et al., 2011). We

thus set out to use GateID to enrich a and b cells to high purity

from human pancreas without resorting to any antibodies. First

we used one of the donors from our previous dataset (donor 30)

as a TD (Muraro et al., 2016). We merged the BD FACSJazz in-

dex parameters with the cell type information for 664 DAPI�
single cells (Figure S6A, TD1). GateID predicted 43% yield

and 100% purity for a cells and 52% yield and 100% purity

for b cells (Figures S6B and S6D). To experimentally validate

the GateID-predicted gates, we used a new donor (donor 1)

to sort enriched and unenriched cells (Figures S6C and S6E).

We clustered all scRNA-seq data from our pancreas experi-

ments to call cell types and calculate the experimental purities.

This combined dataset resulted in 10,176 cells representing 8

distinct pancreatic cell types (Figures 6A and S6F). For donor

1, we obtained 97.2% a cell purity and a 78.3% pure b cell

population (Figure S6G, barplot). Importantly, GateID-enriched

a and b cells clustered together with the unenriched population,

revealing unbiased enrichment of both cell types (Figure S6G,

t-SNE maps). We observed that contamination in donor 1
us SSC height (representative example for WKM 5, 6, 8, and 10 lymphocyte

GateID gates are colored red and blue, respectively.

ts for (D) WKM 5, (E) WKM 6, (F) WKM 8, and (G) WKM 10 on BD FACSJazz.
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when enriching for b cells originated from all other pancreatic

cell types, indicating overall inefficient exclusion of undesired

cell types. We hypothesized that TD1 did not contain enough

information about the undesired cells that would be present

in an experimental sort or a larger dataset, leading to inefficient

exclusion of undesired cells. To test this hypothesis, we built a

larger TD2 of 2,255 cells by sorting DAPI-stained single cells on

a BD FACSJazz and performing scRNA-seq to identify the main

pancreatic cell types (Figure S6H). PCA showed that the cell

types present in TD2 were robustly segregated in PCA space

(Figure 6B). First, we repeated the a cell enrichment with new

predicted gates designed on TD2 (yield 51% and purity 97%;

Figures 6C and 6D) and obtained 89% experimental purity (Fig-

ure 6H). GateID predicted gates of 26% yield and 98% purity

for b cells (Figures 6E and 6F). We experimentally validated

these gates with three independent donors (donors 2–4) and

achieved an average purity of 95% (Figures 6G and 6H; Fig-

ure S6I). In t-SNE space, GateID-enriched b cells did not sepa-

rate from the ones in the unenriched fraction showing unbiased

enrichment. Driven by these experimental results and to more

precisely estimate the adequate size of a TD, we performed b

cell gate design using GateID on various datasets computation-

ally generated from TD1 (Figure S7A; STAR Methods). We

computationally changed the ratio of contaminating cells in

the enlarged datasets to visualize the effect of the proportion

of non-b cells on the performance of GateID gates. We

observed that gates designed on a smaller dataset (13 TD1,

664 cells) fare poorly in comparison with gates designed on a

larger dataset (23 and 33 TD1; 1,328 and 1,992 cells, respec-

tively). Overall, in line with our results with WKM TDs, we found

TDs ranging from 1,000 to 1,300 to allow robust gate design

using GateID.

GateID ImprovesCell Type Purification UsingAntibodies
Finally, we tested whether GateID could improve manual gating

of antibody-stained cells. To this end, we performed a new set of

experiments for which we created an antibody-stained human

pancreas dataset (Figure 7A). This dataset contained (1) our

previously published pancreas dataset stained with CD24-fluo-

rescein isothiocyanate (FITC) (an endocrine marker) and

TM4SF4-APC (an a cell marker) antibodies (Muraro et al.,

2016; termed TD3 here) and (2) two new GateID experiments

(donors 5 and 6) where gates were predicted on the abovemen-

tioned TD3. To obtain TD3, TM4SF4+ cells within theCD24� frac-

tion were gated to purify a cells (Figure 7B). Additionally, CD24�

and NOT(TM4SF4+) cells were sorted to enrich for b cells. Finally,
Figure 5. GateID Allows Purification of Zebrafish Monocytes

(A) Contour plots of stained WKM cells, showing experimental sorting gates for m

and 14 monocyte enrichment experiments) on BD FACSInflux. Sorted cells pas

indicated.

(B) Projection of the sorted GateID monocytes for WKM 11 in FSC height vers

enrichment experiments).

(C) t-SNE map of zebrafish WKM TD3, where monocytes inside and outside of G

(D–F) Barplots and t-SNE maps showing the outcome of monocyte enrichments

(G) Scatterplot showing the percentage of the desired cell type in the unenriche

enrichment experiments. Points are colored based on the cell type enriched (oran

lymphocytes) and shaped based on the FACS machine used for isolation (triang

See also Figure S5 and Table S1.
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unenriched cells were isolated to obtain the cell type composi-

tion of the pancreatic tissue. We clustered the cells from TD3,

donor 5, and donor 6 and calculated that manual gating with an-

tibodies resulted in 80.8% purity for a cells and 76.8% for b cells

(Figure 7C). Next we used GateID to predict gates on TD3 for a

and b cells. PCA revealed that the antibody channels ([640]

660/20 for TM4SF4 and [488] 530/40 for CD24) contributed to

a and b cell separation (Figure 7D). GateID predicted combina-

tions of two gates for a cells and three gates for b cells (Figures

7E and 7F, respectively). Using two new pancreatic samples

(donors 5 and 6) to test GateID-predicted gates and calculate

experimental purities, we obtained 96.1% and 100% purity for

a cells and 85.9% purity for b cells (Figures 7G and 7H).

Purified GateID Live Cells Can Be Used for Downstream
Methylome Profiling
To demonstrate that live cells purified by GateID can be used as

input for downstream experiments, we set out to obtain the

methylomes from GateID-enriched a and b cells from the human

pancreas. Despite efforts, an unbiased genome-wide character-

ization based on bisulfite sequencing (BS-seq) has been lacking

(Neiman et al., 2017). We used BS-seq on GateID-purified pop-

ulations of a and b cells isolated from two donors (donors 4 and

5, 250 cells each; Clark et al., 2017). As described in Neiman

et al. (2017), we identified many differentially methylated loci.

Within the top 1,000 bins ordered by the variance of their average

methylation values per bin, we found 183 bins to be significantly

differentially methylated (Benjamini and Hochberg-adjusted

p < 0.05; Table S2). Figure S7B shows the output of hierarchical

clustering using these bins, with cell types from different donors

clustering together, whereas Figure S7C shows the same bins

annotated for different genomic features. We found promoter

and 50 or 30 UTRs with significant differential methylation be-

tween a and b cells, some of which are highlighted in Figure S7B.

These include the insulin (INS2) promoter, which is methylated in

a cells but significantly lowly methylated in b cells. Other exam-

ples of genes include SIX2, which we and others found to be

differentially upregulated in b cells and which shows age-related

expression in humans (Arda et al., 2016; Muraro et al., 2016).

Interestingly, WNT5B, a gene previously associated with type 2

diabetes but for which a cell-specific expression has never

been reported, appears to display b cell hypermethylation that

would require further validation (Dorrell et al., 2011). Other genes

in this analysis include genes with known pancreatic cell-type-

specific function, like INS-IGF2 and PDX1, but also many

others that have no reported pancreatic function, which yields
onocytes for the WKM 11 experiment (representative example for WKM 11, 12,

sed through gate 1 and gate 2. Percentages of events within each gate are

us SSC height (representative example for WKM 11, 12, and 14 monocyte

ateID gates are colored red and blue, respectively.

for (D) WKM 11, (E) WKM 12, and (F) WKM 14 on BD FACSInflux.

d library versus the achieved GateID purity in the enriched library for all WKM

ge for eosinophils, dark blue for HSPCs, light blue for monocytes, and green for

les for BD FACSJazz and circles for BD FACSInflux).
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a valuable resource for further research regarding the link be-

tween methylome and pancreatic cell function.

DISCUSSION

We have described a novel computational method that com-

bines single-cell transcriptomics and single-cell FACS to predict

FACS gates that allow cell type enrichment without the aid of

transgenes or antibodies. To demonstrate the effectiveness of

GateID, we enriched four major hematopoietic cell types from

the zebrafish WKM. Our approach proves sufficiently robust to

enrich for hematopoietic cell types ranging from 0.5% (eosino-

phils) to 35% (monocytes) of the total WKM cell composition

(Figures 2, 3, 4, and 5). The performance of GateID is also inde-

pendent of age and gender because we did not control for these

parameters when choosing our zebrafish or human samples.

Additionally, our approach allows purification of more than one

cell type from one animal, as shown by purifying eosinophils,

lymphocytes, and monocytes from WKM 8 (Figures 4G, S3F,

and S5F).

We also showed that GateID could enrich for human a and b

cells from the islets of Langerhans up to 99% purity (Figures 6

and 7). With our pancreatic datasets, we demonstrate the impor-

tance of the composition of the TD and we find that three factors

play a role in the performance of a TD to design gates, in order of

importance: (1) the distinction between desired and undesired

cell types in FACS space, (2) the proportion of undesired cells

(potential contamination) in the TD, and (3) the number of desired

cells in the TD. Although generating such a TD can be a limitation

because of the costs of scRNA-seq, we note that TDs can be

used to generate gates for all cell types present in the organ of

choice. Additionally, because of GateID’s robust normalization

strategy, the user is able to enrich for a desired cell type in an un-

limited number of experiments on different samples. Overall, our

pancreatic enrichment experiments demonstrate that GateID

can be used to purify human cell types from primary tissues

without resorting to antibodies often limited in their availability.

Overall, with the increase in applications using machine

learning in everyday and scientific areas, we believe that FACS

machines could benefit from innovations such as GateID. For

example, models capable of identifying cell types from FACS

readouts could be trained prior to a sort and deployed as part

of the FACS software. Computations achieved in real time as
Figure 6. GateID Allows Enrichment of a and b Cells from Human Pan

(A) t-SNE map of the complete pancreas dataset (all pancreas TDs and unstaine

based on cell type.

(B) Left panel: PCA of human pancreas TD2 (unstained, BD FACSJazz). Each p

identification from scRNA-seq. The ellipses represent normal contour lines that

loadings. Each point represents a FACS channel measured by the BD FACSJazz

(C) Contour plots of unstained human pancreas cells showing experimental gates u

Percentages of events within each gate are indicated.

(D) t-SNE map of human pancreas TD2, where a cells inside and outside of Gate

(E) Contour plots of unstained human pancreas cells showing experimental gates u

Percentages of events within each gate are indicated.

(F) t-SNE map of human pancreas TD2, where b cells inside and outside of Gate

(G andH) Barplots and t-SNEmaps showing the outcome ofGateID a and b cell en

on unstained TD2.

See also Figures S6 and S7 and Table S1.
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the cell passes through the FACS nozzle could allow gate-free

cell type purification. We anticipate that GateID will pave the

way for implementing machine learning-based antibody and/or

transgene-free automated cell type purification as a routine

FACS tool.

Limitations
In the WKM, we demonstrate that separation of the desired cell

type compared with other cell types in FACS space can be an

important variable in the performance of GateID. A limitation of

GateID is that it may not always perform well when cell types

largely overlap in FACS space. That is, certain cell types might

prove difficult to segregate based on their scatter and autofluor-

escence properties alone. Although these properties were

sufficient to predict GateID gates for zebrafish eosinophils and

human pancreatic a and b cells, they were not sufficient for ze-

brafish lymphocytes, HSPCs, and monocytes (Figure S2F).

Although remaining antibody- and transgene-free, we demon-

strated that general dyes (MitoTracker andCFSE) allow segrega-

tion of hematopoietic cell types in FACS space and allow

successful gate prediction and validation (Figures 3, 4, and 5).

General dyes are very diverse, can be coupled to various fluoro-

chromes, and are inexpensive and very easy to use. We there-

fore believe that implementing general dyes when generating a

TD is relatively simple and will generate many additional gate

combinations, allowing gating for the desired cell type.

In our pancreas experiments, we demonstrated the effect of

biological variability between training and experimental datasets

on GateID’s performance. Variability mainly springs from vari-

able proportions and statistical properties of cell types in

different datasets. GateID offers a normalization strategy to cor-

rect for such variability. However, GateID normalization performs

adequately only when the TD captures sufficient diversity from

the chosen sample. Therefore, the TD will need to contain a

sufficient number of cells and cover the cellular diversity of the

tissue of interest. In light of these observations, GateID’s perfor-

mance will be limited in biological systems where new cell states

arise, such as a differentiating tissue or different time points dur-

ing embryonic development. In such systems, a new TD will be

required to capture the FACS index and transcriptome features

of the new cell types or states and design GateID gates.

Finally,GateID requires a scRNA-seqmethod that is compatible

with the recording of index data (Figure 1). Here we demonstrate
creatic Islets

d enrichment experiment datasets, n = 10,176 cells). Single cells are colored

oint represents a single cell, and single cells are colored based on cell type

contain 50% of the data points for each cell type. Right panel: PC1 and PC2

.

sed to sort a cells from donor 4. Sorted cells passed through gate 1 and gate 2.

ID gates are colored red and blue, respectively.

sed to sort b cells from donor 3. Sorted cells passed through gate 1 and gate 2.

ID gates are colored red and blue, respectively.

richments for (G) donor and (H) donor 4 on BDFACSJazz. Gates were predicted
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GateID’s performance usingSORT-Seq togenerate transcriptom-

ics data of single cells sorted on a BD FACSJazz or FACSInflux to

record index information.Weenvision that any flowcytometer that

allows importing of gates from external sources or a manual

input of gate coordinates can be used in combination with any

plate-based scRNA-seq method. However, microfluidics-based

scRNA-seq methods that take single-cell suspensions as input

are not compatible with GateID. Despite this technical limitation,

and as sequencing costs continue to decline, we expect broad

application of GateID to make purification of any given cell type

easier and to allow enrichment of cell types never before isolated.
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RcppDE/index.html

R package tmvtnorm Wilhelm and Manjunath, 2010 https://cran.r-project.org/web/packages/

tmvtnorm/index.html

Other

BD FACSJazz BD N/A

BD FACSInflux BD N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

SORT-Seq reagents and equipment for scRNA-seq

(CEL-Seq 2 based)

Muraro et al., 2016 N/A

Nanodrop II liquid handling platform GCBiotech N/A

40um cell strainer VWR Cat #10054-462

70um cell strainer VWR Cat #10054-456
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Alexander

van Oudenaarden, Hubrecht Institute (a.vanoudenaarden@hubrecht.eu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human cadaveric donor pancreata were procured through a multi-organ donor program. Pancreatic tissue was only used if the

pancreas could not be used for clinical pancreas or islet transplantation, according to national laws, and if research consent was

available. Age and sex of donors were not controlled. In total, 6 human donor pancreata were procured.

Zebrafish experiments using AB and CD41:GFP transgenic lines were performed in accordance with institutional and govern-

mental regulations and were approved by the Dier Experimenten Commissie of the Royal Netherlands Academy of Arts and Science

and performed according to the guidelines. Age and sex of zebrafish were not controlled.

METHOD DETAILS

Tissue isolation
The WKM of WT and CD41-GFP zebrafish were isolated as described previously (Stachura and Traver, 2011). Briefly, after a ventral

midline incision the internal organs were removed. The kidney was carefully dissected and collected in PBS supplemented with 5%

FCS. To mechanically dissociate single hematopoietic cells, the tissue was passed multiple times through a 1 mL low-bind pipet tip.

The cells were filtered (70um and 40um cell strainers (VWR)) and washed. The pellet of hematopoietic cells was resuspended in PBS/

FCS supplemented with DAPI (dilution 1/2000, Thermo Fisher) to assess cell viability. In case of staining, the pellet of hematopoietic

cells was resuspended in PBS/FCS supplemented with both MitoTracker and CFSE (dilution 1/4000) and incubated at room temper-

ature for 10 min. Cells were washed and resuspended in PBS/FCS supplemented with DAPI as described above. For TD generation,

DAPI- single cells were sorted (BD FACSJazz or BD FACSInflux) and erythrocytes with low forward and side scatter were excluded as

described in Figure S1A. For GateID enrichment experiments, cells passing through all gates were sorted. For histology, pools of

10.000 cells were sorted in PBS supplemented with FCS and fixed 10 min in 4% PFA. After washing, cytospins were performed

as described in ref. 5. Cells were post-fixed on slide and May-Grunwald-Giemsa staining was performed following manufacturer’s

instructions.

Human pancreas isolation and staining with APC-TM4SF4 and FITC-CD24 was done as described previously (Muraro et al., 2016).

Briefly, islets were cultured in CMRL 1066 medium (5.5 mM glucose) (Mediatech) supplemented with 10% human serum, 20 mg/ml

ciprofloxacin, 50 mg/ml gentamycin, 2 mM L-gluta- min, 0.25 mg/ml fungizone, 10 mM HEPES and 1.2 mg/ml nicotinamide for

3-6 days. Islets were maintained in culture at 37C in a 5%CO2 humidified atmosphere. Medium was refreshed the day after isolation

and every 2-3 days thereafter until cell sorting. The islets were cultured for 3-5 days after islet isolation. Culture time depended on the

decision time needed for considering islets for trans- plantation and FACS. For cells sorted on cell surface markers; filtered,

dispersed cells were incubated with FITC-CD24 (BD, 560992) and APC-TM4SF4 (BD, FAB7998A) antibodies for 30 min post disper-

sion on ice, followed by brief washing and sorting as above.

scRNA-Seq
Weused SORT-seq to sequence the transcriptome from single cells and store FACS information from single cells (index files) (Muraro

et al., 2016). All sorts were carried out using BD FACSJazz or BD FACSInflux. Unless mentioned otherwise, we used the following

protocol for both model systems mentioned in this study. We lysed cells by incubating them at 65�C for 5 min, and then used Nano-

drop II liquid handling platform (GC biotech) to dispense RT and second strandmixes. The aqueous phase was separated from the oil

phase after pooling all cells into one library, followed by IVT transcription. The CEL-Seq2 protocol was used for library prep (Muraro

et al., 2016). Primers consisted of a 24 bp polyT stretch, a 4 or 6bp randommolecular barcode (UMI), a cell-specific 8bp barcode, the

50 Illumina TruSeq small RNA kit adaptor and a T7 promoter. We used TruSeq small RNA primers (Illumina) for preparation of Illumina

sequencing libraries and then paired-end sequenced them at 75 bp read length using Illumina NextSeq at approximately 45 million

and 30 million reads for zebrafish kidney marrow and human pancreatic libraries respectively.
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GateID algorithm
The goal of GateID is to predict gates toward sorting a desired cell type from amixture of multiple cell types. In other words, we want

to purify a specific cell type to maximum purity while sorting a sufficient fraction of the desired cells. Recent advances in flow cytom-

etry allow users to index sort, which is to save and associate flow cytometry readouts pertinent to each sorted cell. After performing

single-cell mRNA sequencing, one can thenmerge this information with the cell type annotation (Figure 1 – Step 1) for each cell. Such

a merged dataset forms the starting point for GateID, and we refer to it as training data.

Gate prediction
We treat gate prediction as an optimization problem, wherein predicted gates allow a minimal number of undesired cells while maxi-

mizing the number of desired cells. The algorithm takes as input a matrix with FACSmeasurements and cell type annotation for each

cell. It requires the desired cell type and the minimum yield to be input by the user. Yield is defined as a percentage of desired cells

(of the total number of desired cells) that are predicted to pass through the gates. GateID first predicts a gate for each pair of flow

cytometer channels, comprising scatter and fluorescence channels, where each gate is represented as a polygon with four vertices.

The starting gate is computed by setting its vertices to represent the 2nd and 98th percentile in each of the x and y axis and functions

as the starting point for the optimization algorithm. We use a two-step optimization as follows for the prediction of a gate: 1- The first

step finds a gate that contains at least the user-specified minimum yield for desired cells while minimizing the number of undesired

cells in the gate. Fitness of each solution is thus defined by the number of undesired cells in the gate. The highest fitness is the com-

plete absence of undesired cells within the gate. The requirement of minimum yield is enforced by assigning the worst fitness (equiv-

alent to the total number of undesired cells in the dataset) to a solution not adhering to this constraint. 2- The second step takes as

input the solution (gate) of the first step and tries to maximize the yield while disallowing an increase in undesired cells. Fitness in this

step is thus defined as the number of desired cells within the gate. Best fitness is achieved when all desired cells are sorted by the

gate. The requirement of maximum number of undesired cells is enforced by assigning the worst fitness of zero yield to a solution not

adhering to the constraint.

By default, each step is run for 20000 iterations. While evaluating fitness at each iteration, we only allow solutions involving convex

polygons thereby dismissing non-convex shapes that may result in over-fitting on the training data. Once gates for each pair of FACS

channels are predicted, gate combinations can then be evaluated in logical conjunction (AND combination) such as all combinations

of two gates, all combinations of three gates or a higher order. For example, many of the experiments in this study were carried out on

BD FACSJazz, which records cytometry readouts in twelve channels, six scatter and six fluorescence channels. There are thus

C(12,2) = 66 channel pairs and 66 gates. 66 gates can be further combined to yield 2145 pairwise gate combinations (C(66,2)) eval-

uated in an AND configuration, meaning a cell has to pass through both gates to be sorted. As a general rule, the more gates are

added in AND configuration, the slower the sorting during enrichment will be and the more cells will be lost during the sort. This is

especially crucial to keep in mind when enriching from limited input material.

A possibly better strategy could be to optimize a pair of gates in AND combination together, because optimization together may

allow an increase in yield while reducing impurity in a coordinated fashion. One can thus optimize all 2145 combination of pairwise

gates together. In all examples we tested, two gates were enough to achieve high purity. These include stained samples of HSPCs,

lymphocytes, eosinophils, and monocytes. While optimizing all 2145 pairwise gates is possible, the number quickly explodes there-

after to 45760 (combinations of 3 gates) and 720720 for 4 gate combinations and thus may become intractable. This leads us to the

third intuitive approach - that of recursive gating: once gates for each combination of FACS channels are predicted (66 gates in this

study), the best gate in terms of purity is selected. This gate is paired with each other gate and re-optimized together. This process is

repeated until 100% purity is reached, no overall improvement is observed in the subsequent iteration or if the number of gates ex-

ceeds a user-defined preset limit. Even if there are differences in methods mentioned above, different approaches predict gates that

are comparable in yield and purity, demonstrated by experiments enriching eosinophils from the unstained sample (Figure 2), wherein

the firstmethodwas used versus experiments enriching eosinophils from the stained sample, where each pair of gateswas optimized

together (Figures 3, 4, and 5). Both experiments predicted similar purities for enrichment of eosinophils. Gates for pancreatic cell

typeswere predicted by using the firstmethod of optimizing gates separately, which predicted and achieved high purities experimen-

tally (Figures 6 and 7; Figure S6).

As stated above, the objective function of the optimization procedure is to predict gates that allow a minimal number of undesired

cells while maximizing the number of desired cells. This presents a discrete problem for optimization, the objective function for which

is not smooth. In addition, scRNA-seq along with flow cytometry results in a limited number of cells, wherein the complete variance of

each cell type populationmay not be captured sufficiently, especially for rarer cell populations. To address these problems, we chose

a derivative-free, fast, and robust optimization algorithm calledMA-LS-Chains, which combines an evolutionary algorithm along with

a local search and is available as an R package (Rmalschains) (Bergmeir et al., 2016). Such algorithms are known to converge faster

andmore reliably without being trapped in local optima (references within Bergmeir et al., 2016). While theoretically any robust global

optimization algorithm may suffice, a comparison with other algorithms (Figures S7F and S7G, and see below) shows that MA-LS-

Chains is both fast and optimizes to the best purity. This is not surprising in the light of the ‘‘no free lunch’’ theorems, which state that

certain optimization algorithms may do better than others for a certain kind of problem (Wolpert and Macready, 1997).
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Gate normalization
The procedure above states in brief how gates are predicted. However, every sorted biological sample is different owing to multiple

sources of variability. For example, variability is introduced during tissue isolation and subsequent sorting. An added layer of vari-

ability springs from fluctuating proportion of each cell type per isolation and variability in the statistical properties for each cell

type in FACS space. For instance, the inconsistency in the proportion of each cell type can be readily observed by comparing the

unenriched barplots in Figures 2, 3, 4, 5, S2, S3, S4, and S5 for the zebrafish, and Figures 6, 7, and S6 for human pancreas. Such

inconsistency is further exacerbated by an overall shift in the distribution of all points demonstrated in Figure S2A (WKM1-3). For

example, the distribution of side scatter height changes from a maximum of �500 (WKM1) to �100 (WKM2 and WKM3). Such vari-

ability requires that GateID predicted gates also change with respect to the current experiment in real-time (Figure 1 – Step 3F).

The first approach, normalizationmethod 1, is to deal with such variability by standardizing the values for the vertices of gates to the

unenriched population of cells of the TD using z-normalization. During FACS enrichment, one can analyze sufficient events (�10000)

and use the mean and the standard deviation of the population of the current sort to normalize gates using the reverse of z-normal-

ization procedure. Another method for gate normalization is elaborate and requires machine learning, and we refer to it as normal-

ization method 2. Briefly, one first trains a machine learning classifier to classify the desired cell type based on the training data. The

current sort, however, could have a different overall distribution of points, different cell type proportion therefore changing the sta-

tistical variance in different dimensions and is known to create a problem for classifiers. Thus, data from the current sort needs to be

normalized to the target distribution of the training data for each FACS channel. To do this, one can use methods such as non-linear

qspline normalization used to compare different microarray chips to each other (Workman et al., 2002). Once the new data are

normalized in this fashion, we classify the cells therein as desired and undesired cells using the trained classifier. We next z-normalize

predicted gates to the desired cells fromour training data and renormalize them to the predicted desired cells in the newdata from the

current sort. We again use z-normalization, but instead of normalizing the gates to the complete dataset, we normalize them using

only the predicted desired population.

More practically, for both methods, the initial step is to acquire data in all FACS channels for 10000 events of the new experimental

dataset (Figure S7H, step a). This data, which we refer to as ‘‘pre-sort data’’ is exported from the FACS machine (as an FCS file) and

loaded into R to perform the normalization. This step can be done live at the FACS in a few minutes. The exported pre-sort data

loaded into R is used for gate normalization (Figure S7H step b): 1- Method 1 performs reverse z-normalization of the GateID pre-

dicted gates using the mean and standard deviation of all the cells in the pre-sort data. Computationally, method 1 will take no longer

than a fewminutes. 2- Method 2 first performs a non-linear q-spline normalization of the pre-sort data to match the target distribution

of the TD (Workman et al., 2002). Then, the identity of the cells in the normalized pre-sort data are classified as desired or undesired

using the trained classifier, which is trained prior to the sort. This classifier needs to be trained only once on the training data and can

be used as is for every subsequent sort. Finally, the GateID predicted gates are z-normalized to the desired cells (classified by the

trained classifier). Computationally, method 2 can take up to 15 min if the classifier was not trained prior to the sorting experiment.

However, one can train the machine learning classifier on the TD in advance, making normalization method 2 no longer than a few

minutes. This approach accounts for high variability in cell type proportions from experiment to experiment, as opposed to the

reverse z-normalization strategy on the complete set of points, which accounts for overall variability in the distribution of the whole

dataset. We note that one can also use normalization method 2 without the use of qspline normalization but with machine learning

included to train and then predict desired cells from the current FACS enrichment experiment. The output of bothmethods is normal-

ized gate coordinates (x and y values for each vertex of each gate) that can be imported to the FACS machine through a software

interface or the XML file of the software workspace (Figure S7H step c).

Gate prediction and normalization for zebrafish WKM
To predict gates for eosinophils from the unstained zebrafish WKM, we used GateID to optimize gates on each of the pairs of FACS

channels (66 gates) and then computed the best combination of two gates in an AND combination. Gates were normalized using the

normalization method 1 for each of the eosinophil sorts from the unstained WKM. For experiments concerning hematopoietic cell

types in the stained WKM on BD FACSJazz (HSPCs, lymphocytes, monocytes, and eosinophils), we optimized all 2145 gate com-

binations together in a pairwise fashion. For experiments on BD FACSInflux, we optimized 61425 gate combinations together in a

pairwise fashion. As one can observe from the eosinophil enrichment, both methods yielded experimentally similar results

(Figures 2D, 3B, and S3). Gates were normalized for each sort using normalization method 2.

Gate prediction and normalization for human pancreatic alpha and beta cells
For alpha and beta cells from the human islets of Langerhans, we optimized gates for each of the pairs of FACS channels (66 gates)

and computed the best combination of gates in AND configuration. Gates for alpha cell and beta cells predicted from the smaller

training data (TD1, Figure S6A) were normalized using the mean normalization method 1 relying on the whole population of cells,

as were the beta cell gates for the second donor, based on the second TD (Figure S6H). To compare normalization methods,

beta cells from the third donor were normalized using both normalization method 1 and 2 that yielded similar results. We display

the results from method 2 in Figure 6.
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Comparison of different optimization algorithms
Different optimization algorithmsmay perform variably for different optimization tasks. To check if our choice of using MA-LS-Chains

was indeed the best, we evaluated eight different optimization algorithms (Figures S7F and S7G). These were controlled random

search (CRS, R package: nloptr (Price, 1983) (Kaelo and Ali, 2006)), continuous genetic algorithm (GA, R package: GA (Scrucca,

2013)), MA-LS-Chains (R package: Rmalschains (Bergmeir et al., 2016)), bounded Hooke-Jeeves (HJK, R package: dfoptim (Kelley,

1999)), bounded Nelder-Mead (NMK, R package: dfoptim (Kelley, 1999)), simulated annealing (SA, R package: GenSA (Xiang et al.,

2013)), DEoptim (R package: RcppDE (Mullen et al., 2011)), bound optimization with quadratic approximation (BOQA, R package:

nloptr (Powell, 2009)). We randomly chose two gates to optimize together using the stained WKM and HSPCs as the desired cells.

For each optimization algorithm, we optimized those gates for maximum purity with at least a 20% yield. We repeated this process

100 times while choosing two random gates to optimize every iteration and recorded the purity of each optimization algorithm.

Computational generation of inflated dataset(s) for understanding the size of training data
It is important to understand the size of TD required for the generation of robust gates. Here, we wish to make a distinction between

the feasibility of designing a gate and its efficacy during a real experiment. GateID can design gates with little number of cells, as in the

case of eosinophils from the unstained training data 1 for the zebrafishWKM. In this particular case, there are 48 eosinophils in the TD

(3.8%of total cell composition). Eosinophils are relatively distinct in FACS space allowing GateID to predict gates with high-predicted

purity. However, an enrichment experiment involvesmanymore cells with higher variance in their FACS readouts that may not always

be represented in the TD. If this is the case, GateID cannot take into account FACS profiles for possible contaminating cell types that

are not visible to the algorithmwhile predicting gates. Thus, in practice, GateID predicted gates may not perform as predicted using a

smaller dataset. We believe this is the reason behind the fact that the predicted beta cell gates designed on the first limited TD

(664 cells) of the pancreas did not yield the predicted purity in the enrichment experiment (Figure 6G, donor 1 – 78.3% purity). To

further check if our hypothesis was true, we did the following computational experiment. We used our limited TD from the pancreas

(TD1, 664 cells) to generate two larger datasets using truncated multivariate sampling. Briefly, we sampled random instances from a

normal distribution parameterized by the mean and variance of each cell cluster in the dataset, for each FACS channel. We used this

method to increase the size of our dataset twofold and then threefold. We took care that the random deviates resided within the

bounds of zero and a maximum of the particular FACS channel, similar to data from a FACS experiment. This method also ensured

that the artificial datasets would have identical proportion of cell clusters in comparison to the training data. We then used GateID to

design gates on both these artificial datasets.

To evaluate the performance of the gates generated above, it is important to take into account that contaminating cells may be

higher in number in another experiment. We therefore listed the most common cell type(s) that contaminates beta cell gates

(alpha cells and delta cells for our dataset) and increased its proportion in stepwise fashion while generating a dataset of a larger

size. Here, we used a size of 20000 cells, which is in the same range as an actual experiment involving sorting of live cells. We

then evaluated the gates predicted by GateID on our actual TD 1 (664 cells) and two artificial TDs on this test dataset. We repeated

this evaluation test 50 times for each of the three sets of gates. We observed that gates designed on a smaller dataset (1x) fare poorly

in comparison to gates designed on a larger dataset (2x and 3x) (Figure S7A). Specifically, increasing the TD two-fold to 1328 cells

ensures higher mean purity even in the case of twice the number of contaminating cells and may ensure higher robustness to

fluctuations in cell proportions.

Truncated multivariate sampling was carried out using package ‘tmvtnorm’ in R.

QUANTIFICATION AND STATISTICAL ANALYSIS

scRNA-Seq data analysis
Zebrafish WKM and human pancreas were analyzed separately as follows. For each model system we analyzed, paired-end reads

were aligned to the transcriptome of that model system using BWA (Li and Durbin, 2009). We used Read 1 for assigning reads to

correct cells and libraries, while read 2 was mapped to gene models. Only reads mapping to unique locations were kept. We cor-

rected read counts for UMI barcodes by removing duplicate reads that had identical combinations of library, cellular, and molecular

barcodes and were mapped to the same gene. Transcripts were counted using 256 UMI barcodes for the human pancreas (TD3 and

donors 1, 5 and 6) and 4096UMI barcodes for the other human donors and the zebrafish kidney. The counts were then adjusted using

Poissonian counting statistics to yield the number of UMIs detected per cell as described in (Figures S7D and S7E).

Data were normalized by median normalization to a minimum number of 500 transcripts and genes expressing at least three

transcripts in at least two cells were retained for zebrafish WKM. Pancreatic data were median normalized to 3000 transcripts

and only genes expressing 5 transcripts in at least 3 cells were retained for downstream analysis. We then computed the Pearson’s

distance (1 - p) between cells. To cluster cells, we used a method previously published in (Scialdone et al., 2016). Briefly, we used

hierarchical clustering (‘hclust’ R function with ‘ward.D20 method) to cluster cells. To identify the number of clusters, we used

‘cutreeDynamic’ along with the ‘hybrid’ method which allows the user to specify a ‘deepSplit’ parameter controlling the sensitivity

of clustering. We evaluated 100 subsamples of our data by randomly selecting 90%of the genes in the dataset, specifying the ‘deep-

Split’ parameter as an integer from 0 to 4 and evaluating the average silhouette width of the number of clusters. This procedure re-

sulted in identifying the correct cell types for both datasets of the zebrafish WKM data and the pancreatic data.
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While evaluating the results of our enrichment experiments, we clustered all data together to ensure maximum confidence in re-

sulting purity estimates. For zebrafish, this involved clustering both TDs and enrichment experiments (WKM 1-15) resulting in 15984

cells in all. For this clustering, we used the mnnCorrect function for batch correction (Haghverdi et al., 2018). For the pancreas data,

clustering both TDs and data from four donors resulted in a total of 10176 cells.

Differentially expressed genes between two subgroups of cells were identified similar to a previously publishedmethod (Grün et al.,

2014). Briefly, we started by modeling the background expected transcript count variability. We then identified genes in each sub-

group that were variably expressed by representing gene expression of each gene as a negative binomial distribution. We then

computed Benjamini-Hochberg corrected p-values for the observed difference in transcript counts between the two subgroups

as described earlier (Anders and Huber, 2010) and identified differentially expressed genes (adjusted p-value < 0.01). Such genes

were then used to annotate specific cell types within each model system based on known published literature.

For the zebrafish WKM data, we selected the topmost ten genes for each cell type ordered by their log fold change in expression

when comparing the gene’s expression in a specific cell cluster compared to other cell clusters taken together (Figure S1C). Some

known marker genes, especially for HSPCs and lymphocytes do not make the top ten list. We manually added them to our list of

differentially expressed genes. We then used hierarchical clustering to cluster genes in seven clusters (one for each cell type). We

found that our manually added genes, namely, meis1b, myb (denoting HSPCs) and pax5, cd79b (denoting lymphocytes) clustered

in the appropriate clusters and do not show expression elsewhere (Figure S1C) (Tang et al., 2017). Marker gene lists for all hemato-

poietic cell types are appended to this manuscript as Table S3.

DATA AND CODE AVAILABILITY

The accession numbers for the scRNA-seq datasets reported in this study are available on GEO: GSE112438. The R code is available

on Github: https://github.com/chlbaron/GateID.
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Supplemental Figures
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Figure S1. Generation of the Zebrafish WKM Unstained TD, Related to Figure 2

(A) Contour plots of sorted live WKM cells to generate WKM TD1. The left panel show the DAPI- gate used to select live cells and the right panel shows the gate

used to exclude erythrocytes that are low in FSC Height space.

(B) t-SNE map of zebrafish WKM TD1 generated on BD FACSJazz. Single cells are colored based on cell type.

(C) Heatmap showing marker genes for all hematopoietic cell types identified in the WKM full dataset.

(D) GateID predicted gates to isolate eosinophils from unstained WKM TD1. Grey points are undesired cells in TD1. Orange points are eosinophils outside both

GateID predicted gates (excluded by GateID). Red points are eosinophils inside both GateID predicted gates (sorted by GateID).

(E) t-SNE map of zebrafish WKM TD1 where eosinophils inside and outside of GateID gates are colored in red and blue respectively.

(F) t-SNE map of experimental contributions to the zebrafish WKM full dataset. Single cells are colored based on experiment number.
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Figure S2. Eosinophil Enrichments with Unstained WKM Cells on BD FACSJazz, Related to Figure 2

(A) FSC Height and SSC Height contour plots of all WKM cells analyzed for eosinophils enrichment experiments WKM 1 to 3. Histograms on each plot show

population density is FSC and SSC Height channels.

(B) Plots showing sorted unenriched and GateID enriched cells for eosinophil experiments WKM 1 to 3 in FSC and SSC Height. Grey points are cells from the

unenriched library and colored points are cells from the GateID enriched library. Sorted eosinophils in the GateID enriched library are highlighted in orange and

sorted non-eosinophil contaminating cells in the GateID enriched library are represented in black.

(C) FSC Height and SSC Height contour plot of all WKM cells for WKM 2. The eosinophil manual gate used in WKM 2 experiment is represented in red

(representative for WKM 2 and 3 manual enrichment experiments).

(D and E) Barplots and t-SNE maps showing the outcome of eosinophil enrichments using manual gating for two independent experiments: (D) WKM 2 and (E)

WKM 3 on BD FACSJazz. In the barplots, numbers in the bars indicate the percentage of eosinophils in the corresponding library and numbers above the bars

indicate the cell type fold enrichment between unenriched and manually enriched library. On the t-SNE maps, gray points represent all cells from the WKM

dataset. For each experiment, black dots are single cells in the unenriched library for a given experiment, while colored dots are single cells in the manually

enriched library for the same experiment.

(F) Curves showing trade-off between yield and purity of GateID solutions for eosinophils, monocytes, lymphocytes and HSPCS for the unstained TD1. All gates

for a given cell type with lower purity or yield are internal to these curves and are not shown. Dashed lines represent our thresholds for acceptable yield (0.3) and

purity (0.8).
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Figure S3. General Dyes Enhance Hematopoietic Cell Type Segregation in FACS Space and Allow Purification of Eosinophils and HSPCs on

BD FACSJazz, Related to Figure 3

(A) t-SNE map of zebrafish stained WKM TD2 generated on BD FACSJazz. Single cells are colored based on cell type.

(B) t-SNE map of zebrafish stained WKM TD3 generated on BD FACSInflux. Single cells are colored based on cell type.

(C) Contour plots of stained WKM cells showing normalized sorting gates for eosinophils for WKM 8 experiment (representative example for WKM 4, WKM 8 and

WKM 9 eosinophil enrichments) on BD FACSJazz. Sorted cells passed through gate 1 and gate 2. Percentages of events within each gate are indicated.

(D) t-SNE map of zebrafish WKM TD2 where eosinophils inside and outside of GateID gates are colored in red and blue respectively.

(E) Projection of the sorted GateID eosinophils in WKM 8 (representative example for WKM 4, 8 and 9 eosinophil enrichment experiments) in FSC Height versus

SSC Height.

(F and G) Barplots and t-SNE maps showing the outcome of eosinophil enrichments for (F) WKM 8 and (G) WKM 9 on BD FACSJazz.

(H) Left panel: FSC Height versus CD41-EGFP dot plot of live singlet WKM cells. The CD41low gate is represented in red. Right panel: projection of the CD41low

sorted cells in FSC Height versus SSC Height.

(I) Barplot indicating cell type percentages for sorted CD41low cells. Percentage in the barplot indicates HSPC percentage in the sorted library.

(J) t-SNE map showing sorted CD41low cells. Non HSPCs are represented in gray and HSPCs in red.



(legend on next page)



Figure S4. HSPC Enrichments with Stained WKM Cells on BD FACSInflux, Related to Figures 3 and 4

(A) Contour plots of stainedWKM cells showing experimental sorting gates for HSPC for theWKM 11 experiment (representative example for WKM 11, 12 and 13

HSPC enrichment experiments) on BD FACSInflux. Sorted cells passed through gate 1 and gate 2. Percentages of events within each gate are indicated.

(B) t-SNE map of zebrafish WKM TD3 where HSPCs inside and outside of GateID gates are colored in red and blue respectively.

(C) Projection of the sorted GateID HSPCs for WKM 10 in FSC Height versus SSC Height (representative example for WKM 11, 12 and 13 HSPC enrichment

experiments).

(D–F) Barplots and t-SNE maps showing the outcome of HSPC enrichments for (D) WKM 11, (E) WKM 12 and (F) WKM 13 on BD FACSInflux.

(G) Scatterplot showing experimental purities of GateID predicted gates determined by scRNA-seq (x axis) and histological analysis (y axis) for HSPCs (dark blue)

and monocytes (light blue) on BD FACSJazz (triangle) and BD FACSInflux (circle).

(H) Design of in silico reconstruction of the manual gate for lymphocyte enrichment. Cells fromWKMTD2 are represented in gray andmanual gate is drawn in red.

(I) Barplots indicating cell type percentages for the lymphocyte in silico manual gate. Percentage in the barplot indicates lymphocyte percentage in the in silico

manual gate.



Figure S5. Monocyte Enrichments with Stained WKM Cells on BD FACSJazz, Related to Figure 5

(A) Contour plots of stained WKM cells showing experimental sorting gates for monocytes for WKM 8 experiment (representative example for WKM 4, 7 and 8

monocyte enrichment experiments) on BD FACJazz. Sorted cells passed through gate 1 and gate 2. Percentages of events within each gate are indicated.

(B) Projection of the sorted GateID monocytes for WKM 8 in FSC Height versus SSC Height (representative example for WKM 4, 7 and 8 monocyte enrichment

experiments).

(C) t-SNE map of zebrafish WKM TD2 where monocytes inside and outside of GateID gates are colored in red and blue respectively.

(D–F) Barplots and t-SNE maps showing the outcome of monocyte enrichments for (D) WKM 4, (E) WKM 7, and (F) WKM 8 BD FACJazz.



(legend on next page)



Figure S6. Gates for Enrichments of a and b Cells from Unstained Pancreatic Tissue on BD FACSJazz, Related to Figure 6

(A) t-SNE map of human pancreas TD1 generated on on BD FACSJazz. Single cells are colored based on cell type.

(B) GateID predicted gates to isolate alpha cells from human pancreas. Gates were predicted on TD1. Red points show desired cells (alpha cells) present in TD

and the blue points show undesired cells falling in the other gate.

(C) Contour plots of unstained human pancreas cells showing experimental gates used to sort alpha cells from donor 1. Sorted cells passed through gate 1 and

gate 2. Percentages of events within each gate are indicated.

(D) GateID predicted gates to isolate beta cells from human pancreas. Gates were predicted on TD1. Red points show desired cells (beta cells) present in TD and

the blue points show undesired cells falling in the other gate.

(E) Contour plots of unstained human pancreas cells showing experimental gates used to sort beta cells from donor 1. Sorted cells passed through gate 1 and

gate 2. Percentages of events within each gate are indicated.

(F) t-SNE map of human pancreas full dataset. Single cells are colored based on experiment number.

(G) Barplots and t-SNE map showing the outcome of GateID alpha and beta cell enrichments for donor 1 on BD FACSJazz. Gates for were predicted on

unstained TD1.

(H) t-SNE map of human pancreas TD2 generated on BD FACSJazz. Single cells are colored based on cell type.

(I) Barplots and t-SNE map showing the outcome of GateID beta cell enrichment for donor 2 on BD FACSJazz. Gates for were predicted on unstained TD2.



(legend on next page)



Figure S7. a and b Cells Purified with GateID Can Be Used for Methylome Analysis, Related to Figure 6

(A) Average beta cell purity depending on TD size and proportion of contaminating cells in the TD. The y axis denotes the average GateID purity and its standard

deviation. The x axis represents the fold change of the proportion of the contaminating cells in the TD. The curves represent different datasets: 1x is the original

pancreas TD1 (678 cells), while 2x and 3x datasets are enlarged by two (1356 cells) or three (2034 cells) fold, respectively.

(B) Hierarchical clustering of mean methylation values for differentially methylated bins from the most variable bins, wherein methylation is shown in a gradient

from blue (low) to red (high). Methylation in pancreatic alpha and beta cells cluster by cell type instead of donor of origin (indicated in columns). Bins with

annotated genes of interest (rows) are shown on the right.

(C) Bins used in (D) were annotated and grouped by their genomic features for donor 4, wherein each point represents an average methylation value for a certain

bin. Average methylation from alpha cells is shown on the x axis while y axis represents beta cells.

(D and E) Histogram of UMI counts and number of detected genes per cell for (D) zebrafish WKM full dataset and (E) human pancreas full dataset.

(F) Purity estimate for 100 samples of gate optimization for a pair of gates using different optimization algorithms. The figure shows that MA-LS-Chains shows the

best purity in comparison to 8 different optimization algorithms used here.

(G) Time (in seconds) 100 samples of gate optimization for a pair of gates using different optimization algorithms. NMK and BOQA algorithms are fast but at the

cost of substandard solution for the gate prediction problem.

(H) Workflow of the normalization of GateID predicted gates to a new experimental dataset. In step a, the data of 10000 events is exported live from the FACS

machine to a laptop. In step b, the GateID gates are normalized leading to normalized gate coordinates (for each gate vertex (rows) the x and y gate coordinates

are printed). Finally, in step c, the normalized gate coordinated are imported back into the FACS instrument via a software interface or the XML file of the

workspace).
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