
Leading Edge

Primer
Design and Analysis
of Single-Cell Sequencing Experiments
Dominic Grün1,2,3 and Alexander van Oudenaarden1,2,*
1Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), 3584 CT Utrecht, the Netherlands
2University Medical Center Utrecht, Cancer Genomics Netherlands, 3584 CX Utrecht, the Netherlands
3Max Planck Institute of Immunobiology and Epigenetics, D-79108 Freiburg, Germany

*Correspondence: a.vanoudenaarden@hubrecht.eu
http://dx.doi.org/10.1016/j.cell.2015.10.039

Recent advances in single-cell sequencing hold great potential for exploring biological systems
with unprecedented resolution. Sequencing the genome of individual cells can reveal somatic mu-
tations and allows the investigation of clonal dynamics. Single-cell transcriptome sequencing can
elucidate the cell type composition of a sample. However, single-cell sequencing comeswith major
technical challenges and yields complex data output. In this Primer, we provide an overview of
available methods and discuss experimental design and single-cell data analysis. We hope that
these guidelines will enable a growing number of researchers to leverage the power of single-cell
sequencing.
Introduction
Understanding the development and function of an organ re-

quires the knowledge of its constituents, i.e., of all the different

cell types the organ is composed of. It is still common practice

to distinguish cell types based on a small set of marker genes.

These can be used to isolate sub-populations of cells, e.g., by

fluorescence-activated cell sorting (FACS), which can then be

characterized by population-based assays such as next-gener-

ation sequencing. This approach is inherently constrained, since

a pre-selection of marker genes limits the resolution and vari-

ability within a marker-gene-expressing sub-population of cells

cannot be resolved. Moreover, even cells of the same type can

show substantial gene expression variability leading to pheno-

typic variation (Eldar and Elowitz, 2010; Munsky et al., 2012;

Snijder and Pelkmans, 2011). The ideal approach to profile the

cell type composition of an organ or to explore transcriptome

heterogeneity across cells of the same type is a separate anal-

ysis of individual cells randomly drawn from a sample. Single-

cell analysis of a small number of genes can be performed with

imaging-based methods such as single-molecule fluorescence

in situ hybridization (Raj et al., 2008) or by flow cytometry, ex-

ploiting cell surface markers or fluorescent reporter proteins.

Single-cell transcriptome analysis, on the other hand, is an

experimental approach to obtain an unbiased view of all mRNAs

present in a cell. Already by 1992 the expression of selected

genes in individual neurons had been quantified by Southern

blotting after amplifying the entire pool of mRNAs from a cell

(Eberwine et al., 1992). Single-cell transcriptome sequencing

had initially been applied by the Surani laboratory in 2009

(Tang et al., 2009). Over the last five years, a number of single-

cell mRNA-sequencing methods with improved sensitivity and

reduced technical noise have been introduced (Hashimshony

et al., 2012; Islam et al., 2011, 2014; Picelli et al., 2013; Ramsköld

et al., 2012; Sasagawa et al., 2013). These methods have been

used to discriminate cell types in healthy tissues (Jaitin et al.,
2014; Zeisel et al., 2015), to study differentiation dynamics

(Treutlein et al., 2014), to discover rare cell types (Grün et al.,

2015), to investigate the transcriptome response upon external

signals (Shalek et al., 2013, 2014), or to profile tumor heteroge-

neity (Patel et al., 2014).

The genotypic variation that underlies cell-to-cell differences

can be explored by single-cell genomics. In a landmark study,

sequencing of the genomic DNA from single-tumor cell nuclei

was employed to profile chromosome copy numbers in order

to elucidate clonal expansion and tumor evolution (Navin

et al., 2011). Subsequently, a number of improved methods

have been published permitting the detection of genomic copy

number variations and other structural rearrangements with

increasing spatial resolution (Falconer et al., 2012; Gole et al.,

2013; Wang et al., 2012; Zong et al., 2012).

In this Primer, we give an overview of the available techniques

for genome and transcriptome sequencing, discuss the specific

aspects and limitations of each method, and propose guidelines

for designing single-cell sequencing experiments. Since any sin-

gle-cell sequencing technique is based on amplification of min-

ute amounts of material leading to substantial technical noise

(Brennecke et al., 2013; Grün et al., 2014), data processing

and analysis require extra care. We will discuss in depth all

necessary steps for data acquisition, filtering, and analysis,

with a focus on single-cell transcriptomics.

Isolating Single Cells for Sequencing
To perform any kind of single-cell sequencing assay, individual

cells first have to be isolated from the system of interest. The

method of choice to purify thousands of single cells is FACS.

With unrestricted sorting gates, random samples of cells can

be purified. Alternatively, sorting gates can be set based on

scatter properties reflecting the morphology and composition

of a cell. Fluorescently labeled antibodies against cell surface

markers provide another strategy to purify sub-groups of cells.
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Current technology permits the simultaneous measurement of

up to 20 parameters per cell and thus highly specific sub-groups

of cells can be isolated by FACS (Chattopadhyay and Roederer,

2012). These can be sorted directly into 96- or 384-well plates

amenable to subsequent single-cell sequencing. Importantly,

the parameter information can be allocated to each well. How-

ever, flow cytometry requires a large starting volume, and sorting

errors can lead to wells with cell doublets or empty wells.

Micromanipulation provides an alternative approach when

only a few cells are available and visual inspection of a cell is

desired prior to sequencing. Here, cells are aspirated with a

glass micropipette under the microscope. However, this method

is very laborious and not well suited to high-throughput single-

cell analysis.

More recently, microfluidic devices became available that

enable sorting single cells into individual compartments where

cells can be visuallymonitored and further processed. This Fluid-

igm C1 autoprep system is particularly suited to single-cell

sequencing (Islam et al., 2014; Pollen et al., 2014). A shortcoming

of this method is the fixed chip architecture that limits the selec-

tion of cells to a certain size window. A more detailed discussion

of single-cell isolation methods has been published recently

(Saliba et al., 2014).

Comparison of Whole-Genome Amplification
Techniques
Being able to sequence the genome of individual cells permits

the investigation of many relevant questions. Over the lifetime

of an organism, cells undergo multiple rounds of division. During

each cell division, DNA replication errors can escape the DNA

repair machinery with a small probability and can lead to

so-called somaticmutations, which can give rise to cancer (Alex-

androv and Stratton, 2014) and other diseases (Biesecker and

Spinner, 2013). Moreover, a surprisingly high frequency of chro-

mosomal abnormalities has been observed during mammalian

germline development (Nagaoka et al., 2012). All types of germ-

line and somatic genome mutations, comprising substitutions,

insertions and deletions (indels), copy number variations (CNV)

and structural rearrangements, can in principle be detected by

DNA sequencing. Moreover, genetic inheritance can be studied

by quantifying maternal and paternal allele frequencies based

on single-nucleotide polymorphisms (SNPs). However, a single

mammalian cell contains less than 10 pg of DNA, necessitating

whole-genomeamplification (WGA) prior to sequencing ormicro-

array-based analysis. Currently available WGA principles are

based on polymerase chain reaction (PCR), multiple displace-

ment amplification (MDA), or a combination of the two. PCR-

based strategies initiate amplification by either priming with

random oligonucleotides (Cheung and Nelson, 1996; Zhang

et al., 1992) or by universal adaptors that are ligated to DNA frag-

ments after enzymatic digestion (Klein et al., 1999). MDA utilizes

isothermal amplification by a DNA polymerase with strand

displacement activity, typically f29, initiated by random priming

of denaturedDNA (Dean et al., 2002). The polymerase possesses

high processivity and generates DNA amplicons up to 10 kb in

length. Upon contact between the 30 end of an amplicon and

the 50 end of an adjoining amplification product during synthesis,

the latter gets displaced, liberating the strand for further amplifi-
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cation. All available methods introduce technical artifacts origi-

nating from non-uniform genome coverage, in particular due to

biased amplification of sequence rich in cytosine and guanosine

(GC-bias), preferential allelic amplification or allelic dropout, base

copy errors, and chimeric DNA molecules (Macaulay and Voet,

2014). Since the prevalence of a particular type of error depends

on the method, the experimental technique should be selected

based on the desired readout. In general, random primed PCR-

based methods achieve a highly uniform amplification but yield

only sparse coverage of the genome and are thereforewell suited

for low-resolution copy number variant detection down to a

length scale of 60 kb (Möhlendick et al., 2013). Due to the high

processivity in combinationwith the stranddisplacement activity,

a much better genome coverage can be achieved with MDA.

Togetherwith the high fidelity of thef29polymerase, thismethod

is better suited for SNP calling. On the other hand, MDA yields

highly non-uniform amplification, and the observed biases are

only partially explained by the GC bias. This implies the risk of

false positives if MDA is used for CNV detection. Moreover,

both PCR- and MDA-based techniques produce chimeric DNA

molecules, introducing artifacts that can be interpreted as indels

or structural rearrangements (Voet et al., 2013).

A technique for obtaining broad coverage of the genome

together with uniform amplification was recently developed

that combines pre-amplification by a polymerase with strand-

displacement activity and amplification by PCR (Zong et al.,

2012). The method, termed multiple annealing and looping-

based amplification cycles (MALBAC), pre-amplifies DNA with

a strand-displacement polymerase and generates amplicons

with complementary ends. This complementarity induces loop

formation and prevents the amplicon from being used as a tem-

plate during subsequent cycles to attain close-to-linear amplifi-

cation. After five cycles of pre-amplification, the material is

amplified exponentially by PCR. Sequencing of MALBAC-ampli-

fied material from a single cell yielded 93% genome coverage at

an average 253 sequencing depth. Due to the improved unifor-

mity and a substantially lower allele dropout rate in comparison

to MDA (�1% for MALBAC versus �31%–65% for MDA [Leung

et al., 2015; Zong et al., 2012]), MALBAC shows higher detection

efficiency for SNPs and CNVs. The residual false-positive rate of

MALBAC (�4 3 10�5) is due to the relatively low fidelity of the

polymerase and could be reduced by sequencing two or three

daughter cells derived from the same mother cell. MALBAC is

therefore well suited for the simultaneous characterization of

SNPs and CNVs.

Another strategy to eliminate amplification biases and alleviate

non-uniformity of genome coverage inherent to MDA is the

reduction of the reaction volume, for instance, by using nano-liter

reaction wells (Gole et al., 2013). This method, termedmicro-well

displacement amplification system (MIDAS), reduces reaction

volume by �1,000-fold in comparison to conventional MDA,

thereby increasing the effective template concentration and

reducing contamination. Traditional whole-genome amplifica-

tion requires extensive purification in order to reduce environ-

mental contamination. In another study, a nano-liter reaction vol-

ume was obtained by applying microfluidics to WGA, thereby

minimizing amplification error and yielding an extremely low error

rate of 43 10�9 (Wang et al., 2012). A more detailed comparison



of the available WGA methods has been presented elsewhere

(Macaulay and Voet, 2014).

Following WGA, quantification can be performed either by

DNAmicroarrays or by next-generation sequencing. Microarrays

can resolve larger CNVs, down to less than 100 kb (Möhlendick

et al., 2013), and SNP arrays have been used to infer genome-

wide haplotypes from a single human cell with high accuracy

(Fan et al., 2011). Moreover, family-based phasing approaches

were successfully applied for haplotyping human embryos (Otto-

lini et al., 2015). Next-generation sequencing offers the advan-

tage that every amplified base of the DNA is quantified with

digital precision and thus enables detection of all types of anom-

alies, while the microarray readout is constrained by the probe

library. Moreover, paired-end sequencing provides additional in-

formation since the mapped loci of the two ends together with

the fragment size distribution can reveal structural rearrange-

ments within the genome. Of note, sequencing the genome of

a single cell with the Strand-seq protocol retains the strand infor-

mation and allows the derivation of sister chromatid exchange

(Falconer et al., 2012). This method provides valuable informa-

tion for de novo genome assembly or the revision of existing

assemblies.

Although substantial progress has been made toward attain-

ing high coverage and uniformity of WGA, there is room for

improvement of existing methods, as recently demonstrated

by the development of MALBAC (Zong et al., 2012) or by scaling

down the reaction volume in order to reduce amplification (Gole

et al., 2013; Wang et al., 2012).

Analysis of Single-Cell Genome Sequencing Data
The first step in the data analysis after obtaining a file with

sequencing reads is mapping to a reference genome. The

genomic DNA sequence for most model organisms can be

readily obtained from various online databases, such as the

UCSC genome browser (Meyer et al., 2013) or www.ensembl.

org (Cunningham et al., 2015). Prior to mapping, it is advisable

to inspect the read quality and trim low-quality bases as well

as remaining adaptor sequences at the end of the reads. How-

ever, if the remaining read length is too short, reads should be

discarded in order to avoid erroneous mappings. Furthermore,

it is recommended to remove PCR duplicates. After themapping

is performed, reads that map to more than a single locus should

be discarded or counted with reduced uniform weight for each

locus, such that the weights of each read add up to one. Subse-

quent processing depends on the type of analysis. To determine

CNVs, local variability in read coverage can be alleviated by seg-

menting the genome into bins. After correcting the number of

reads within each bin for GC bias CNV breakpoints can be deter-

mined based on a comparison of the change in read number be-

tween adjacent bins to a background model (Venkatraman and

Olshen, 2007; Zhang et al., 2013). For instance, the circular bi-

nary segmentation algorithm (Venkatraman and Olshen, 2007)

uses t-statistics with a permutation reference distribution to infer

p values for breakpoints. Another study employed a hiddenMar-

kov model for CNV detection, with the hidden states corre-

sponding to the local copy number (Zong et al., 2012). Abnormal

copy numbers in a cancer cell were inferred after eliminating the

amplification bias with a normalization factor derived from a non-
cancer cell. The emission probabilities of this model correspond

to binary vectors indicating whether the cancer cell had higher

copy number than the normal cell. The numerous published

methods for CNV detection using next-generation sequencing

were discussed in a recent review (Zhao et al., 2013).

The genome analysis toolkit GATK comprises a bundle of

methods for processing of next-generation sequencing data

and variant calling (McKenna et al., 2010). In particular, it con-

tains a Bayesian framework that can be used for SNP detection.

For each locus, the genotype with the highest posterior probabil-

ity is emitted if its log odds ratio exceeds a defined threshold. A

comprehensive overview and a comparative analysis of existing

software tools for SNP calling from next-generation sequencing

data can be found in the literature (Nielsen et al., 2011). An

advanced method for the detection of structural rearrangements

utilizes paired-end read information by creating a bona fide list

of discordantly mapped read pairs and identifies candidate rear-

rangements supported by more than one pair from this list (Voet

et al., 2013).

Although correction of GC bias is possible (Baslan et al., 2012;

Voet et al., 2013; Zhang et al., 2013), other confounding factors

such as allelic dropout or preferential allelic amplification cannot

be easily corrected for and may introduce false positives in SNP

and CNV detection. Random sequencing errors represent

another source of uncertainty for SNP detection. To increase

confidence, repeated detection of a given anomaly in more

than a single daughter of the same cell is required (Zong et al.,

2012). Finally, another confounding factor can be the cell-cycle

phase since replication domains of cells in S phase can be

mistaken as genuine structural aberrations (Van der Aa et al.,

2013). This problem can be avoided by using only nuclei in G1

or G2/M phase. Limiting the analysis to G2/M phase comes

with the additional advantage of having duplicated material after

replication of the entire genome (Wang et al., 2014).

Comparison of Single-Cell Transcriptome Sequencing
Techniques
Measuring gene expression in populations of cells with microar-

rays or RNA sequencing masks the true distribution of gene

expression levels across cells, and it is therefore crucial to

quantify gene expression in individual cells. The major hurdle is

to obtain sufficient material from an individual cell that can be

sequenced with standard next-generation sequencing proto-

cols. Different methods for the amplification of the sub-picogram

amount of mRNA from a single cell have been developed and are

discussed in detail below. The main problem with any of these

methods is the presence of amplification bias, which can distort

the relative abundances of mRNAs from different genes.

In the past, amplified RNA from single cells was quantified with

microarrays (Iscove et al., 2002). More recently, a number of sin-

gle-cell sequencing techniques with improved sensitivity were

developed. The first protocol for single-cell sequencingwas pub-

lished in 2009 by the Surani laboratory (Tang et al., 2009) andwas

subsequently used to trace the derivation of mouse embryonic

stem cells from the inner cell mass with single-cell resolution

(Tang et al., 2010). The amplification method is based on pull-

down and reverse transcription of polyadenylated RNA using a

poly(T) primer with a specific anchor sequence. Thereafter, the
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single-stranded cDNA ispolyadenylated and second-strand syn-

thesis is performed using a poly(T) primer with another anchor

sequence. The double-stranded cDNA is then PCR amplified

fromprimers against the twoanchor sequences, and the resulting

material is fragmented prior to library preparation. Although

SOLiD sequencing was applied initially, the protocol is compat-

ible with Illumina sequencing, which has become the prevalent

method for single-cell sequencing. An initial method that lever-

aged the integration of DNA barcodes to allow pooling of thema-

terial extracted from different cells along with preservation of

strand information was termed single-cell tagged reverse tran-

scription (STRT) (Islam et al., 2011). This technique exploits the

template-switching property of the reverse transcriptase to tag

the 50 end of polyadenylated mRNA molecules. Following PCR

amplification, the tagged ends are pulled down and sequenced,

yielding a strong 50 end bias of the sequencing read. A comple-

mentary method termed cell expression by linear amplification

and sequencing (CEL-seq) amplifies polyadenylated mRNA line-

arly from a T7 promoter introduced during cDNA synthesis,

thereby reducing amplification bias and alleviating the need for

a template switch. Here, only fragments derived from the 30 end
of the mRNA are sequenced. CEL-seq and STRT-seq integrate

a barcode into the sequencing primer, a stretch of eight nucleo-

tides that uniquely labels all mRNAs from the same cell. In order

to robustly assignmRNAs to different cells, eachpair of barcodes

should differ in at least two positions. To obtain read coverage

along the entire transcript, the Smart-seq and Smart-seq2

methods are a more recent alternative (Picelli et al., 2013; Ram-

sköld et al., 2012). Similar to STRT, this approach reverse tran-

scribes polyadenylatedRNAand exploits the template-switching

capacity of the reverse transcriptase.However, using theNextera

technology, the Tn5 transposase simultaneously fragments the

cDNA and ligates sequencing adaptors to all fragments, yielding

sequencing reads derived from the entire transcript. Another

more recent method that yields read coverage of the entire

gene body is the Quartz-seq method, which is similar to the

approach developed by the Surani laboratory (Tang et al., 2009)

but achieves higher sensitivity and reproducibility (Sasagawa

et al., 2013). Moreover, two whole-transcript sequencing

methods for low startingmaterial have beenpublished, exploiting

eitherF29 DNA polymerase or semi-random-primed PCR based

amplification (Pan et al., 2013).

To reduce amplification bias, unique molecular identifiers

(UMI) (Kivioja et al., 2012) have been integrated into some of

the single-cell sequencing protocols. UMIs are stretches of

four to ten random nucleotides integrated into a sequencing

primer and serve as a random barcode for eachmRNAmolecule.

Upon binding of the sequencing primer, each mRNA is uniquely

labeled with a random barcode and the labeled end of the mRNA

is amplified along with the barcode. After sequencing, the ampli-

fication bias can be eliminated by counting each label only once

instead of the reads derived from all amplicons. The number of

UMIs can thus be directly translated into the number of

sequenced molecules from a cell after application of a mathe-

matical correction to account for the effect of random counting

statistics (Grün et al., 2014; Kivioja et al., 2012).

UMIs can only be used for methods that sequence a single

tag derived from a given mRNA and have been integrated, for
802 Cell 163, November 5, 2015 ª2015 Elsevier Inc.
example, into the STRT protocol (Islam et al., 2014) and into

modified versions of CEL-seq (Grün et al., 2014; Jaitin et al.,

2014). It has been shown that counting UMIs instead of reads

leads to a 2-fold reduction of technical noise (Grün et al., 2014).

An overview of three common single-cell sequencingmethods

is given in Figure 1. In order to select the appropriate sequencing

technology, one has to consider the goal of the experimental

study. For example, in order to investigate gene expression het-

erogeneity between cells, the technical variability should be

minimized and a technology that allows integration of UMIs

should be chosen. However, if information along the entire tran-

script is required, for instance, to examine splicing patterns, a

technology that yields whole-transcript coverage should be

selected. Moreover, methods that sequence either the 50 or 30

end of a transcript provide single-cell information on the tran-

scriptional start site or polyadenylation site usage, respectively.

Another aspect to consider is ease of the experimental proce-

dure and sequencing cost per cell. An increasing number of pro-

tocols can be conveniently performed on the Fluidigm C1 multi-

fluidic auto-prep system. This device permits the isolation and

processing of the cells, with the important benefit that each

cell is imaged. This allows controlling for multiple cells per well

and empty wells. However, sequencing-chips that can be used

in this device come in fixed geometries and preferentially select

cells of particular sizes. Moreover, this technology is relatively

expensive. A massively parallel RNA single-cell sequencing

framework termed MARS-seq (Jaitin et al., 2014) has been

developed based on the CEL-seq technology and employs auto-

mated processing of single cells sorted into 384-well plates.

Recently, two advanced droplet-based microfluidic methods,

termed Drop-seq (Macosko et al., 2015) and inDrop sequencing

(Klein et al., 2015), were published that can dramatically increase

the throughput to thousands of cells and at the same time mini-

mize the sequencing costs. Both of these methods rely on the

separation of cells into nanoliter-sized aqueous droplets in an

oil-water emulsion, which contains sequencing primers with

unique cell barcodes and UMIs. The co-occurrence of multiple

cells in the same droplet is avoided by a low cell-loading rate

into the droplets. In Drop-seq cDNA is PCR amplified, while in-

Drop sequencing amplifies cDNA by in vitro transcription akin

to CEL-seq. In terms of technical noise and sensitivity, these

methods compare favorably to previous protocols. Drop-seq

was used to characterize mouse retinal cells, while inDrop

sequencing was applied to explore cellular heterogeneity during

mouse embryonic stem cell differentiation. However, the set-up

for neither of these methods is commercially available, and the

user is required to build a microfluidic device based on the infor-

mation provided by the authors.

Although there has been much progress in increasing

throughput and lowering costs of single-cell sequencing, there

has been only amoderate improvement of the sequencing sensi-

tivity during the last 3 years. The most commonmethod to quan-

tify sensitivity is the usage of external spike-in RNA of known

concentration. The spike-in concentration should be chosen

such that spike-in RNA contributes 1%–5% of the number of

mRNA molecules (Hashimshony et al., 2012). Most of the

recently published sensitivity estimates are derived from a set

of 92 spike-in RNAs designed by the External RNA Controls



Figure 1. Three Common Experimental Pro-

tocols for Single-Cell Sequencing
(A) CEL-seq. Polyadenylated mRNA is reverse
transcribed from an Oligo dT primer containing
the Illumina P1 adaptor, a cell barcode, and a T7
promoter. The sequencing primer can, in principle,
also accommodate a UMI. Following second-
strand synthesis, the cDNA is amplified by in vitro
transcription from the T7 promoter, and the Illu-
mina P2 adaptor is ligated after fragmentation. The
sequencing reads are thus derived from themRNA
30 end.
(B) STRT-seq. Polyadenylated RNA is reverse
transcribed from an Oligo-dT pimer containing the
Illumina P1 adaptor and a PvuI restriction site.
After full-length reverse transcription, a template-
switching oligo with another Illumina P1 adaptor
and the UMI is added to the 50 end of the tran-
script. Following second-strand synthesis, the
cDNA is then PCR amplified using primers com-
plementary to the Illumina P1 adaptor. Fragmen-
tation and ligation of the Illumina P2 adaptor and
the cell barcode are performed simultaneously
utilizing the Tn5 transposase. To retain only 50

ends for sequencing, the 30 ends are digested by
the PvuI restriction enzyme.
(C) Smart-seq2. Polyadenylated RNA is reverse
transcribed from an Oligo dT with a PCR primer.
The same PCR primer is part of the template-
switching oligo added to the 50 end of the cDNA
upon reverse transcription. After PCR amplifica-
tion, the cDNA is fragmented by tagmentation
using the Tn5 transposase. Simultaneously, Tn5
ligates different 50 and 30 primers to the frag-
ments. Another round of PCR introduces Nextera-
sequencing primers to the ends of the frag-
ments, enabling sequencing with full-length read
coverage. However, Smart-seq2 does not allow
for the integration of UMIs.
Consortium (ERCC) (Baker et al., 2005) and cover a wide range,

from 5% to 40%. However, independent methods such as imag-

ing-based molecule counting in single cells by single-molecule

fluorescent in situ hybridization (smFISH) (Raj et al., 2008) yield

deviating estimates (Grün et al., 2014). Moreover, the absolute

number of transcripts per cell is comparable when sequencing

cells of the same type with different methods. The ERCC

spike-in RNAs are relatively short in comparison to mammalian

genes, have short poly(A) tails, and lack a 50 cap. It is unclear

how much these differences between external and cellular

RNA—as well as the fact that the external RNA is not spiked

directly into the cell—affect the relative sequencing efficiencies

of cellular and spike-in RNA.

Data Analysis of Single-Cell Transcriptome Data
Preprocessing and Read Mapping

In order to retrieve the maximum information from single-cell

mRNA sequencing data, a careful experimental design is

required (see Box 1). Following sequencing, a number of data

processing and filtering steps are recommended to reduce the

impact of technical noise. The first analysis step is usually a qual-

ity filtering or trimming of the sequencing reads prior to mapping
the reads to a reference database. Standard tools, e.g., fastqc,

permit a quality analysis of the sequenced library, and standard

mapping tools, such as bwa (Li andDurbin, 2010), allow trimming

of low-quality bases from the end of the reads. However, a min-

imum remaining read length (> 35 bp for mouse or human) after

trimming should be required in order to avoid false-positive hits.

For the mapping, available standard tools developed for bulk

RNA-seq analysis can be used (Garber et al., 2011). However,

sequenced cell barcodes, UMIs, and other primer-derived

sequences have to be removed from the remaining read to be

mapped to the reference database. Usually, one read of a pair

contains all of the index information, while the other one can

be mapped to the gene models (see Figure 1). In general, reads

can be mapped to the genome followed by expression quantifi-

cation via intersecting the read coverage of the genome with

gene model annotations. However, this can lead to a larger num-

ber of reads mapping to multiple loci, for instance, due to the

existence of inactive pseudogenes. Using the transcriptome as

a reference reduces the sequence space and increases the

fraction of unique reads. Since non-unique reads can introduce

spurious correlations between different genes across single

cells, it is advisable to discard these reads prior to analysis.
Cell 163, November 5, 2015 ª2015 Elsevier Inc. 803



Box 1. Design of Single-Cell Sequencing Experiments

The power of single-cell sequencing crucially depends on two parameters: the number of cells and the sequencing complexity. These parameters

can be controlled by the experimental design and should be chosen according to the goal of the study. The size of the dataset, i.e., the number of

cells is important for profiling the cell composition of a sample with high sensitivity. Typically, several hundreds of cells have to be sequenced in order

to capture not only abundant, but also rare, cell types. Possible biases that might occur during purification of the single-cell sample due to cell size or

other factors have to be considered. Moreover, one should incorporate an estimate for the success rate, since a number of single-cell samples will

likely yield only little or no material due to RNA degradation or low amplification efficiency. This estimate can be derived from trial experiments. The

second parameter is the library complexity. Since the efficiency of single-cell mRNA sequencing is still limited, it is important to sequence each sin-

gle cell with sufficient sequencing depth. If transcripts are counted with UMIs, the sequencing depth should be adjusted such that every transcript is

sequenced at least three to four times. This ensures that even lowly expressed genes can be quantified and do not drop out due to sampling noise.

To determine how many cells can be sequenced at once, e.g., on a single lane of an Illumina sequencing machine, the fraction of reads that can be

mapped to the transcriptome has to be taken into account. This fraction is typically lower than 50%, since in most protocols additional abundant

contributions can originate from sequencing products containing only primer or adaptor sequences (Grün et al., 2014). For example, assuming that

�10,000 transcripts per cell have been amplified and 50% of the reads can bemapped to the transcriptome, about 2,500 cells can be sequenced on

a single lane of an Illumina NextSeq machine with 200 million reads. A fraction of those, typically around 10% to 20%, will not pass the quality

filtering. Microfluidic devices like the Fluidigm C1 further provide an image of each cell being processed and allow filtering of wells containing no

or more than a single cell.

To avoid batch effects, one should follow general guidelines applicable for bulk sequencing. For instance, single-cell libraries corresponding to

different conditions should not be sequenced on separate lanes but, rather, distributed in equal fractions across the same set of lanes.
Due to the low read coverage of the gene body in single-cell

sequencing experiments, isoform quantification with standard

methods such as Cufflinks (Trapnell et al., 2010) can be problem-

atic. If isoform information is not essential for the study, an ideal

strategy is to merge all isoforms of a given gene into a so-called

gene locus and quantify the expression of these gene loci. Inde-

pendent of the reference, it is important to consider specific as-

pects of the experimental strategy. If sequencing protocols are

used that enrich for the 50 or 30 end of an mRNA, the quality of

the gene annotation can have a huge impact on the sensitivity.

Gene models tend to be less reliable at both ends of a transcript,

and an experimental strategy for improving 50 or 30 end annota-

tion might be beneficial, in particular, for non-standard model

organisms. For example, Junker et al. applied an amended

CEL-seq protocol to sequence longer reads at low depths on

bulk material in order to accurately detect 30 polyadenylation
sites for zebrafish embryos (Junker et al., 2014). Finally, the refer-

ence database has to be augmented by sequences representing

any spike-in RNA added to the samples.

Expression Quantification and Filtering

In order to arrive at expression levels for all genes, PCR dupli-

cates should be removed. Next, the cell of origin is determined

based on the sequenced cell barcode (Figure 2A). If the base-

calling quality is not sufficiently high at the cell barcode position

within the read, an error-tolerant assignment scheme can be

applied by aggregating all barcodes up to a single mismatch

away from the perfect sequence. In order to apply this scheme,

however, each pair of cell barcodes has to differ in at least two

positions. If UMIs are available, the number of different UMIs

per gene in each cell has to be converted into a transcript count

estimate (Figure 2A) by applying a statistical correction to ac-

count for sampling effects (Grün et al., 2014; Kivioja et al., 2012).

Once read or transcript counts have been determined for all

cells, it is recommended to filter out cells of low yield

(Figure 2B). These samples can arise already prior to or during

isolation of the cells, e.g., due to stress or apoptosis, or can

occur due to incomplete lysis, RNA degradation, or low
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sequencing efficiency of a particular cell. The total number of

reads or UMI-derived transcript counts per cell is a first proxy

for the sample quality. Applying a threshold to discard cells in

the lower tail of the distribution of read or transcript counts,

respectively, safeguards against artifacts arising from low-qual-

ity cells. The expression of spike-in RNA can be utilized to iden-

tify and discard samples of low sequencing efficiency. Since

the number of spike-in RNA should be identical for all samples,

the identification of low yield samples is straightforward

(Figure 2B). On the other hand, a relatively large ratio between

transcript or read counts, respectively, of spike-in and cellular

RNA reveals cells that contribute little material, e.g., due to

RNA degradation or incomplete cell lysis (Figure 2B). The

described strategies are only guidelines for filtering, and the

exact method strongly depends on the dataset under examina-

tion. For example, if the cell volume varies substantially within

a dataset, the total transcript count should only be subject to

mild filtering, while the transcript count of the spike-in RNA is still

a good proxy for the sequencing efficiency and can be used to

discard low yield samples.

Data Normalization

For subsequent analysis, an appropriate normalization of the

expression data is necessary. In the case of read-based quanti-

fication, normalization to transcripts per one million reads

(TPM)—if reads are only generated from one end of the tran-

script—or transcript per one million reads per kilobase of tran-

script (RPKM)—if reads cover the entire transcript—is appro-

priate. Alternatively, standard quantification methods like

Cufflinks (Trapnell et al., 2010) yield normalized expression

values. More refined normalization schemes have been devel-

oped for bulk RNA-seq data (Anders and Huber, 2010). Here,

derivation of a size factor for each replicate accounts for vari-

ability in sequencing depth between replicates, and a similar

method can be applied to normalize single-cell data (Brennecke

et al., 2013). If transcripts are counted with UMIs, cell-to-cell dif-

ferences in transcript numbers are to a certain extent biologically

meaningful and indicative of variations in the RNA content of a



Figure 2. Quantification of mRNA Expres-

sion with UMIs
(A) For single-cell sequencing, RNA is isolated
from individual cells and, after labelingwith cellular
barcodes, amplified by PCR or in vitro transcrip-
tion. Sequencing reads are subject to quality
filtering and trimming before mapping to reference
sequences representing all genes of the organism.
In (A), only two cells with two different genes are
shown for simplicity. Amplification bias can distort
the relative expression of the two genes and can
be eliminated by counting the number of UMIs per
genes instead of sequencing reads.
(B) Cells with low yield due to RNA degradation or
low sequencing efficiency should be discarded.
These cells can be identified based on low total
transcript counts (left), which can be explained by
low-amplification efficiency (red bar, middle) or
low-input material (orange bar, right). The middle
panel depicts the total number of spike-in RNA,
which should theoretically be the same in all cells.
Variations are due to variability in sequencing ef-
ficiency. The right panel shows the ratio between
spike-in RNA and transcripts of cellular genes.
High ratios correspond to reduced amounts of
cellular RNA.
(C) Data normalization by down-sampling. The
same number of transcripts is randomly picked
from each cell. Shown is a toy example with three
cells and four different genes.
cell. However, cell-to-cell variability in sequencing efficiency and

other sources of technical noise contribute to the observed vari-

ability. In principle, the technical cell-to-cell variability could be

deconvolved with the help of spike-in RNA. The ratio of the num-

ber of sequenced spike-in molecules over the number of spike-in

molecules added to the cell extract yields a conversion factor. In

theory, dividing the number of sequenced transcripts by this con-

version factor yields an estimate of the actual number of tran-

scripts in a cell. However, as already discussed, commonly

used ERCC spike-in RNA does not provide a good standard for

absolute quantification. Formost applications, the relative contri-

bution of each gene to the transcriptome will be the relevant

readout, and in these cases, simpler normalization schemes

apply. One possibility is the normalization of the total transcript

count in each cell to the median of the total transcript count

across all cells. Alternatively, subsampling of the same

number of transcripts from each cell, termed down-sampling

(Figure 2C), is more efficient in eliminating technical variability

but comes with a loss in complexity since all cells are down-
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sampled to a number lower or equal

than their actual transcript count. How-

ever, for most applications, this approach

is preferable since technical artifacts such

as batch effects are efficiently eliminated.

Biological Insights from Single-Cell
Transcriptome Data
Identification of Cell Types

Perhaps the most important application

of single-cell mRNA sequencing is the

identification of cell types in a complex
mixture. The transcriptomeof a cell canbe interpretedasafinger-

print revealing its identity. An unbiased screening of randomly

sampled cells from a mixture, such as an organ, could therefore

reveal the cellular composition of this sample. A number of

studies could recover known cell types and identify novel marker

genes in diverse systems, for example in the spleen (Jaitin et al.,

2014), the lungepithelium (Treutlein et al., 2014), or the retina (Ma-

cosko et al., 2015). Another recent landmark paper revealed the

complex cellular composition of the mouse hippocampus and

uncovered novel cell types (Zeisel et al., 2015). Although these

studies convincingly demonstrated that single-cell mRNA

sequencing is a powerful method for cell type identification,

computationalmethods to leverage the full complexity within sin-

gle-cell transcriptome data are just beginning to emerge. Distin-

guishing cell types in amixture corresponds to a typical unsuper-

vised learning problem in which data points, in this case given by

single-cell transcriptomes, are grouped into clusters reflecting

subsets of data points that are more similar to each other than

to the remaining data points (Figure 3A). A commonly applied
November 5, 2015 ª2015 Elsevier Inc. 805



Figure 3. Single-Cell Sequencing Allows

the Inference of Cell Type Composition
(A) Unsupervised learning can be used to distin-
guish different cell types in a random sample
of sequenced cells from a complex mixture.
K-means clustering with a cluster number esti-
mated by gap statistics (top) or hierarchical clus-
tering (bottom) based on transcriptome similarity
can be used to identify different abundant cell
types. All data shown in the figure are derived from
238 random cells isolated from mouse intestinal
organoids (Grün et al., 2015).
(B) Dimensional reduction algorithms can be
applied for data visualization. The t-SNE method
(top) resolves the local structure of the data but
tends to group outliers together by their dissimi-
larity to bigger clusters. PCA (middle) allows visual
inspection of data separation along the main axis
of variability but can be inconvenient if a larger
number of principal components contribute sub-
stantial variability. Classical multidimensional
scaling achieves dimensional reduction with well-
conserved point-to-point distances. Outliers are
well separated, but dense clusters tend to be
condensed. K-means clusters (A) are highlighted
in all of the maps, and intestinal cell types are
indicated in the t-SNE map.
(C) The RaceID algorithm identifies rare cell
types within more abundant groups separated by
k-means clustering. The algorithm can detect
cell types represented by only a single cell in the
mixture.
visual method is principal component analysis (PCA), which con-

verts a set of correlated variables into a set of orthogonal uncor-

related variables, termed principal components. These principal

components are ordered by the fraction of the total variance they

explain, and usually only the first two or three principal compo-

nents are analyzed. Visual inspection of a scatterplot showing

the first two principal components can already reveal the main

subgroups in the data, i.e., the abundant cell types (Pollen

et al., 2014; Shalek et al., 2014; Treutlein et al., 2014). Moreover,

a number of algorithms for dimensional reduction exist that can

be used to obtain an approximate visualization of the data in

two dimensions (Figure 3B). These algorithms take a matrix

with all pairwise distances of data points as input and project

these points onto a low-dimensional space, trying to preserve

theoriginal pairwisedistances asmuchaspossible. For example,

classical multidimensional scaling was used to visualize intratu-

moral heterogeneity in glioblastoma (Patel et al., 2014), and

t-distributed stochastic neighbor embedding (t-SNE) (Van der

Maaten and Hinton, 2008) beautifully visualized heterogeneity
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within the retina (Macosko et al., 2015)

or the hippocampus (Zeisel et al., 2015).

These methods take arbitrary similarity

measures as input. The most common

choices are the Euclidean distance be-

tween vectors with expression values for

all genes or a correlation-based distance

between these vectors, e.g., 1 � Pear-

son’s correlation coefficient.

To identify cell types more systemati-

cally, conventional clustering methods
can be applied. For instance, hierarchical clustering was used,

alone or in combination with PCA, to explore cellular heterogene-

ity (Patel et al., 2014; Pollen et al., 2014; Treutlein et al., 2014). On

the other hand, more sophisticated algorithms have been specif-

ically adjusted for cell type profiling. Jaitin et al. utilized hierarchi-

cal clustering to initialize a probabilistic mixture model for cell

type classification (Jaitin et al., 2014). Zeisel et al. developed a

clustering method based on sorting points into neighborhoods

(SPIN) (Tsafrir et al., 2005). In an iterative procedure, an optimal

splitting of the cell-to-cell correlation matrix is determined after

ordering the expression matrix by cells and genes using SPIN.

A general problem for cell type classification is the presence of

confounding factors due to technical and biological variability.

The result of any clustering routine has to be carefully examined

for batch effects leading to unwanted clustering by experi-

mental batch, sequencing library, or other technical factors.

Batch effects can be reduced by normalization strategies such

as down-sampling that eliminate differences in complexities

between libraries.



However, additional confounding factors can arise from bio-

logical heterogeneity such as cell-to-cell differences in the cell-

cycle phase. If only cells of a similar size are analyzed, cell sorting

can be used to purify cells within a given cell-cycle phase. Other-

wise, computational approaches can be used to deconvolve

cell-cycle-related variability. A recently published approach uti-

lizes latent variable models to account for the cell cycle and other

hidden factors (Buettner et al., 2015). On the other hand, normal-

ization schemes that eliminate absolute cell-to-cell differences in

transcript count are often sufficient.

A major challenge for any cell type inference method is the

identification of rare cell types. With a frequency of �1% or

less in a sample of sequenced cells from a complex mixture,

these cell types typically occur as outliers. Although unsuper-

vised learning methods for outlier identification exist, these ap-

proaches oftentimes cannot capture the full complexity of the

data. For instance, classifying a variety of different rare cell types

in an organ cannot be achieved by these methods (Grün et al.,

2015). In a recent study, an algorithm for rare cell type identifica-

tion (RaceID) was introduced (Grün et al., 2015) that first

infers abundant cell types by k-means clustering followed by a

systematic outlier screening (Figure 3C). In this step, the cell-

to-cell variability of every gene is compared to a background

model that accounts for technical and biological noise within a

cluster. Cells exhibiting transcript counts with a low p value ac-

cording to this background model are identified as outliers and

are used as new cluster seeds. RaceID was shown to identify

rare mouse intestinal cell types with high sensitivity and speci-

ficity and discovered novel rare subtypes of the enteroendocrine

lineage.

Identification of Marker Genes

Once cell types can be delineated, the data can be mined for

specific marker genes to better characterize a cell type and,

with the help of cell surface markers or fluorescent reporter

genes, allow the purification of a cell type. The discovery of a

marker gene requires the identification of differentially expressed

genes between the cell type of interest and the remaining cells.

For this task, available methods for modeling over-dispersed

count statistics in bulk sequencing data, such as DESeq

(Anders and Huber, 2010), can be applied. Another probabilistic

method, which was developed specifically for single-cell

sequencing data, accounts for the relatively high rate of dropout

events in these data, i.e., transcripts that escaped reverse tran-

scription and therefore could not be sequenced (Kharchenko

et al., 2014).

Inference of Differentiation Dynamics

Related to the cell type inference is the application of single-cell

transcriptomics to reveal differentiation pathways. A comparison

of single-embryo transcriptomes collected at sub-sequent

stages of nematode embryonic development has already re-

vealed insights into gene expression changes underlying the

emergence of the three germ layers (Hashimshony et al.,

2015). More generally, if a sample is analyzed that contains all

differentiation stages of a given cell lineage, a pseudo-temporal

ordering of single-cell transcriptomes can be inferred. For

example, such a sample can be composed of cells collected at

different time points during in vitro differentiation or can be a

random sample of a mitotic adult stem cell differentiation system
such as the intestinal epithelium. The general idea is that differ-

entiation is accompanied by continuous temporal changes in

gene expression and that ordering of single-cell transcriptomes

by similarity reflects the succession of these changes, yielding a

pseudo-temporal ordering of single-cell transcriptomes. One ex-

isting method termed Monocle combines dimensional reduction

with the construction of a minimum spanning tree (Trapnell et al.,

2014). Monocle is an unsupervised approach that can infer

branching into multiple lineages and was used to elucidate

gene expression dynamics during differentiation of primary hu-

man fibroblasts. Another more recent method relies on the

use of diffusion maps to define differentiation trajectories, incor-

porating the idea that the movement of a cell within the tran-

scriptional landscape follows diffusion-like dynamics (Haghverdi

et al., 2015).

Finally, by defining links between gene pairs, e.g., based on

the significance of correlation, a variety of network analysis

methods can be applied (Ocone et al., 2015).

There is certainly room for further development of computa-

tional methods to infer cell lineages. This inference is particularly

challenging if the lineage tree segregates into multiple branches,

since technical and biological gene expression noise can

confound the assignment of a cell to a particular lineage. The

single-cell perspective will yield exciting new insights into the

impact of gene expression noise on lineage commitment and

on the regulation of gene expression noise during differentiation.

Measuring Gene Expression Noise

Another application of single-cell mRNA sequencing is the inves-

tigation of biological gene expression variability, or gene expres-

sion noise, in a population of cells. Current models of transcrip-

tional dynamics describe promoter bursting (Figure 4A), where

the promoter of a gene switches between an active and an inac-

tive state and, once activated, initiates transcript production at a

constant rate (Raj et al., 2006; Raser and O’Shea, 2004). These

dynamics imply a variance in transcript levels exceeding the

lower limit of pure sampling, i.e., Poissonian noise. Single-cell

mRNA sequencing is a suitable method to infer the biological

noise and investigate transcriptional parameters on a genome-

wide level in a cell population of interest. However, technical

noise due to sampling of transcripts to be sequenced from

each cell and due to global cell-to-cell variability in sequencing

efficiency (Figure 4B) has a substantial contribution to the

measured noise levels (Brennecke et al., 2013; Grün et al.,

2014). The technical noise component can be quantified, for

instance, based on sample-to-sample variability in spike-in

RNA levels. After fitting a technical noisemodel that incorporates

sampling noise and global sample-to-sample variability in

sequencing efficiency, the technical noise component can be

deconvolved from the total noise in order to infer the biological

noise component (Figure 4C) (Grün et al., 2014). This approach

has been shown to yield precise noise estimates consistent

with single-molecule FISH, a highly sensitive imaging-based

method for transcript counting (Raj et al., 2008), and can be

used, for instance, to measure changes in biological noise be-

tween different conditions. Furthermore, given a model of tran-

scriptional bursting, kinetics model parameters such as burst

size and burst frequency can be derived from the biological noise

estimates (Grün et al., 2014).
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Figure 4. Single-Cell Sequencing Reveals

Biological Gene Expression Noise
(A) Transcription is not a time-continuous process.
Switching of a gene promoter between an active
and an inactive state leads to transcriptional
bursting. The kinetic parameters can be estimated
from burst size and burst frequency, which can be
derived from biological noise estimates measured
with single-cell sequencing.
(B) The CV as a function of the mean expression
for spike-in RNA or fixed aliquots of cellular RNA
reveals sources of technical noise. While sampling
noise dominates at low expression, global vari-
ability of sequencing efficiency is the major
contribution for highly expressed genes.
(C) Technical noise can be modeled and decon-
volved from the transcript count distribution
measured in cells, yielding good estimates of the
actual biological noise (Grün et al., 2014).
Another method allows the identification of highly variable

genes by assigning a p value to each gene reflecting to what

extent the biological noise exceeds technical variability (Bren-

necke et al., 2013). This method also relies on technical noise

estimates derived from external spike-in RNA.

Investigating Allelic Expression

Single-cell sequencing offers the possibility to study allelic

expression on a genome-wide level. If the two alleles of a gene

differ by a sufficient number of single-nucleotide polymorphisms

(SNPs), transcripts derived from the two alleles can be distin-

guished by single-cell mRNA sequencing. However, this analysis

is highly sensitive to technical noise, i.e., spurious differences in

allele frequencies due to sampling effects and stringent controls

are required to infer actual biological differences. By analyzing

mouse embryos of mixed genetic background, this approach

has revealed the presence of abundant random monoallelic

expression during preimplantation development and has

demonstrated de novo inactivation of the paternal X chromo-

some (Deng et al., 2014).

Concluding Remarks
The power of single-cell sequencing as a method to characterize

the state of a cell across multiple molecular layers has been

demonstrated by a number of beautiful studies published during

the last few years. Most of the previous research was focused on

the investigation of single-cell genomes and transcriptomes.

While experimental protocols have improved rapidly, sophisti-

cated computational methods are just beginning to emerge,

and in this Primer, we have summarized a number of state-of-

the-art methods along with general guidelines covering all anal-

ysis stages. We hope that this overview will enable a growing
808 Cell 163, November 5, 2015 ª2015 Elsevier Inc.
number of researchers to leverage the maximum out of their sin-

gle-cell sequencing data. The field of single-cell sequencing will

keep developing rapidly in the near future and will reveal exciting

insights into the regulatory mechanisms that determine the iden-

tity of a cell.
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G., Juréus, A., Marques, S., Munguba, H., He, L., Betsholtz, C., et al. (2015).

Brain structure. Cell types in the mouse cortex and hippocampus revealed

by single-cell RNA-seq. Science 347, 1138–1142.

Zhang, L., Cui, X., Schmitt, K., Hubert, R., Navidi, W., and Arnheim, N. (1992).

Whole genome amplification from a single cell: implications for genetic anal-

ysis. Proc. Natl. Acad. Sci. USA 89, 5847–5851.

Zhang, C., Zhang, C., Chen, S., Yin, X., Pan, X., Lin, G., Tan, Y., Tan, K., Xu, Z.,

Hu, P., et al. (2013). A single cell level based method for copy number variation

analysis by low coveragemassively parallel sequencing. PLoSONE 8, e54236.

Zhao, M., Wang, Q., Wang, Q., Jia, P., and Zhao, Z. (2013). Computational

tools for copy number variation (CNV) detection using next-generation

sequencing data: features and perspectives. BMC Bioinformatics 14

(Suppl 11 ), S1.

Zong, C., Lu, S., Chapman, A.R., and Xie, X.S. (2012). Genome-wide detection

of single-nucleotide and copy-number variations of a single human cell. Sci-

ence 338, 1622–1626.

http://refhub.elsevier.com/S0092-8674(15)01353-7/sref48
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref48
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref48
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref49
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref49
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref49
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref49
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref50
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref50
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref51
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref51
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref51
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref52
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref52
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref52
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref52
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref53
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref53
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref54
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref54
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref55
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref55
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref55
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref55
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref56
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref56
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref56
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref56
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref57
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref57
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref57
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref57
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref58
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref58
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref59
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref59
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref59
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref60
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref60
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref60
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref61
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref61
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref61
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref61
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref62
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref62
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref62
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref62
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref63
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref63
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref63
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref63
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref64
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref64
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref64
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref65
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref65
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref65
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref65
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref66
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref66
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref67
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref67
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref67
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref68
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref68
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref68
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref68
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref69
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref69
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref69
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref70
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref70
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref70
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref71
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref71
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref71
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref71
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref72
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref72
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref72
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref73
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref73
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref73
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref74
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref74
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref74
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref74
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref74
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref75
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref75
http://refhub.elsevier.com/S0092-8674(15)01353-7/sref75

	Design and Analysis of Single-Cell Sequencing Experiments
	Introduction
	Isolating Single Cells for Sequencing
	Comparison of Whole-Genome Amplification Techniques
	Analysis of Single-Cell Genome Sequencing Data
	Comparison of Single-Cell Transcriptome Sequencing Techniques
	Data Analysis of Single-Cell Transcriptome Data
	Preprocessing and Read Mapping
	Expression Quantification and Filtering
	Data Normalization

	Biological Insights from Single-Cell Transcriptome Data
	Identification of Cell Types
	Identification of Marker Genes
	Inference of Differentiation Dynamics
	Measuring Gene Expression Noise
	Investigating Allelic Expression

	Concluding Remarks
	References


