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Genome-wide Studies Add a New
Dimension to Single-Cell Biology
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Single-cell analyses have provided invaluable insights into studying heterogenity, signaling, and
stochastic gene expression. Recent technological advances now open the door to genome-wide
single-cell studies.
Introduction
From populations of unicellular organisms to complex tissues,

cell-to-cell variability in genotypic and/or phenotypic traits

seems to be universal. To study heterogeneity and its biological

consequences, researchers have used low-throughput ap-

proaches—such as fluorescent reporters and fluorescence

in situ hybridization (FISH) techniques—that allow quantification

of a limited number of parameters in single cells. On the other

hand, genomic technologies allow for high-throughput ap-

proaches and are now used in laboratories around the world.

However, genomic studies have hitherto relied on studying

ensemble averages obtained from pooling thousands to millions

of cells, precluding genome-wide analysis of cell-to-cell vari-

ability. Improvements in sequencing technology and molecular

biology are now leading to the emergence of genome-wide

quantitative analysis of single cells and, hence, to the conver-

gence of genomics and single-cell biology (Figure 1). We discuss

the importance of studying cell-to-cell variability using large-

scale and genome-wide techniques, while highlighting techno-

logical breakthroughs and new frontiers in single-cell biology.

Variation between individual cells can originate from genetic

differences, developmental and functional states, and environ-

mental cues. Even in cells with an identical genome, fluctuations

of regulator molecules and stochastic gene expression can

cause significant deviation of individual cells from the population

average. We also describe methods and selected applications

for studying single-cell heterogeneity on these different levels.

Genomic Differences as a Source of Cellular
Heterogeneity
Genomic differences are arguably the most fundamental source

of cellular variability. Sequencing genomic DNA from single cells

has been a challenge. In cases in which DNA yield from samples

is limiting, such as in single cells, whole-genome amplification

methods are generally important for ensuring that the starting

material is sufficient for sequencing. However, amplification

bias can lead to suboptimal genome coverage. Multiple

displacement amplification (MDA) reduces amplification bias

by annealing of random hexamers to denatured DNA, followed

by isothermal strand-displacement synthesis of DNA products
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(Dean et al., 2002). Multiple annealing and looping-based ampli-

fication cycles (MALBAC) (Zong et al., 2012) is a novel protocol

for whole-genome amplification that might potentially reduce

bias even further by ensuring that amplification products cannot

serve as new templates for amplification, thereby achieving qua-

silinear amplification. But what is the benefit of sequencing DNA

from single cells? We briefly discuss several fascinating applica-

tions.

Recently, Rinke et al. (2013) obtained genomic information

using MDA from 3,300 single, uncultured microbial cells from

different habitats. They performed 16S rRNA analyses on a

subset of them and were able to discover novel phylogenetic

relationships and unexpected metabolic capabilities, possibly

caused by ancient lateral gene transfer events between eukary-

otes and archaea.

Tumors are composed of genetically heterogeneous cell

types. Using a new approach for whole-nucleus isolation and

sequencing, Navin et al. (2011) were able to determine copy

number variations of individual cells extracted from breast can-

cer samples and identify distinct cell populations likely corre-

sponding to separate waves of clonal expansion. Importantly,

by macrodissecting the tumor into different sectors prior to cell

dissociation, the authors were able to retain spatial information

and measure how this clonal architecture varied in space.

Single-cell genomics was also applied in the study of homolo-

gous recombination in single germ cells. Homologous recombi-

nation creates unique hybrid haploid genomes in individual germ

cells by shuffling genetic information between homologous chro-

mosomes. Using microfluidics for parallelized whole-genome

amplification of single sperm cells, Wang et al. (2012) mapped

recombination sites in 91 human sperm cells. On a coarse-

grained level, the authors found similar patterns of recombina-

tion site distributions as in previous population-level analyses

of pedigree data. More detailed analysis, however, revealed indi-

vidual-specific recombination hot spots and allowed direct mea-

surement of the germline de novo mutation rate.

In a study on somatic mosaicism, McConnell et al. (2013)

investigated copy number variation in neurons obtained from

human induced pluripotent stem cells and postmortem human

brains at the single-cell level. The ability to detect rare copy
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Figure 1. Convergence of ‘‘Omics’’ Biology

and Single-Cell Biology
Technology that allows researchers to obtain
genome-wide information from single cells is ex-
tending the boundaries of a field that has thus far
been limited to the analyses of a select gene in
eukaryotes.
number variations is an important advantage of single-cell anal-

ysis compared to previous bulk experiments. The authors found

that neurons have significantly higher copy number variation

than other cell types, with deletions beingmore frequent than du-

plications. It is interesting to speculate that copy number varia-

tion in neurons might play a role in functional diversification.

However, the physiological consequences of mosaic copy num-

ber variation in human neurons are currently unclear.

Genome-wide single-cell techniques also hold great promise

for insights into nuclear organization. Chromosome conforma-

tion capture (3C) has revealed general principles of chromosome

folding by studying the ensemble average of large cell popula-

tions. Single-cell analysis of nuclear organization, however, has

so far only been possible using microscopy and was limited to

selected loci. By developing a single-cell variant of the 3C tech-

nique, Nagano et al. (2013) discovered extensive cell-cell vari-

ability of intra- and interchromosomal contact formation in

T helper cells. Although limited by relatively sparse genome

coverage, averaged results of single-cell experiments agree

well with ensemble studies. In a fascinating application of this

technique, the authors use their single-cell chromatin interaction

data to reconstruct the full 3D topology of the X chromosome.

Phenotypic and Developmental States as a Source of
Cellular Heterogeneity
Multicellular organisms consist of different cell types that share

thesamegenomicDNAbut exhibitwidely differentmorphological

and phenotypic properties. Transcriptome analysis of individual

cells is amajor focus of single-cell biology. Single-cell expression

profiling experiments have been performed using microarrays,

high-throughput real-time PCR combined with microfluidics,

and, more recently, single-cell RNA sequencing (RNA-seq).

In an interesting application of parallelized real-time PCR, Guo

et al. (2010) analyzed the expression of 48 genes in more than

500 cells from the 1-cell-stage to the 64-cell-stage mouse

embryo. The authors identified early markers of three different

cell lineages (trophectoderm, primitive endoderm, and epiblast)

and found that, at early stages, cells coexpress markers for
Cell
different lineages. Lineage specification

seems to proceed via downregulation

of transcription factors of opposing

lineages rather than via upregulation of

specific transcription factors. The au-

thors used a mathematical approach

called principal component analysis

(PCA) (Figure 2A) to distinguish different

phenotypic groups at the 64-cell stage,

where 3 cell lineages could be clearly

defined. This then allowed them to iden-
tify early markers for cell lineage specification and show that

expression of early marker genes significantly differed between

inner and outer cells in the morula, confirming their role in early

embryonic pattern formation.

Using the same high-throughput approach, Buganim et al.

(2012) studied the dynamics of cellular reprogramming by

analyzing expression of 48 genes in thousands of cells extracted

from clonal populations at different time points. The authors

identified two distinct stages of reprogramming, an early ‘‘sto-

chastic’’ phase and a later ‘‘hierarchical’’ phase, and found

genes that are predictive of successful reprogramming. By

applying Bayesian network analysis, the authors inferred the to-

pology of the transcriptional network governing the later stages

of reprogramming directly from real-time PCR data. Importantly,

the network structure was verified using coexpression analysis

based on single-molecule RNA FISH (Raj et al., 2008) and genet-

ically modified cell lines.

Large-scale real-time PCR allows analysis of many genes in

thousands of cells. However, the fact that the entire genome

cannot be probed at once in such assays means that re-

searchers have to select genes of interest based on hypotheses

or assumptions. Single-cell RNA-seq has the advantage of

providing genome-wide information, leading to an unbiased

and complete description of transcriptional heterogeneity in

cell populations. Several protocols for single-cell RNA-seq

have been published (reviewed in Shapiro et al. [2013]). In a

pioneering study from the Surani lab, reverse transcription was

performed directly on cell lysates from individual cells using

oligo-dT primers (Tang et al., 2009). The cDNA library was then

PCR amplified, fragmented, and subjected to sample prepara-

tion for deep sequencing. However, this approach suffers from

two important shortcomings: the method is expensive when

applied to a large number of cells, and PCR amplification can

lead to biases in the mRNA counts. The first problem was ad-

dressed in two recent publications that made use of single-cell

barcoding to allow multiplexing (Hashimshony et al., 2012; Islam

et al., 2011): cell-specific barcodes are added to mRNA mole-

cules during reverse transcription. Multiplexing comes at the
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Figure 2. Mathematical Approaches for

Analyzing Single-Cell RNA-Seq Data
(A) Principal Component Analysis reduces multidi-
mensional data by identifying linear combinations
of genes that are responsible for cell-to-cell vari-
ability. Here, each dot corresponds to a single cell.
This analysis is often used for separating different
cell populations in large-scale single-cell studies.
(B) Slow transitions between the ‘‘on’’ and ‘‘off’’
state of a promoter can give rise to bimodality (top).
Fast transitions, however, lead to unimodal copy
number distributions (bottom). This example illus-
trates that measurement of mRNA distributions
allows determining the values of the kinetic pa-
rameterscontrollingexpressionof individual genes.
(C) Genes controlled by the same upstream
regulator are expected to be positively or nega-
tively correlated across single cells (left). Clusters
of coregulated genes can be identified via calcu-
lation of pairwise correlations. This approach
allows identification of regulatory modules in
unperturbed wild-type cell populations.
expense of whole transcript coverage because these techniques

are limited to sequencing either the 50 or 30 end of mRNAs. Ad-

dressing the second problem, linear amplification via in vitro

transcription has been proposed as a way to reduce technical

noise due to PCR bias (Hashimshony et al., 2012). The use of

random barcodes incorporated in the primers for reverse tran-

scription is another promising option (Kivioja et al., 2012). Appli-

cations relying on full transcript coverage, such as detection of

gene isoforms, require methods for reducing the 30 bias (e.g.,

by making use of template switching) (Picelli et al., 2013).

In an exciting application of single-cell RNA-seq, Shalek et al.

(2013) investigated heterogeneity in the response to lipopolysac-

charide of mouse bone-marrow-derived dendritic cells. The

authors found extensive bimodality in the cells’ response to lipo-

polysaccharide. Using PCA, they identified closely related yet

different subpopulations, which they attributed to different matu-

ration states of the cells. They then identified clusters of genes

belonging to the same regulatory modules by calculating

pairwise correlations of induced genes across all single cells

(Figure 2C). By confirming selected coregulated genes identi-

fied by this analysis with real-time PCR and FISH, the authors

provided an important proof-of-principle for systematic

and genome-wide identification of regulatory circuits based on

single-cell RNA-seq. These experiments were based on only

18 cells, and we anticipate that technological advances and

reduction of sequencing costs will allow sequencing of much

larger numbers of cells, leading to detailed insights into cell dif-

ferentiation programs and regulatory modules.
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Whereas protocols for single-cell RNA-

seq work reliably and are now routinely

used, single-cell proteomics is yet

to follow. Single-cell mass cytometry

(Bendall et al., 2011) allows parallel

detection of a large number of proteins

in single cells by using specific antibodies

labeled with heavy metals. Antibodies

coupled to distinct transition element iso-

topes are used to bind to their epitopes.
Individual cells are then vaporized and ionized in a plasma, and

elemental ions are detected by time-of-flight mass spectros-

copy. Although having lower sensitivity than fluorescence-based

flow cytometry, this novel approach enables simultaneous

detection of a much higher number of different proteins and

therefore allows more detailed analysis of cell states. Proximity

ligation assays, where binding of two antibodies labeled with

unique DNA tag sequences to the same protein molecule en-

ables rolling circle amplification of the tags, allow for multiplexed

protein detection through microscopy or next-generation

sequencing (Leuchowius et al., 2013).

Stochastic Gene Expression as a Source of Cellular
Heterogeneity
Gene expression is inherently stochastic. Random fluctuations of

the mechanisms underlying mRNA and protein production cause

heterogeneity among otherwise-identical cell populations (Raj

and van Oudenaarden, 2008). Studying stochastic gene expres-

sion incellsof thesame type requiresanalysis ofhundredsofcells,

aswell asaccuratequantification.So far, thenecessarynumberof

cells and the required level of accuracy have not been accessible

to genome-wide techniques.Consequently, imaging-based tech-

niques such as single-molecule FISH or GFP-based approaches

have been used. We anticipate that genome-wide analysis of

gene expression noise will become possible in the near future

and discuss two possible applications of such data sets.

Distributions of mRNA or protein molecules can be used to un-

derstand gene regulation. As illustrated in Figure 2B, transition



rates between ‘‘on’’ and ‘‘off’’ states of a promoter have a direct

influence on mRNA copy number distributions. Hence, quantita-

tive genome-wide measurements of mRNA distributions would

yield information about the parameters describing promoter

function. Precise quantitative analysis of single-cell gene expres-

sion data for selected genes has demonstrated the potential of

this approach for clarifying gene regulation (Neuert et al., 2013).

Although analysis of mRNA copy number distributions of indi-

vidual genes can provide information about the kinetics of the on

and off states of the promoter (Figure 2B), genome-wide data

sets also allow identifying clusters of coregulated genes. Corre-

lation analysis can identify clusters of cofluctuating genes, which

are likely to be controlled by the same upstream regulators

(Figure 2C). By performing flow cytometry analysis of pairwise

correlations of GFP and mCherry-tagged proteins in unper-

turbed yeast cells, Stewart-Ornstein et al. (2012) were able to

identify clusters of functionally related genes that are regulated

by the same upstream factors. Importantly, their approach could

be predictive of the magnitude of the response upon stimulation

(Stewart-Ornstein et al., 2012). Single-cell RNA-seq has the po-

tential to extend such analyses to the genomic scale and to

mammalian cells.

Outlook and Challenges
Genome-wide single-cell analysis of gene expression is still in its

infancy, and we anticipate that important breakthroughs will

continue to revolutionize this young field. Automation and robot-

ization using microfluidics will enable analysis of larger numbers

of cells, allowing identification of rare intermediate cell states or

weak regulatory interactions. Applying the concept of stochastic

gene expression at the genomic scale will require innovative

metrics that discriminate technical noise from biologically mean-

ingful variation (Brennecke et al., 2013), perhaps such as the use

of random barcodes as unique molecular identifiers (Kivioja

et al., 2012). In the meantime, microscopy-based methods

such as single-molecule FISH, which allow direct and amplifica-

tion-free mRNA detection, can be used as a robust experimental

framework to validate selected genes and quantify amplification

bias. The detection efficiency of mRNA molecules in RNA-seq

methods is typically low. Using spike-ins of synthetic RNA mol-

ecules at defined concentrations, Hashimshony et al. (2012)

found that, in their single-cell RNA-seq protocol, around 90%

of all mRNA molecules remained undetected, probably due to

inefficiency in reverse transcription. However, by usingmicroflui-

dics to reduce the reaction volume and optimizing buffers and

reagents, the Linnarsson lab has recently reported detection

efficiencies > 40% (Islam et al., 2014). Single-cell proteomics

will require novel experimental techniques but is likely to add a

new dimension to our understanding of cellular variability.

Investigating mechanisms underlying heterogeneous gene

expression such as transcription factor binding, methylation, his-

tone modifications, or nucleosome occupancy at the single-cell

level remains largely uncharted territory, as does the spatial

analysis of single cells in tissue. No matter what the next break-

throughs are, there is no doubt that the convergence of single-

cell biology and genome-wide analysis will continue to foster

amazing discoveries.
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