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Single-cell multi-omic detection of DNA 
methylation and histone modifications 
reconstructs the dynamics of epigenomic 
maintenance
 

Christoph Geisenberger1,2,7,8, Jeroen van den Berg    1,2,8,9  , 
Vincent van Batenburg    1,2, Buys de Barbanson    1,2, Anna Lyubimova1,2, 
Joe Verity-Legg    1,2, Xiufei Chen3,4,5, Yibin Liu    6, Chun-Xiao Song    4,5, 
Jeroen de Ridder    1,2 & Alexander van Oudenaarden    1,2,9 

DNA methylation and histone modifications encode epigenetic 
information. Recently, major progress was made to measure either mark 
at a single-cell resolution; however, a method for simultaneous detection 
is lacking, preventing study of their interactions. Here, to bridge this gap, 
we developed scEpi2-seq. Our technique provides a readout of histone 
modifications and DNA methylation at the single-cell and single-molecule 
level. Application in a cell line with the FUCCI cell cycle reporter system 
reveals how DNA methylation maintenance is influenced by the local 
chromatin context. In addition, profiling of H3K27me3 and DNA methylation 
in the mouse intestine yields insights into epigenetic interactions during 
cell type specification. Differentially methylated regions also demonstrated 
independent cell-type regulation in addition to H3K27me3 regulation, 
which reinforces that CpG methylation acts as an additional layer of control 
in facultative heterochromatin.

DNA methylation (5-methylcytosine; 5mC) and histone modifica-
tions are the two major, heritable epigenetic marks. Pioneering work 
has established single-cell 5mC profiling by bisulfite sequencing 
(scBS-seq)1,2. In addition, several methods are capable of single-cell 
histone modification profiling where specific antibodies tether either 
protein A-micrococcal nuclease (scChIC) or protein A-Tn5 transposase 
(scCUT&TAG) to modified nucleosomes3–5. Histone modifications 
and DNA methylation interact in several ways, such as recruitment 
of DNMTs6 to H3K36me3 or binding of H3K9me3 by UHRF1 (ref. 7); 
however, there is currently no technique that is capable of capturing 
these interactions in single cells. To bridge this gap, we developed 

single-cell Epi2-seq (scEpi2-seq), which achieves joint readout of histone 
modifications and DNA methylation in single cells. Our method yields 
high-quality data and provides valuable insights into the dynamics of 
epigenetic interactions.

Results
Single-cell Epi2-seq detects histone modifications and CpG 
methylation in single cells
Based on sortChIC8, scEpi2-seq leverages TET-assisted pyridine borane 
sequencing (TAPS9) for multi-omic readout of DNA methylation and 
histone modifications in single cells (Fig. 1a). After isolation and 
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for K562 cells. We observe that regions covered by the repressive  
histone marks H3K27me3 and H3K9me3 showed much lower 
methylation levels as compared to H3K36me3 (Extended Data  
Fig. 3a). These results are in agreement with 5mC levels per cell as 
measured with TAPS (Extended Data Fig. 2a). In addition, we com-
pared in silico bulk measurements of DNA methylation levels  
(β values) to ENCODE WGBS (Extended Data Fig. 3b). These analyses 
revealed a high correlation between CpG methylation for 10-kb bins 
across the genome for K562, but not for HepG2, H1 or GM12878 cells 
(Extended Data Fig. 3b). At the single-CpG level, correlations exceed 
0.8 (Pearson’s r; Extended Data Fig. 3c), indicating high data quality. 
Similar to our chromatin profiles, we display single-cell methylation 
tracks for a large region of chromosome 2 and observe high methyl
ation for H3K36me3 and lower for H3K27me3 and H3K9me3 (Fig. 1e 
and Extended Data Fig. 3d). Plotting average methylation with respect 
to the cut site also shows much lower 5mC levels for H3K27me3 and 
H3K9me3 (8–10%) compared to H3K36me3 (50%) (Fig. 1e,f). This is in 
line with our analysis using WGBS data (Extended Data Fig. 3a,d) and 
with previous reports of higher methylation in gene bodies16. Taken 
together, scEpi2-seq simultaneously measures DNA methylation and 
histone methylation in the same single cell and shows high correlations 
with single-omics reference data.

H3K9me3, H3K27me3 and H3K36me3 chromatin and CpG 
methylation scEpi2-seq multi-omics validation on RPE-1 hTERT 
FUCCI cells
To validate K562 findings, we generated additional scEpi2-seq data 
for the RPE-1 hTERT cell line. In total, we profiled 3,420 single cells 
across three histone modifications (H3K9me3, H3K27me3 and 
H3K36me3). Similar to K562, we find that our negative control wells 
contain orders of magnitude fewer reads compared to positive wells 
(Extended Data Fig. 4a). To estimate the expected per-cell methylation 
levels, we intersected the peaks identified from the ChIC portion of our 
data with bulk WGBS measurements. While genome-wide methylation 
levels were higher than K562 cells, differences between histone marks 
showed similar behavior. 5mC levels were low to intermediate in regions 
covered by repressive histone marks (H3K9me3 and H3K27me3) and 
high in regions covered by H3K36me3 (Extended Data Fig. 4e). While 
plotting ChIC counts and per-cell 5mC levels, we noted two clusters 
among the cells with high numbers of unique cut sites. In addition to the 
population that displayed similar average 5mC levels in accordance with 
the estimates from intersecting ChIC peaks and WGBS (Extended Data 
Figure 4b), we identified a second, smaller population for all histone 
marks (Extended Data Figure 4b). These cells exhibited lower FRiP and 
per-cell 5mC levels closer to the genome-wide average. This effect likely 
results from excessive MNase activity. Our filtering effectively removed 
cells with low numbers of unique cut sites and those with excessive 
MNase activity. Overall, 35.4–40.6% of cells passed our thresholds 
and 1,716 single-cell profiles were available for downstream analyses 
(Extended Data Fig. 4b). Similar to K562 cells, FRiP values were high 
for RPE-1 hTERT cells passing QC (0.83–0.88; Extended Data Fig. 4c). 
The median number of CpGs detected exceeded 50,000 for all histone 
modifications (Extended Data Fig. 4d). The mutually exclusive pat-
terns of H3K36me3, H3K27me3 and H3K9me3 were reproducible in 
RPE-1 hTERT cells (Extended Data Fig. 4f,j). Nucleosome positioning 
followed the same trend as previously observed in K562 cells, where 
H3K27me3 is more regularly spaced over longer genomic distances 
compared to H3K36me3 chromatin (Extended Data Fig. 4g). Again, 
genome-wide comparisons between WGBS and TAPS methylation 
showed excellent correlation (Extended Data Fig. 4h; Pearson cor-
relation >0.9; P < 2.2 × 1016). CpG methylation levels as function of 
distance to the MNase cut site aligned well with per-cell 5mC levels 
(Extended Data Fig. 4i). Taken together, scEpi2-seq showed similar 
performance in RPE-1 cells with respect to single-cell metrics and cor-
relation with reference data.

permeabilization, a pA–MNase fusion protein is tethered to specific 
histone modifications using antibodies. Single cells are sorted into 
384-well plates by fluorescence-activated cell sorting (FACS). Next, 
MNase digestion is initiated by adding the essential cofactor Ca2+. The 
resulting fragments are repaired and A-tailed. Next, adaptors con-
taining a single-cell barcode, unique molecular identifier (UMI), T7 
promoter and Illumina handle are ligated to these fragments. Mate-
rial from a 384-well plate is collected and subjected to TAPS. Unlike 
bisulfite-based approaches, TAPS converts methylated cytosine (5mC) 
to uracil, leaving barcoded single-cell adaptors intact. Library prepa-
ration includes in vitro transcription (IVT), reverse transcription and 
PCR. Following paired-end sequencing, multiple pieces of informa-
tion are extracted from each read. Mapping genomic locations reveals 
position of modified histones, and C-to-T base conversions identify 
methylated cytosines. Also, nucleosome spacing can be inferred from 
distances between the start of sequencing reads (Fig. 1a). In addition, 
reads originating from IVT and PCR duplicates are used to correct for 
sequencing errors (Extended Data Fig. 1a). Like bisulfite sequencing, 
TAPS does not distinguish between 5hmC/5mC; however, HPLC–MS 
analyses indicate that 5hmC is approximately 30-fold less abundant 
than 5mC in most tissues10. Thus, the majority of the signal detected 
by TAPS and bisulfite sequencing originates from 5mC.

To validate scEpi2-seq, we performed multi-omic profiling of DNA 
methylation histone modification in K562 cells. In total, we processed 
2,660 cells across three histone marks (H3K9me3, H3K27me3 and 
H3K36me3). These libraries display high rates of cell barcode retrieval, 
high mappability and low mismatch rates (Extended Data Fig. 1b–d). We 
used in vitro CpG methylated spike-ins to assess TAPS conversion and 
found high C-to-T conversion rates (~95%, Extended Data Fig. 1e). Overall, 
we observe above average unique reads per cell, fraction reads in peaks 
and correlations to ENCODE ChIP-seq data compared to other single-cell 
chromatin methods (Extended Data Fig. 1f). We selected high-quality 
cells based on the number of unique reads and average methylation level 
per cell, which resulted in 60.2–77.9% cells passing quality control (QC) 
(Extended Data Fig. 2a). In the remaining cells (n = 1,981), we detect over 
50,000 CpGs per single cell (Extended Data Fig. 2b). Next, we quantified 
the specificity of the single-cell histone measurements by calculating 
the fraction of reads in peaks (FRiP) for each cell (identified by MACS3 
(ref. 11)). Average FRiP ranged between 0.72–0.88, depending on the 
antibody (Extended Data Fig. 2c). We detected orders of magnitude 
fewer reads in empty negative control wells (Extended Data Fig. 2d), 
underlining the high sensitivity and specificity of chromatin modality 
of scEpi2-seq data. Pseudobulk comparisons of our measurements and 
previously published data, including sortChIC8 and ENCODE ChIP-seq12 
reveal high correlations (Extended Data Fig. 2h,i). Single-cell tracks 
display generally non-overlapping histone modifications as expected 
(Fig. 1b and Extended Data Fig. 2j). This observation is readily observed 
at higher resolution (200 bp; Extended Data Fig. 2f) and quantification 
further supports the mutually exclusive pattern. As a consequence, data 
across cells and modifications yield a near genome-wide CpG coverage 
(~80%; Extended Data Fig. 2e). These distributions are also observed at 
the PRAME gene locus, a highly expressed gene in K562 cells13 (300 kb; 
Extended Data Fig. 2j) and showed high levels of H3K36me3 demar-
cating the transcribed region, whereas the surrounding genome is 
decorated by the repressive marks H3K27me3 and H3K9me3. Next, 
we extracted distances between MNase cut sites from read mapping 
positions. Single-cell heatmaps (Fig. 1c) and data aggregated per his-
tone mark (Fig. 1d) revealed the expected oscillatory patterns related 
to nucleosome spacing14. These oscillations disappear for H3K36me3 
at distances larger than 1 kb, whereas they persist for H3K27me3 and 
H3K9me3, potentially related to the increased nucleosome dynamics 
during transcription15.

Next, we assessed 5mC levels in different chromatin contexts.  
First, we compared available ENCODE whole-genome bisulfite sequen
cing (WGBS) data to our scEpi2-seq split by chromatin domain  
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Fig. 1 | Multi-omic profiling of DNA methylation and histone modifications 
with scEpi2-seq. a, Overview of scEpi2-Seq workflow. Figure created with 
BioRender.com. b, Single-cell heatmaps of cut sites across three different 
histone modifications. Signals are aggregated per mark (top). c,d, Single-cell 
heatmap and line chart of distance between MNase cut sites with oscillations 

related to nucleosome positioning. Line indicates a LOESS smoothened curve 
of the underlying data points and error bands indicates the s.e. of the LOESS 
fit. e, Single-cell heatmaps of DNA methylation across three different histone 
modifications. Signals are aggregated per mark (top). f, Average methylation  
per mark with respect to distance from cut site.
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Cell-cycle-dependent DNA methylation dynamics are 
primarily driven by DNA replication
To study the interaction of epigenetic marks during cell cycle progres-
sion, we took advantage of the FUCCI cell cycle reporter system17 in 
the RPE-1 hTERT cells. Intensities of the FUCCI reporters are recorded 
for each single cell during sorting, allowing a measurement of the 
cell cycle stage of each cell. To visualize CpG dynamics across the cell 
cycle, we plot the average CpG methylation for each cell and fluo-
rescent intensities of FUCCI markers (S/G2 marker, mAG-Geminin,  
x axis and G1 marker, Cdt1-mKO, y axis; Extended Data Fig. 5d). Upon 
visual inspection, we observed slight alterations over the cell cycle; 
however, these seemed to be obscured by outlier cells. To visualize 
changes over the cell cycle, we performed a rolling window smooth-
ing. First, a progression over the cell cycle (integrated cell cycle pro-
gression) was converted into pseudo-time to FUCCI intensities using 
Wanderlust18 (Extended Data Fig. 5a–c). Next, we used integrated 
cell cycle progression to perform rolling window smoothing for CpG 
methylation during cell cycle (Extended Data Fig. 5d,e). Using this 
smoothing, we observed that CpG methylation over cell cycle progres-
sion exhibited a transient decrease during S phase for each histone 
modification (Fig. 2a). CpG methylation seems to reach its minimum 
during S phase (high hGeminin-mAG and low hCdt1-mKO2 levels) for 
H3K27me3- and H3K36me3-positive regions. In contrast, CpG meth-
ylation reached a minimum during G1 phase (low hGeminin-mAG and 
low hCdt1-mKO2 levels) for H3K9me3-covered regions. To improve 
resolution with respect to genomic replication timing, we integrated 
scEpi2-seq data with single-cell EdU-seq data (scEdU-seq19) for the same 
cell line (Fig. 2b and Methods). Using this integration, we are able to 
assess CpG methylation and histone methylation with respect to two 
time-resolved axes; cell cycle progression extracted from the FUCCI 
reporters and DNA replication timing inferred from the scEdU-seq 
experiment (Fig. 2c). As previously described, genomic distribution 
of histone marks is tightly correlated with replication timing20,21. 
H3K36me3 and H3K9me3 are enriched for early and late-replicating 
regions, respectively, whereas H3K27me3 is broadly distributed during 
mid-replication timing domains (Fig. 2c). We found that maintenance 
methylation extends into G1 phase within late-replicating domains, 
both for regions marked with H3K27me3 and H3K9me3 (Fig. 2c). The 
association between replication-coupled methylation loss and repli-
cation timing is also apparent when both modalities are visualized 
along the genome (Fig. 2d). Taken together, our data imply that the 
observed cell-cycle-dependent DNA methylation dynamics are pri-
marily driven by DNA replication. The decrease in DNA methylation 
is subtle (a few percent), suggesting that DNA methylation mainte-
nance is overall efficient. Recent data from the Groth and Hajkova 
laboratories revealed that DNA methylation does not immediately 
recover with the forks and is not even fully recovered in the subsequent 
mitosis22,23. In fact, replication-coupled maintenance is followed by a 
slower, replication-uncoupled phase of methylation maintenance23. 
This slower phase is facilitated by direct interaction of UHRF1 with 
H3K9me3 (ref. 7). In line with these observations, our data show 
that H3K9me3 chromatin does not fully recover CpG methylation 
within a single cell cycle. This results in a protracted, slower phase of 
re-methylation that extends into G1 phase for late-replicating domains 
(reviewed by Unoki24).

Nucleosome occupancy direct DNA methylation maintenance 
following DNA replication
To assess the interplay of nucleosome occupancy and methylation 
maintenance, we utilized the single-molecule aspect of scEpi2-seq data. 
The start of sequencing reads coincides with MNase cut sites within 
linker DNA25, which is reflected in the oscillatory distribution of cut site 
distances (Fig. 1d and Extended Data Fig. 4g). First, we assessed DNA 
methylation with respect to the distance from an MNase cut over inte-
grated cell cycle progression (Fig. 3a). We observed that the decrease 

in DNA methylation during S phase (x axis) was correlated with the 
distance from the cut site (y axis). We chose three representative dis-
tances to probe the correlation of DNA methylation maintenance and 
nucleosome occupancy. While distances of 90 and 270 bp correspond 
to the midpoints of the first and second nucleosome from the cut site, 
a distance of 180 bp reflects linker DNA. Additional analyses reveal 
that the decrease in methylation is more pronounced in regions that 
are covered by nucleosomes, especially for H3K27me3 and H3K9me3 
(Fig. 3b). This effect became even more apparent when we investi-
gated the absolute methylation levels with respect to cut site distance 
(Fig. 3c). We observe that levels at the nucleosome depleted region 
(180 bp, green line) fluctuate less throughout cell cycle progression 
and behave differently from the regions that are covered by nucle-
osomes. This suggests that parts of the genome that are bound by 
nucleosomes display altered kinetics of DNA methylation recovery 
after DNA replication. These dynamics are also visible upon normali-
zation of CpG methylation (Fig. 3d; z-scoring CpG methylation per 
chromatin mark). In line with this observation, CpG methylation on 
DNA wrapped around nucleosomes was altered by a maximum of 12% 
compared to 4% in linker regions (Fig. 3e). In addition, these dynam-
ics were highly reproducible between H3K27me3 and H3K9me3. For 
H3K36me3, the overall drop was much less pronounced and less clearly 
associated with nucleosome occupancy. This strongly suggests that 
high turnover of histones during RNA polymerase II transcription 
enables faster recovery of CpG methylation levels following DNA 
replication. Taken together, these findings suggest that in addition 
to replication timing, nucleosome occupancy has a major influence 
on DNA methylation maintenance.

Profiling of mouse intestinal cells reveals cell-type-specific 
differential DNA methylation within H3K27me3 regions
After exploring CpG methylation in specific chromatin domains in a 
relatively homogeneous cells, we set out to assess the functionality 
of scEpi2-seq in a complex tissue. Given the critical roles of DNA dem-
ethylation during intestinal differentiation26 and PRC2-dependent 
repression in intestinal stem cell maintenance27–30, we generated 
H3K27me3-targeted scEpi2-seq data for single cells isolated from 
the small intestine of mice. Cells from the proximal, distal and mid-
dle portion of the small intestine were isolated from three mice 
(Fig. 4a) to reduce confounding effects on H3K27me3 deposition 
patterns along the anteroposterior axis31. Cells from each intestinal 
fraction were fluorescently labeled, pooled, sorted and their fluores-
cence recorded during the single-cell sort (Extended Data Fig. 6a). 
Following QC, we retain 3,123 mouse intestinal cells. Signac32 and 
MethSCAn33 were utilized to perform dimensionality reduction and 
clustering for H3K27me3 patterns and CpG methylation, respectively. 
We observed several clusters in both H3K27me3 and CpG methylation 
data, which are split between cells from proximal and middle versus 
distal regions (Fig. 4b). To identify the cell types within these clusters, 
we performed marker gene detection on the H3K27me3 signal. Given 
that H3K27me3 marks PRC2-repressend facultative heterochroma-
tin, histone counts are inversely correlated to messenger RNA expres-
sion34 (Extended Data Fig. 6b). This analysis revealed three clusters; 
absorptive (for example, Pou2f3, Tcf4, Ephb3, Foxa1 and Foxa2), secre-
tory (for example, Nptx1, Nkx2-2, and Fev) and immune (for example, 
Ikzf3, Pax5 and Pou2f2) cells. The absorptive and secretory cells are 
present in all anteroposterior fractions, whereas immune cells are 
enriched in the distal fraction (Fig. 4b,c, Extended Data Fig. 6b and 
Supplementary Table 4). This is in line with the increase of lymphoid 
follicles called Peyer’s patches toward the distal part of the small intes-
tinal tract35.

Next, we investigated the H3K27me3 chromatin domain distribu-
tion between these cell types. Upon visual inspection, we observed 
that most of the signals were similar between cell types with a few  
domains present in cell-specific clusters (Extended Data Fig. 6c).  
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We previously observed that CpG methylation levels are relatively  
stable within a H3K27me3 domain in RPE-1 hTERT and K562 cells 
(Fig. 1f and Extended Data Fig. 4i). We observed a similar pattern for CpG  
methylation as a function of the distance to the H3K27me3 cut site in 
mouse intestinal cell types (Extended Data Fig. 6d). In addition, we  
found that 5mC levels within H3K27me3 domains are primary cells 

(~65%) compared to tissue culture cell lines (~10% for K562 and ~35% for 
RPE-1 hTERT). These data suggest that 5mC levels are possibly eroded 
in cell lines due to cell divisions, which has been previously described 
for heterochromatin36,37. Last, we observed unaltered nucleosome 
occupancy patterns within the H3K27me3 domains between absorp-
tive, secretory or immune cells (Fig. 4g and Extended Data Fig. 6e). 
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Fig. 2 | Methylation maintenance resolved for histone marks and replication 
timing. a, Scatter-plot of cell cycle reporter intensities for RPE-1 FUCCI cells. 
Color indicates neighbor-averaged methylation per cell. b, Heatmap of scEdU-
seq signal intensity for a representative region of chromosome 1. Single cells  
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This observation suggests that nucleosome periodicity patterns are 
divergent between chromatin states, but not between cell types within 
the same chromatin state.

To achieve higher cell type resolution, dimensionality reduc-
tion and clustering were performed again for each cluster separately 
(absorptive, secretory and immune). First, we found that the coarse 
absorptive cluster split into two very similar enterocyte clusters 
(Fig. 4d). Second, the coarse secretory cluster split into two subclus-
ters; enteroendocrine cells (EECs) and goblet cells, which we determine 
based on the mutual exclusive H3K27me3 signal on Pax6 for goblet cells 
and Gfi1 for EECs (Fig. 4d and Extended Data Fig. 6f,g). Last, we found 

three subclusters in the coarse immune cluster representing B cells, 
T cells and myeloid cells, which we identified based on the H3K27me3 
signal on Lyn (Extended Data Fig. 6h; T cells, not B cells or myeloid), 
Syk (Extended Data Fig. 6i; T cells, not B cells or myeloid) and Il10ra 
(Extended Data Fig. 6j; myeloid, not T cells or B cells). Using these 
refined cell types, we investigated the levels of H3K27me3 as well as 
CpG methylation (Fig. 4e,f). We observed the lowest H3K27me3 levels 
in enterocytes, which also have the lowest CpG methylation levels. As 
for secretory cells, we observed similar levels of H3K27me3 but higher 
CpG methylation in goblet cells compared to EECs. For immune cells, we 
saw the lowest levels of H3K27me3 levels in B cells compared to T cells 
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or myeloid cells, but these displayed the highest levels of CpG methyla-
tion. These diverging trends for CpG methylation and H3K27me3 levels 
in immune cells suggest interactions between these two repressive 
epigenomic regulatory layers.

Differentially methylated regions (DMRs) are closely spaced 
CpG sites that exhibit methylation variability across cell types, dis-
ease states and even individuals38,39. Their identification is crucial 
for understanding epigenetic landscapes and gene regulation. First, 
we set out to identify cell clusters based on the CpG profiling of the 
mouse intestine. We utilized MethSCAn, leveraging its performance 
with minimal coverage per cell, making it ideal for capturing CpG 
heterogeneity in single-cell chromatin libraries, which generally dis-
play low coverage. We identified two CpG clusters in our intestinal 
dataset (Extended Data Fig. 6k–m and Fig. 4b–d), corresponding to 
the immune and absorptive/secretory H3K27me3 clusters. Next, we 
identified DMRs within our mouse intestinal data using MethSCAn 
(Methods and Extended Data Fig. 6n). These data demonstrate that, 
even though H3K27me3 decorates these regions at similar levels, 
CpG methylation displays notably different levels between epithelial 
and hematopoietic lineages (Fig. 4h–j). These contrasting levels in 
CpG methylation demonstrate that, on top of H3K27me3 regulation, 
CpG methylation functions as an additional regulatory layer. Closer 
inspection of the DMRs between the two 5mC clusters reveals that all 
DMRs are associated with at least a single gene and that the majority of 
DMRs are located within 50 kb of transcription start sites, which sug-
gest a large role in the cis-regulatory function of these DMRs. Moreo-
ver, pathway enrichment analysis of DMRs with GREAT40 revealed an 
increase for genes present in transcription factor complexes (q-value, 
3.82 × 10−8), which display RNA polymerase II transcription factory 
activity (q-value, 1.85 × 10−23) and sequence specific DNA binding 
(q-value, 3.47 × 10−45). We next visualized the top 25 DMRs identified by 
MethSCAn in all pairwise comparisons of H3K27me3 subclusters and 
5mC clusters (Fig. 4j). Following hierarchical clustering, we recovered 
the separation between immune and intestinal (absorptive and secre-
tory) cells. Within these groups, we observed that T cells and B cells are 
more similar than myeloid cells. At the same time, we found that cells 
from the epithelial 2 cluster are more similar to goblet cells compared 
to epithelial 1 and enteroendocrine cells, which contrasts with our 
observation using only the H3K27me3 data (Fig. 4b–d) demonstrating 
the added value of the multi-omic measurements. Using scEpi2-seq, 
we profiled both CpG methylation and H3K27me3 from the same 
single cells in the mouse small intestine, enabling joint analysis of two 
repressive epigenetic layers across cell types and anatomical regions. 
We identified major epithelial and immune lineages and resolved 
distinct subtypes, observing coordinated and divergent patterns of 
methylation and H3K27me3 between lineages. Notably, DMRs revealed 
lineage-specific epigenetic regulation not captured by H3K27me3 
alone, highlighting CpG methylation as an additive regulatory layer 
in gene regulation within facultative heterochromatin.

Discussion
Here, we introduce scEpi2-seq, an addition to the growing single-cell 
multi-omic toolbox. Recent advances have enabled researchers to 
measure 5mC or histone modifications in thousands to hundreds of 
thousands of cells41; however, bisulfite treatment is destructive, causes 
DNA breakage and is challenging to combine with histone modification 
assays, which retrieve molecules of interest by ligation of adaptors. 
Taking into account these limitations, we developed scEpi2-seq to study 
5mC and the surrounding histone landscape. Combining sortChIC with 
TAPS conversion allowed multi-omic measurements, accurately pro-
filing histone modifications and DNA methylation at the same time in 
single cells. In-depth validation of the histone and 5mC portions of our 
K562 data revealed high specificity as well as high numbers of unique 
cuts per cell. Comparison with reference data revealed high correlations 
with single-omics bulk measurements as well as the single-cell methods 
scCUT&RUN or scCUT&TAG4,5 for H3K36me3, H3k27me3 and H3k9me3 
histone marks. Our comparison indicates that Tn5-based methods usu-
ally offer higher throughputs, albeit at the expense of the number of 
unique fragments per cell. Also, MNase digestion offers improved reso-
lution for heterochromatic regions8; however, scCUT&TAG is preferred 
for atlas-scale endeavors where high throughput is essential to capture 
rare cell types. We showcase the utility of plate-based assays and flow 
cytometry by resolving reporter constructs (cell cycle progression in 
RPE-1 cells) as well as dyes introduced during sample preparation (to 
label anteroposterior axis in the mouse intestine). Of note, scEpi2-seq 
provides additional information on CpG DNA methylation allowing the 
exploration of the coupling between the two major epigenetic marks: 
histone modifications and DNA methylation.

Employing scEpi2-seq and scEdU-seq in RPE-1 FUCCI cells allowed 
us to assess the interplay of methylation maintenance, histone modi-
fications and DNA replication timing across the cell cycle. Theoretic 
models about the heritability of 5mC patterns existed as early as 1975 
(ref. 42). Murine DNMT1 was first cloned in 1988 (ref. 43) and subse-
quently recognized as the main enzyme responsible for maintenance 
methylation (reviewed by Mattei et al.44). A multitude of binding part-
ners have been characterized, most notably PCNA and UHRF1, which 
recruit DNMT1 to the replication fork. Publications on the kinetics 
of maintenance find the process to be overall efficient; however, 
sequencing-based methods report faster re-methylation rates23,45,46 
as opposed to mass spectrometry measurements22. While the pre-
cise kinetics are a matter of active research, the publications above 
agree on the fact that methylation extends into G1 phase for some 
regions. Regions with slower maintenance tend to be late replicat-
ing, heterochromatic and associated with the nuclear lamina47. Direct 
interactions between G9a/DNMT1 (ref. 48) and H3K9me3/UHRF1  
(ref. 7) might serve as mechanisms to target the maintenance meth-
ylation machinery. Notably, increased cell turnover leads to erosion of 
DNA methylation in late-replicating regions. This has been observed 
in cancer49,50 and extended cell culture51. Using scEpi2-seq, we confirm 

Fig. 4 | scEpi2-seq profiling of the small intestine from mice. a, Overview of the 
intestinal samples, fluorescent labeling and computational analyses for scEpi2-
seq intestinal dataset. b, Uniform Manifold Approximation and Projections 
(UMAPs) generated from 3,123 cells from the individual modalities; H3K27me3 
(left) and CpG methylation (right). Cells are colored based on the position 
along the small intestinal tract. The dashed lines in the right plot indicate two 
5mC clusters retrieved from Leiden clustering on the residuals on the variable 
methylated regions (MethSCAn) c, Same as in b, but cells are colored based on 
coarse clustering of the H3K27me3 data. d, Same as in b, but cells are colored 
based on refined clustering of the coarse H3K27me3 cluster in c. e, The number 
of unique H3K27me3 reads per single cell split by the subclusters based on 
the H3K27me3 signal from three individual mice. The boxplot is defined by 
the median ± interquartile range (IQR) and whiskers represent 1.5 × IQR. f, The 
percentage of CpG methylation on H3K27me3 ChIC fragments per single cell split 
by the subclusters based on the H3K27me3 signal derived from three individual 

mice. The boxplot is defined by the median ± IQR and whiskers represent 
1.5 × IQR. g, LOESS smoothed line plot of the pairwise distances between MNase 
cut sites originating from all cells assigned to either absorptive, secretory or 
immune cells, which depict oscillations related to nucleosome positioning. 
Line indicates a LOESS smoothened curve of the underlying data points and 
error bands indicates the s.e. of the LOESS fit. h,i, Plots depicting DMRs in close 
proximity to Nkx2-3 (h) and Nr2f2 (i) genes, where the blue dashed line indicates 
the DMR identified by MethSCAn. The top is a line plot with the total number of 
CpG covered in a 5-kb bin for all cells in either of the 5mC clusters. The bottom 
two plots depict the average CpG methylation (%) over a 100-bp bin for both 5mC 
clusters. j, Heatmap containing DMRs (x axis) in each H3K27me3 subcluster  
(y axis) with the colors depicting the percentage of CpG methylation. The DMRs 
and subclusters were hierarchically clustered based on minimizing the variance 
(Ward’s method).
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that maintenance methylation extends into G1 phase for late-replicating 
regions22. Heterochromatic regions tend to replicate late and as such, the 
effect is most obvious in our H3K9me3 dataset; however, we note that 
late-replicating regions decorated with H3K27me3 show similar dynam-
ics. Thus, protracted maintenance methylation seems to be driven 
more by replication timing than by a specific histone mark. In vitro 
studies have shown that nucleosome occupancy can interfere with the 
binding of DNMT1 (ref. 52) and DNMT3a/b53 to DNA. In line with these 
findings, nucleosome-covered regions showed a more pronounced 
drop in methylation during S phase. We hypothesize that nucleosomes 
block DNMT1 from interaction with DNA. This study provides direct 
evidence for slower 5mC maintenance in nucleosome-covered regions. 
Taken together, scEpi2-seq provides new insights into the interplay of 
chromatin structure and epigenetic inheritance.

Finally, we profiled H3K27me3 and 5mC along the anteroposterior 
axis of the mouse small intestinal tract. We find a variety of cell types 
with distinct H3K27me3 profiles. In addition, we observed that CpG 
methylation separates the hematopoietic lineage from the epithelial 
lineage. Moreover, immune cells show high CpG methylation and vari-
able H3K27me3 levels, whereas epithelial cells are more distinct in both 
epigenetic marks. This points to distinct repressive strategies between 
immune and epithelial lineage. These data suggest that H3K27me3 
methylation levels operate as an independent regulatory mechanism 
from CpG methylation. In addition, we observe differences in the epi-
thelial cell subtypes, identified with H3K27me3, which show strong 
separation based on the anteroposterior axis. This could potentially 
indicate an effect of the position along the intestinal tract to shape dif-
ferentiation trajectories, which has been previously described54,55. Our 
data suggest that chromatin states may contribute to cell fate decisions. 
Conversely, we do not observe a difference in nucleosome occupancy 
periodicity across cell types within H3K27me3 regions. This observa-
tion suggests that chromatin structure is dictated by epigenomic 
state rather than cell identity. In addition, we observe many DMRs 
between immune and intestinal cells that are located upstream of the 
gene bodies and that these genes are often transcription factors with 
known function in differentiation trajectories (for example Nr2f2 and 
Pou2f3). This suggests that in addition to H3K27me3, these transcrip-
tion factors need to be additionally repressed by CpG methylation to 
fully block illegitimate expression. Taken together, these observations 
in the mouse small intestine warrant co-acquisition of both histone 
marks and CpG methylation status with scEpi2-seq as these provide 
a more extensive view on epigenome regulation in complex tissues.
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Methods
The manuscript is accompanied by a detailed, step-by-step version of 
the protocol, which can be accessed at https://www.protocols.io/view/
single-cell-epi2-seq-cqk7vuzn.

Cell culture
K562 cells (CCL-243, ATCC) were cultured in RPMI 1640 GlutaMAX 
medium (Gibco), supplemented with 5% FBS and pen–strep. hTERT 
RPE-1 FUCCI cells (a kind gift from the R.H. Medema laboratory) were 
grown in adherent culture with DMEM/F12 GlutaMAX medium (Gibco) 
supplemented with pen–strep and 10% FBS. TrypLE and PBS were used 
to passage RPE-1 hTERT FUCCI cells.

Mice
Our research complies with all relevant ethical guidelines. Experimen-
tal procedures were approved by the Dier Experimenten Commissie 
(DEC) of the Koninklijke Nederlandse Akademie van Wetenschappen 
(KNAW) and performed according to the guidelines. The mice that 
were used were the C57BL/6 strain. Animals used in the experiments 
were between 8 and 22 weeks of age. Both male and female mice were 
used for the experiments. Mice were housed in open housing with 
a 14–10-h light–dark cycle at 24 °C and 45–70% humidity with food 
and water ad libitum. Three individual mice were used, the proximal, 
middle and distal part of the intestines from a single individual were 
pooled following the generation of single cell suspension, fixation 
and CellTrace labeling (Invitrogen, according to the manufacturer’s 
protocol); randomization and blinding were not performed.

Single-cell histone profiling
Buffers. scChIC required three wash buffers. Wash buffer 1 (WB1) 
contained 20 mM HEPES, 150 mM NaCl, 0.5 mM spermidine, 0.05% 
Tween-20, 2 mM EDTA and one cOmplete Protease Inhibitor tablet 
(per 50 ml). Wash buffer 2 (WB2) had the same composition as WB1 
but omitting EDTA. Wash buffer 3 (WB3) had the same composition as 
WB1 but lacking EDTA and protease inhibitor.

Fixation and storage. All steps were performed in Protein LoBind tubes. 
Cells were collected and washed twice with PBS and fixed in 1 ml 70% 
ice-cold ethanol per 106 cells for 2 h at −20 °C. If not processed directly, 
cells were stored at −80 °C in WB1 with 10% dimethylsulfoxide (DMSO).

Antibody and pA–MNase binding. Protein A–MNase fusion protein  
(pA–MNase) was expressed in bacteria and purified as outlined in  
Zeller et al.8. Cells were thawed, washed twice with WB1 and resus-
pended in 500 µl WB1. Antibody incubation was performed overnight 
at 4 °C with gentle agitation. Cells were washed once and resuspended 
in 500 µl of WB2. pA–MNase (3 ng ml−1) and Hoechst 34580 (5 µg ml−1) 
were added to each sample, followed by incubation for 1 h at 4 °C with 
gentle agitation. Cells were washed twice with WB2, resuspended in 
500 µl of WB3, filtered through a 70-µm strainer and transferred to 
FACS tubes. Antibodies used in this study were anti-H3K9me3 (Abcam, 
ab8898, 1:100 dilution), anti-H3K27me3 (NEB, C36B11, 1:200 dilution) 
and anti-H3K36me3 (Thermo Fisher, MA5-24687, 1:2,000 dilution).

Fluorescence-assisted cell sorting. First, 10 µl of sterile filtered min-
eral oil was added to each well of 384-well hard-shell plate. Cells were 
sorted into 384-well plates on a BD Influx. Hoechst signal was used to 
select for K562 cells in G1 phase. Four gates were used for RPE-1 FUCCI 
cells to sample evenly from G1, S and G2 phases. Four to eight wells 
were left empty as controls in all plates. After sorting, cells were spun 
down for 1 min at 2,000g.

Processing of single-cell plates. All dispensions below were per-
formed using an Innovadyne Nanodrop II, after which plates were 
sealed with covers and spun for 1 min at 2,000g.

pA–MNase activation and Proteinase K digest. MNase digestion was 
initiated by adding 100 nl of WB3 supplemented with 2 mM CaCl2 to 
each well and incubated for 30 min at 4 °C. Digestion was stopped by 
dispensing 100 nl of the following solution (final concentrations): H2O, 
40 mM EGTA, 1.5% NP-40 and 2 mg ml−1 Proteinase K and incubated for 
20 min at 4 °C; 6 h at 65 °C; and 2 min at 80 °C.

Blunting. A total of 100 nl of the following mix was added to each well: 
2 nl Klenow, large fragment (NEB); 2 nl T4 PNK (NEB); 5 nl dNTP solution 
(Promega); 30 nl 10 mM ATP; 30 nl 10× PNK Buffer (NEB); 10 nl 25 mM 
MgCl2; 5 nl 50% PEG8000; 1.5 nl 20 mg ml−1 BSA (NEB); 14.5 nl H2O and 
incubated 30 min at 37 °C; 20 min at 75 °C.

A-tailing. Then, 150 nl of the following mix was added to each well 
(volumes per well): 1 nl AmpliTaq360 DNA Polymerase (Applied Bio-
systems); 1 nl 100 mM dATP; 25 nl 2 M KCl (Invitrogen); 10 nl PEG8000 
50%; 1 nl 20 mg ml−1 BSA; 112 nl H2O and incubated for 15 min at 37 °C; 
10 min at 72 °C.

Adaptor dispension. To each well, 50 nl of 5 µM barcoded adaptor was 
added using a Mosquito HTS Nanolitre Liquid handler (ttplabtech). 
Adaptor sequences are provided in Supplementary Table 1.

Adaptor ligation. Then, 150 nl of the following mix was added to each well: 
25 nl T4 Ligase at 400,000 U ml−1 (NEB); 3 nl 1 M MgCl2; 45 nl 0.1 M dithio
threitol (DTT); 20 nl 10 mM ATP; 5 nl 50% PEG8000; 1 nl 20 mg ml−1 BSA; 
51 nl H2O and incubated for 20 min at 4 °C; 16 h at 16 °C; 10 min at 65 °C.

Pooling of plates. Plates were inverted and placed in VBLOK200 reser-
voir (Click-Bio) pre-coated with mineral oil and spun for 2 min at 500g 
and the liquid phase was transferred to 1.5 ml Eppendorf tubes. Next, 
DNA was purified by incubating for 10 min with 0.8× Ampure XP bead 
cleanup (Beckman Coulter, pre-diluted 1:4 in bead binding buffer; 1 M 
NaCl, 20% PEG8000, 20 mM Tris, pH 8.0 and 1 mM EDTA). Beads were 
pelleted on a magnet, washed twice with 80% ethanol, air dried and 
resuspended in 19 µl H2O and transferred to a 0.5-ml Eppendorf tube. 
The material was stored at −20 °C until further processing.

TAPS methylation profiling
TET1 enzyme production. mTET1CD was expressed as outlined by 
Liu and colleagues9. In brief, FLAG-tagged mTET1CD was expressed in 
Expi293F cells. After lysis, mTET1CD–FLAG was bound to Anti-Flag M2 
Affinity Gel (Sigma) and purified on gravity chromatography columns 
according to the manufacturer’s specifications. Protein was concen-
trated on Amicon Ultra-4 Centrifugal Filter units followed by buffer 
exchange with Bio-Spin P-30 Gel Columns. Protein was stored at −80 °C 
in 20 mM HEPES, pH 8.0, 150 mM NaCl, 1 mM DTT and 30% glycerol.

Preparation of fully methylated lambda phage spike-in. Lambda 
phage DNA was methylated using M.SssI (NEB) using the following 
reaction: 5 µl NEB Buffer 2, 1 µl 32 mM S-adenosylmethionine, 0.5 µl M.
SssI (4,000 U ml−1), 1 µg of lambda phage DNA and H2O (to 50 µl). After 
incubation at 37 °C for 2 h, additional SAM (1 µl) and M.SssI (0.5 µl) 
were supplemented and incubated for 2 h at 37 °C. DNA was purified 
using a 1:1 bead-to-sample ratio Ampure XP SPRI cleanup and eluted 
in 20 µl nuclease-free water. This methylation reaction was repeated 
once using the previously methylated DNA as input, again supplement-
ing with SAM. A second SPRI cleanup was performed, eluted in 20 µl 
nuclease-free water and diluted to 1 pg µl−1.

TAPS conversion and cleanup. Reaction buffer for TAPS consists of: 
167 mM HEPES; 333 mM NaCl (Invitrogen); 3.3 mM α-ketoglutarate; 
6.67mM l-ascorbic acid; 4 mM ATP; 8.33 mM DTT. The following reac-
tion was assembled on ice: 19 µl of pooled material, 1 µl of methylated 
lambda spike-in libraries, 15 µl of TAPS reaction buffer, 3.33 µl of 1.5 mM 
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Fe2+ solution and 12 µl of mTET1CD. Samples were incubated for 80 min 
at 37 °C. Then, 1 µl of 20 mg ml−1 Proteinase K was added per reaction, 
followed by incubation for 15 min at 55 °C. Next, samples were cleaned 
up with 2× volumes of Ampure XP DNA beads and eluted in 19.67 µl of 
nuclease-free H2O. The above reaction, Proteinase K digest and bead 
cleanup were repeated and eluted in 33.75 µl H2O. Next, 10 µl of 3 M 
NaAc (pH 4.3) and 6.25 µl of 10 M pyridine borane solution were added 
to the libraries. Samples were incubated for 16 h in a thermal shaker 
(37 °C at 850 rpm). After pyridine borane incubation, reactions were 
subjected to oligonucleotide clean and concentrator columns (Zymo) 
according to the manufacturer’s protocol and volumes were reduced 
to 9.6 µl using SpeedVac.

Sequencing library preparation
In vitro transcription. TAPS-converted libraries were subjected to IVT 
by adding 14.4 µl of IVT reaction mix (MEGAscript T7 Transcription 
kit) and incubated for 14 h at 37 °C. Next, 6 µl of H2O and 3 µl of Turbo 
DNase were added and samples incubated for 15 min at 37 °C to digest 
template DNA. Amplified RNA (aRNA) was fragmented by adding 7.88 µl 
of fragmentation buffer (200 mM Tris-acetate; 500 mM KaOAc; 150 mM 
MgOAc) followed by incubation for 90 s at 94 °C. Samples were imme-
diately chilled on ice and 4.13 µl of 0.5 M EDTA, pH 8. Then, aRNA was 
cleaned with 0.8× RNAClean XP bead cleanup and eluted in 6 µl of H2O.

Reverse transcription and library amplification. After QC, 5 µl of 
aRNA was combined with 0.5 µl of 10 mM dNTP solution and 1 µl of 
random hexamer RT primer 20 µM (Supplementary Table 2). Samples 
were heated to 65 °C for 5 min and then immediately chilled on ice. 
Then, 6.5 µl of primed sample was combined with 2 µl First Strand 
Buffer, 1 µl 0.1 M DTT, 0.5 µl of SuperScriptII and 0.5 µl of RNaseOUT 
and incubated for 10 min at 25 °C; and 60 min at 42 °C. Then, 2 µl of bar-
coded RPIx primer (sequences in Supplementary Table 3) was added to 
each sample. Library PCR was performed by adding 11 µl nuclease-free 
H2O, 25 µl of NEBNext Ultra II Q5 Master Mix (NEB) and 2 µl of 10 µM RP1 
primer (Supplementary Table 2). Samples were amplified with 10–13 
cycles of PCR, dependent on histone modification. PCR settings: 30 s 
at 98 °C; 10 s at 98 °C, 30 s at 60 °C, 30 s at 72 °C for 10–13 cycles and  
10 min at 72 °C. Amplified DNA was cleaned with two subsequent  
0.8× AMPure XP bead cleanups and eluted in 15 µl of nuclease-free H2O. 
Concentration and size distribution of the final libraries were measured 
on a Qubit (Invitrogen) and Bioanalyzer (Agilent), respectively. Samples 
were pooled and sequenced on the Illumina NextSeq2000 platform 
(2 × 150 bp) according to the manufacturer’s specifications.

Data analysis
Trimming, demultiplexing, mapping and deduplication. The scChIC 
mapping and counting workflow is described by Zeller et al.8, which we 
further expand to include the steps required for molecule consensus and 
methylation calling. Sequenced reads were demultiplexed using Single-
CellMultiOmics demux.py and adaptor sequences were removed using 
Cutadapt. A custom reference was prepared by combining the following 
assemblies: Human Ensembl assembly v.97 (hg38), Lambda phage (acc. 
J02459.1), Cutibacterium acnes (acc. KPA171202) and Escherichia coli 
strain RHB09-C15. hg38 was used for mapping of the (human) cell lines 
K562 and RPE-1 and lambda phage to detect methylated spike-ins. Bac-
terial genomes were added to detect contaminants. Similarly, mouse 
intestinal samples were aligned to Mouse Ensembl assembly v.97 
(mm10), Lambda phage (acc. J02459.1), C. acnes (acc. KPA171202) and 
E. coli strain RHB09-C15. Trimmed reads were mapped paired-end using  
bwa-mem with default parameters. Mapped reads were filtered and 
deduplicated using SingleCellMultiOmics (bamtagmultiome.py).

Molecule consensus calling. In the molecule consensus calling 
step, the information from reads derived from the same original 
DNA-template is aggregated (Extended Data Fig. 1a). Reads containing 

the same UMI, starting coordinate, strand and haplotype were aggre-
gated into a single molecule. Paired-end reads are merged, for positions 
with overlapping read pairs the base call with the highest Phred score is 
selected and lower than 15 are discarded. For dovetailing alignments, 
the overlapping segments are not considered. For each covered posi-
tion, the most common base is selected using majority voting over all 
reads (IVT/PCR duplicates) that cover a location, resulting in a base call 
for each covered position of the consensus molecule. Ties are resolved 
by inserting an ambiguous base call (N).

Methylation calling. Methylation calling was performed on the gener-
ated consensus base calls. For every covered cytosine of the consensus 
molecule, a C is considered unmethylated, a T is considered methylated 
and other nucleotides result in an ambiguous methylation call. To avoid 
incorrect methylation calls due to the presence of single-nucleotide 
variants, genomic locations with known C-to-T variants were masked.

Whole-genome bisulfite sequencing. Bulk genomic DNA was 
extracted from RPE-1 cells using the Monarch Genomic DNA Purifica-
tion kit (NEB). DNA (10 ng) was bisulfite converted and libraries were 
prepared using the Pico Methyl-Seq Library Kit (Zymo) according to 
the manufacturer’s instructions. Libraries were sequenced on a Next-
Seq500 (2 × 150bp). Fastq files were derived from raw sequencing data 
by demultiplexing with bcl2fastq. Subsequently, data were trimmed 
using Cutadapt and mapped and deduplicated and coverage plus aver-
age methylation status for every CpG were exported using BisMark.

Calculation of conversion rates from methylated spike-in. To deter-
mine CG dinucleotide conversion efficiencies in methylated lambda 
phage spike-ins, mapped BAM files were analyzed using an estimate_
conversion.py. Each read group, nucleotide calls covering CG sites were 
aggregated and majority-vote consensus sequences were determined. 
Sites were classified as unconverted (CG) or converted (TG or CA), and 
counts were recorded for each position. The final output included 
genomic coordinates, conversion counts and trinucleotide context.

Extraction of sequencing statistics. Basic sequencing statistics were 
extracted from BAM files using the command libraryStatistics.py from 
the SingleCellMultiOmics package with default parameters.

Calculation of mismatch rates. Mismatch rates were computed from 
files generated with ‘samtools mpileup’. Specifically, we used a subset 
of libraries from the RPE-1 dataset for which unconverted data were 
available. Mismatches were calculated as the difference between total 
coverage and matches, and mismatch rates were expressed as the frac-
tion of mismatches over total coverage. Each position was assigned a 
trinucleotide context (±1-bp window) and sites containing ambiguous 
bases (‘N’) were excluded. Mismatch rates were then aggregated by library 
and sequence context to quantify base-specific error profiles. Of note, all 
sequence contexts containing CG dinucleotides were filtered to account 
for increased mismatch rates due to the conversion in TAPS libraries.

Calculation of fraction reads in peaks. For each dataset, histone 
modification-specific peaks were identified using MACS11 with broad 
peak calling enabled and without local lambda background correction. 
For each library, cell-level BAM files were created using a custom Python 
script (split_bam_by_cellbarcode.py, available on GitHub). Next, reads 
from each BAM file were intersected with their corresponding peak 
regions using countOverlaps from the GenomicRanges package. The 
FRiP score was computed as the fraction of reads falling within peak 
regions over the total number of aligned reads.

Overlap of histone modification peaks with DNA methylation.  
Histone modification peaks extracted from scEpi2-seq data were inter-
sected with WGBS acquired from ENCODE (K562 cells) or generated 
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as part of this manuscript (RPE-1). CpGs overlapping histone modifi-
cation peaks were identified using ‘GenomicRanges::findOverlaps’. 
Next, average CpG methylation (β value), number of CpGs and 
coverage per peak were calculated for each histone modification. 
Peaks with >50 reads total coverage and >10 CpGs were retained for 
visualization.

Comparison of scEpi2-seq and whole-genome bisulfite sequencing 
data. scEpi2-seq data for K562 cells were binned into 10-kb windows  
for cells passing QC. WGBS data for K562 and three additional cell 
lines (GM12878, H1 and HepG2) was acquired from ENCODE and also 
binned at 10-kb resolution and analyzed using Pearson’s correlation 
coefficient. For single CpG resolution, the maximum correlation  
attainable (referred to as ‘simulated’ in Extended Data Fig. 3c) was 
calculated as follows: First, WGBS data were filtered for a coverage 
of at least 10×. Methylation values were generated from WGBS data 
using binomial sampling with empirically determined parameters 
for TAPS conversion efficiency (α = 0.875, extracted from lambda 
phage spike-ins) and false-positive rate (β = 0.0023, from original 
TAPS publication9). Coverage levels were sampled from the empirical 
scEpi2-seq distribution. Pearson correlations were computed between 
actual and simulated methylation, as well as between matched CpG 
methylation values from scEpi2-seq and WGBS across a range of cover-
age thresholds.

Comparison of scEpi2-seq, single-cell ChIC and ChIP. Read counts 
for K562 cells were aggregated per histone modification. Data were 
binned into non-overlapping regions of 50 kb for comparison with ChIC 
and ChIP data, and Spearman correlation coefficients were computed 
across matched bins.

Preprocessing of single-cell chromatin data for analysis with  
Signac and Seurat. BAM files were processed including mapping 
and tagging as outlined above using custom software (SingleCellMul-
tiOmics package). BAM files were converted to fragment files using 
sinto with cell barcodes extracted from the ‘bc’ BAM tag. The result-
ing files were sorted, compressed with bgzip and indexed using tabix. 
Processed fragment files were imported into R using Signac/Seurat’s 
FragmentObject function and summarized in 50-kb genomic bins. 
Chromatin assays were created with a minimum cell (n = 10) and feature 
(n = 1,000) threshold and merged into a single Seurat object. Finally, 
dimensionality reduction was performed using TF-IDF normalization, 
singular value decomposition (SVD) and UMAP.

Integration of scEpi2-seq and scEdU-seq data. To integrate scEpi2-seq 
and scEdU-seq datasets, we used the FUCCI fluorescent intensities 
to compute a pseudo-time across the cell cycle (integrated cell cycle 
progression) using the Wanderlust algorithm for both scEpi2-seq data-
set (Extended Data Fig. 5e). Next, we aligned the scEdU-seq S phase 
progression19 to the integrated cell cycle progression by aligning 
the start of S phase progression with cells starting to accumulating 
mAG-Geminin (integrated cell cycle progression of 0.4) and aligning 
the end of S phase progression with cells fully losing the mKO-Cdt1 
(integrated cell cycle progression of 0.8), which we extracted from our 
previously published scEdU-seq data.

Normalization of histone mark densities. To normalize histone mark 
density over S phase progression, the densities for the chromatin 
mark were split by histone modification and subsequently maximum 
normalized to the highest replication timing bin (highest replication 
timing bin becomes 1.0).

Signac workflow to identify cell types using H3K27me3 ChIC from 
mouse intestine. Signac was used within Seurat to create a chromatin 
assay, filtering cells with fewer than 103 unique reads. A gene activity 

matrix was computed and principal-component analysis was per-
formed, after which the first component was removed as it correlated 
with sequencing depth. Next, dimensionality reduction was performed 
using latent semantic indexing, followed by UMAP visualization and 
clustering. The coarse clustering resulted in three large clusters that 
were subsequently split and reanalyzed to yield seven subclusters. 
Regions with differential abundance in H3K27me3 were identified by 
using the FindMarker function and visualized using the CoveragePlot 
function.

MethSCAn workflow to identify differentially methylated regions 
across cell types from mouse intestine. Methylation calls from 
single mouse intestinal cells were extracted as previously described 
by the tapsTabulator function. These were converted into a single-cell 
BisMark input format and subjected to the standard MethSCAn work-
flow. Next, we detected differentially methylated regions (DMRs) 
between the 5mC cluster 1 and 5mC cluster 2 or all pairwise H3K27me3 
celltypes and filtered them for at least 25 CpGs covered in both condi-
tions as well as a P value < 0.001. The top 25 DMRs (before filtering) 
from each comparison were used to generate a heatmap displaying 
CpG methylation percentage per DMRs over all subclusters, both 
were hierarchically clustered using ward.D2 to minimize the variance 
within clusters.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data generated for this study have been deposited at the Gene 
Expression Omnibus (accession code GSE232637). Data downloaded 
from ENCODE are listed in the GitHub repository accompanying this 
publication (https://github.com/cgeisenberger/taps-manuscript). 
Single-cell ChIC data were downloaded from the Gene Expression 
Omnibus (accession code GSE164779). Whole-genome bisulfite data 
for K562 (ENCFF867JRG and ENCFF721JMB), HepG2 (ENCFF817LMT and 
ENCFF453UDK), H1 (ENCFF573YXL and ENCFF434CNG) and GM12878 
(ENCFF614QHA and ENCFF570TIL) were downloaded from ENCODE. 
Bulk ChIP-seq data from K562 for H3K27me3 (ENCSR000EWB), 
H3K36me3 (ENCSR000DWB) and H3K9me3 (ENCSR000APE) were 
downloaded from ENCODE.

Code availability
Processing of sequencing data up to the generation of count and 
methylation tables was performed with the software package Single-
CellMultiOmics, which can be accessed at https://github.com/BuysDB/
SingleCellMultiOmics. Code for downstream analysis and genera-
tion of figures can be accessed at https://github.com/cgeisenberger/
taps-manuscript.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Library statistics for scEpi2-seq libraries and comparison 
to other single-cell methods. a. Overview of data extraction strategy for scEpi2-
Seq data. Every fragment resulting from MNase digestion is ligated to an adaptor 
containing a UMI, single-cell barcode, Illumina handle and T7 promoter. Every 
fragment is uniquely labeled by cell barcode and UMI, and mapping positions of 
R1 and R2 can be used to distinguish between duplicates generated during in vitro 
transcription (IVT) or PCR. In addition, aggregating all sequencing reads derived 
from the same DNA fragment into a consensus molecule can mitigate sequencing 
errors and makes methylation estimates more robust. Created in BioRender 
(2025) https://BioRender.com/0dai1w3. b. Mapping, Demultiplexing (that is, 
reads with correct cell barcode) and Deduplication (that is, removed reads with 
same cell barcode, UMI and position in the genome per single cell) rates per 
plates (indicated as dots, n = 7 independent experiments) for all experiments in 
this study. The boxplot is defined by the median ± interquartile range (IQR) and 
whiskers represent 1.5× IQR c. Mapping rates from the RPE-1 hTERT plates, which 

were either TAPS converted or unconverted prior during library preparation. 
The boxplot is defined by the median ± interquartile range (IQR) and whiskers 
represent 1.5× IQR. d. Comparison of mismatch rates from the RPE-1 hTERT 
plates, which were either TAPS converted or unconverted prior during library 
preparation. Only nucleotides in a non-CpG context were included. The boxplot 
is defined by the median ± interquartile range (IQR) and whiskers represent  
1.5× IQR e. Conversion efficiency of in vitro methylated lambda phage genome 
(spike-ins) after TAPS conversion. Each dot represents a single 384-plate 
(technical replicates) and results are grouped by sample of origin (n = 7 biological 
replicates over samples of origins). Inset displays the same data but with a 
selected range of conversion efficiency (that is, 85-100%). The boxplot is defined 
by the median ± interquartile range (IQR) and whiskers represent 1.5× IQR  
f. Comparison between scEpi2-seq (this study) and other single- and multi-omic 
approaches for measuring histone modifications in single cells.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Application of scEpi2-seq in K562 cells. a. Cells were 
quality-filtered based on the number of unique ChIC cut sites and DNA 
methylation. Scatter plots showing the number of unique cut sites (x-axis, log10 
scale) and per-cell 5mC levels (y-axis) in the K562 dataset. b. Normalized density 
plot showing the number of CpGs detected per single K562 cell (x-axis, log10) 
stratified by histone mark (columns) and QC status (rows). c. Violin plot showing 
the fraction of reads in peaks (FRiP) for QC-filtered cells in the K562 data set (n = 2 
biological replicates). Data are grouped for different modifications assessed with 
scEpi2-seq. The boxplot is defined by the median ± interquartile range (IQR) and 
whiskers represent 1.5× IQR d. Number of unique reads retrieved per single cell 
split by chromatin domain from wells containing a cell or a well left intentionally 
empty during sorting (n = 2 biological replicates). The boxplot is defined by  
the median ± interquartile range (IQR) and whiskers represent 1.5× IQR. 
 e. Percentage of the genome covered by histone peaks called from the ChiC 
portion of scEpi2-seq data from K562 cells. f. Ternary plot showing density of 
the number of cuts for three histone marks (that is, H3K36me3,H3K27me3 and 
H3K9me3) in 200 bp intervals across the genome. g. Observed over expected 
overlap between histone marks was compared to randomly sampled regions of 

the same size. Y-axis represents enrichment with respect to 1,000 resampled 
regions. Overlap between histone modifications was lower than would be 
expected by chance, demonstrating their overall mutually exclusive pattern. 
The boxplot is defined by the median ± interquartile range (IQR) and whiskers 
represent 1.5× IQR h. Correlation between in silico bulk measurements for 
histone modifications measured with scEpi2-seq and previously published single-
cell sortChiC data (Zeller et al., 2023, H3K27me3, H3K9me3 and H3K36me3). 
Reads are counted and aggregated for non-overlapping 100 kb bins across the 
genome. Correlation (Spearman’s rho) ranged from 0.92 to 0.95. i. Correlation 
between in silico bulk measurements for histone modifications measured 
with scEpi2-seq and Encode ChIP (H3K27me3, H3K9me3 and H3K36me3) and 
previously published single-cell sortChiC data (H3K9me3). Reads are counted 
and aggregated for non-overlapping 50 kb bins across the genome. Correlation 
(Spearman’s rho) ranged from 0.82 to 0.95 for sortChiC and 0.63 to 0.95 for 
ENCODE. j. Coverage plot of Signac normalized pseudobulk H3K27me3, 
H3K36me3, and H3K9me3 signal in K562 cells for a region containing the PRAME 
gene (highly expressed in K562 cells).
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Comparison of CpG methylation data. a. Bar plot 
showing genome-wide single-cell CpG coverage in the K562 scEpi2-seq data set. 
b. Correlation between pseudobulk DNA methylation data extracted from the 
TAPS portion of K562 scEpi2-seq data and ENCODE WGBS data for different cell 
lines. Correlation is calculated for non-overlapping 10 kb bins with a coverage 
of at least 50 reads per bin. c. Correlation between the TAPS portion of K562 
scEpi2-seq data and ENCODE WGBS at single-CpG resolution. X-axis represents 
different cutoffs (0 = no filtering, 1 = more than 1 read etc.). For comparison, 

WGBS data were downsampled to read depths as observed in our scEpi2-seq data. 
d. scEpi2-seq traces for different histone modifications (left) and corresponding 
CpG methylation (right) for K562 cells. The line plots contain comparisons 
between pseudobulk values (maximum normalized values for histone 
modifications and average CpG methylation for DNA methylation) from scEpi2-
seq and corresponding measurements for bulk ENCODE data (ChIP for histone 
modifications and WGBS for CpG methylation).
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Application of scEpi2-seq in RPE-1 hTERT FUCCI cells. 
a. Number of unique reads retrieved per single cell split by chromatin domain 
from wells containing a cell or a well left intentionally empty during sorting 
(n = 2 biological replicates). The boxplot is defined by the median ± interquartile 
range (IQR) and whiskers represent 1.5× IQR. b. Cells were quality-filtered based 
on the number of unique ChIC cut sites and DNA methylation. Top - Scatter 
plots showing the number of unique cut sites (x-axis, log10 scale) and per-cell 
5mC levels (y-axis) in the RPE-1 data set. Similar to the top panel, but zoomed in 
showing only cells with higher numbers of unique ChiC counts ( > 8000 reads). 
Dots are colored by fraction reads in peaks (FRiP). c. Violin plot showing the 
fraction of reads in peaks (FRiP) for QC-filtered cells in the RPE-1 hTERT FUCCI 
data set (n = 2 biological replicates). Data are grouped for different modifications 
assessed with scEpi2-seq. The boxplot is defined by the median ± interquartile 
range (IQR) and whiskers represent 1.5× IQR. d. Normalized density plot showing 
the number of CpGs detected per single RPE-1 hTERT FUCCI cells (x-axis, log10 
scale stratified by histone mark (columns) and QC status (rows). e. Distribution 
of RPE-1 methylation levels (WGBS) within peaks called from scEpi2-seq data 

(top row). Also included are methylation levels for random regions with the 
same size distribution (bottom row). f. Heatmap with histone modification 
signal intensities (number of ChIC counts) of single RPE-1 cells (rows) for a 
representative region on chromosome 2. The genomic region is equivalent to the 
one presented in Fig. 1b. g. Single-cell heatmap for cut site spacing in RPE-1 cells 
for the 250 cells with highest unique coverage per chromatin mark and arranged 
by the unique read depth. The read pair correlation shows characteristic 
oscillations related to nucleosome spacing. h. Comparison of in silico bulk 
aggregates of relative methylation extracted from scEpi2-seq data and WGBS 
data of the same cell line in 25 kb bins across the genome. Correlation estimation 
was performed using Pearson correlation test with a correlation coefficent of 
0.9 and the and a p-value < 2.2×10−16 i. Average CpG methylation in relation to 
distance from the cut site. Similar to K562 data, H3K36me3-decorated, actively 
transcribed regions show the highest average methylation. j. Coverage plot of 
Signac normalized pseudobulk H3K27me3, H3K36me3, and H3K9me3 signal in 
RPE-1 hTERT FUCCI cells for a region containing the FTH gene (highly expressed 
in RPE-1 hTERT cells).
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Extended Data Fig. 5 | Wanderlust computation of Integrated cell Cycle 
Progression and Nearest neighbor smoothing over Integrated Cell Cycle 
progression. a. Fluorescent intensities of FUCCI markers (x-axis, S/G2 marker, 
mAG-Geminin and y-axis, G1 marker, Cdt1-mKO) and cells are colored based on 
Wanderlust ordering into Integrated Cell Cycle Progression for all cells acquired 
during the cell sorting process from all antibody conditions. b. Fluorescent 
intensities of FUCCI markers (x-axis, S/G2 marker, mAG-Geminin and y-axis, 
G1 marker, Cdt1-mKO) and cells are colored based on manual annotations of 
cell cycle phases for all cells acquired during the cell sorting process from all 
antibody conditions. c. DAPI intensity for cells from manually annotated cell 

cycle phases acquired during the cell sorting from all antibody conditions. d. CpG 
Methylation values (y-axis) per single cell over Integrated Cell Cycle Progression 
(x-axis). Each dot indicates the average CpG methylation within a single cell. 
The line is a rolling window smoothing for the average CpG methylation over 
10 nearest neighbors. e. Fluorescent intensities of FUCCI markers (x-axis, S/G2 
marker, mAG-Geminin and y-axis, G1 marker, Cdt1-mKO) and cells are colored 
based on CpG methylation values with each column representing Increasing 
number of nearest neighbor smoothing (that is, 1,2,5,10 plus 10 with winsorizing) 
split by chromatin domain per row (that is, H3K27me3, H3K36me3 and 
H3K9me3).
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | H3K27me3 scEpi2-seq for on mouse intestinal samples. 
a. CellTrace labeling and visualization of intestinal fractions by flow cytometry.  
b. log2 fold changes of H3K27me3 signal on genes (each dot indicates a gene, 
color indicates adj. P-value, default likelihood ratio test using Signac) from  
3 individual mice split by Absorptive, Secretory and Immune cells (x-axis, coarse 
Signac clusters, see Methods). Each facet contains genes associated with either 
Absorptive, Secretory or Immune cells (Supplementary Table 4). The boxplot  
is defined by the median ± interquartile range (IQR) and whiskers represent  
1.5× IQR c. Heatmap with histone modification signal intensities (no. of ChIC 
counts) of single intestinal cells (rows) split by coarse Signac clusters (that is, 
Absorptive, Secretory and Immune) for a representative region on chromosome 
1. d. Average CpG methylation (y-axis) in relation to distance from the cut site 
(x-axis). e. Single-cell heatmap for cut site spacing in intestinal cells split by 
coarse Signac cluster (that is, Absorptive, Secretory and Immune). The read pair 
correlation shows characteristic oscillations related to nucleosome spacing.  
f. Coverage plot of normalized H3K27me3 signal between Enteroendocrine cells 
and Goblet cells for a region containing the Gfi1 gene (expressed in Goblet cells). 
g. Coverage plot of normalized H3K27me3 signal between Enteroendocrine 
cells and Goblet cells for a region containing the Pax6 gene (expressed in EECs). 

h. Coverage plot of normalized H3K27me3 signal between T-cells, B-cells and 
Myeloid cells for a region containing the Lyn gene (expressed in B-cell and 
Myeloid cells). i. Coverage plot of normalized H3K27me3 signal between T-cells, 
B-cells and Myeloid cells for a region containing the Il10ra gene (expressed in 
B-cells and T-cells). j. Coverage plot of normalized H3K27me3 signal between 
T-cells, B-cells and Myeloid cells for a region containing the Syk gene (expressed 
in B-cells and Myeloid cells). k. Coverage of CpG per single cell (y-axis) versus 
average CpG methylation (x-axis) per single cell (each dot). Each dot is colored by 
quality control (pass/fail), cells that pass QC were used for downstream analysis. 
l. UMAPs generated from CpG methylation using MethSCAn. Cells are colored 
based on two 5mC clusters retrieved from Leiden clustering on the residuals 
on the variable methylated regions (see Methods). m. Fraction of 5mC cluster 
(y-axis) derived from Leiden clustering over the three individual mice (x-axis). 
 n. Difference in CpG methylation (x-axis) and adj. P-value, y-axis) for each 
identified Differentially Methylated Regions (DMRs) by MethSCAn between  
5mC cluster pseudobulks and all pairwise combination between pseudo-bulks 
from all H3K27me3 subclusters. Dots are colored by significant and non-
significant DMRs derived using a two-sided t-test (CpG coverage pseudobulk > 25 
within DMR an adj. P-value < 0.001).
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