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Using Gene Expression Noise to
Understand Gene Regulation
Brian Munsky,1* Gregor Neuert,2* Alexander van Oudenaarden2,3

Phenotypic variation is ubiquitous in biology and is often traceable to underlying genetic and
environmental variation. However, even genetically identical cells in identical environments
display variable phenotypes. Stochastic gene expression, or gene expression “noise,” has been
suggested as a major source of this variability, and its physiological consequences have been
topics of intense research for the last decade. Several recent studies have measured variability in
protein and messenger RNA levels, and they have discovered strong connections between noise and
gene regulation mechanisms. When integrated with discrete stochastic models, measurements of
cell-to-cell variability provide a sensitive “fingerprint” with which to explore fundamental questions
of gene regulation. In this review, we highlight several studies that used gene expression variability
to develop a quantitative understanding of the mechanisms and dynamics of gene regulation.

Identical genotype and environmental expo-
sure are not sufficient to guarantee a unique
phenotype. Consider a single mother cell di-

viding into two daughter cells of equal volume.
During the division process, all the molecules in
the mother cell are in Brownian motion accord-
ing to the laws of statistical mechanics. The prob-
ability that each daughter cell inherits the same
number of molecules is infinitesimally small.
Even in the event that the two daughter cells re-
ceive exactly one copy of a particular transcrip-
tion factor, each transcription factor will perform
a Brownian random walk through its cellular
volume before finding its target promoter and
activating gene expression. Because Brownian
motion is uncorrelated in the two daughter cells,
it is statistically impossible for both genes to be-
come activated at the exact same time, further
amplifying the phenotypic difference between
the two daughter cells. These are just two exam-
ples of the many sources of gene expression var-
iability that arise in isogenic cells exposed to the
same environment.

The origins and consequences of stochastic
gene expression, or gene expression “noise,”
have been studied extensively during the last dec-
ade and have recently been reviewed in detail
(1–6). Here we focus on recent works that in-
tegrate experimental and computational analy-
ses of gene expression noise to systematically test
and refine our understanding of regulation in dif-

ferent genes, regulatory pathways, and organisms.
We discuss how combining single-cell measure-
ments and stochastic analyses can reveal qualita-
tive and quantitative features of gene regulation
that are hidden by bulk assays or deterministic
analyses. In the first part of this review, we
discuss how the cell-to-cell variability in gene

expression of a particular transcript or protein has
been used to develop a quantitative understand-
ing of the underlying gene regulation. In the second
part, we cover how statistical correlations in the
fluctuations of different transcripts and/or proteins
can be used to infer gene regulatory interactions.

Inferring Models of Gene Regulation from
Variability in Gene Expression

Poisson expression statistics. In the simplest
possible model of constitutive gene expression
(Fig. 1A), a transcript is produced at a constant rate
kR and destroyed in a first-order reaction with rate
constant gR. If the total number of a particular tran-
script m is large, the kinetics can be approximated
by the following deterministic differential equation:

dm

dt
¼ kR − gRm ð1Þ

This approximation breaks down in cells when
the copy numbers of transcripts are small. For ex-
ample, the average transcript copy numbers of the
constitutive housekeeping genesMDN1,KAP104,
and DOA1 in budding yeast are 6.1, 4.9, and 2.6,
respectively (7). These low copy numbers suggest
a probabilistic reformulation of Eq. 1. In the con-
stitutive expression model, transcript births and
deaths occur as uncorrelated events, such that in
any short time interval, dt, the probability of one
transcript production is kR dt, and the probabil-
ity of one transcript degradation is gR m dt. For
equilibrium to be possible, the probability of
having m transcripts, Prob[m], and producing an-
other must be equal to the probability of hav-
ing (m + 1) transcripts, Prob[m + 1] and having
one degrade. That is, kR Prob[m] = gR (m + 1)
Prob[m + 1] for anym, which is only possible if
the copy-number distribution follows a Poisson
distribution (8).

It is possible to quantify the variability in
transcriptional regulation at themRNA level using
single-molecule fluorescent in situ hybridization
(smFISH) (9, 10). In this technique, endogenous
mRNA transcripts are labeled with a large num-
ber of fluorescently modified DNA oligonucleo-
tides. As a result, a fluorescence microscope
can detect the precise location of each individual
mRNA molecule as a diffraction-limited spot.

Zenklusen et al. (7) used smFISH to count
specific mRNA molecules in intact fixed yeast
cells and found that the constitutive gene expres-
sion model offers surprisingly good quantitative
matches to transcriptional behaviors for the house-
keeping genes MDN1, KAP104, and DOA1 in
budding yeast. The measured numbers of mRNA
transcripts per cell were well described by Poisson
distributions for all three genes. By measuring
the number of partially formed nascent mRNA in
each nucleus, Zenklusen et al. also determined
that subsequent transcript production events were
uncorrelated (7), again consistent with the con-
stitutive expression model.

Two-state model of gene regulation.Although
the constitutive gene expression model captures
the fluctuations of several housekeeping genes in
budding yeast (7), it does not perform as well when
gene expression is regulated. Because deviations
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Fig. 1. Constitutive versus regulated gene expression. (A) Schematic of a constitutive gene expression
model with transcription rate kR and mRNA degradation rate constant gR. (B) Schematic of a two-state
(On, Off) model with transition rates kOn and kOff.
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from Poisson behavior indicate regulation, can
quantifying these deviations reveal the mech-
anism of regulation? A key parameter to quantify
the deviation from Poisson statistics is the Fano
factor, which is the ratio between the variance,
s2, and the mean,m, of the mRNA copy-number
distribution,s2=m (8). For a Poisson distribution,
the Fano factor equals 1. Golding et al. (11)
determined a Fano factor of 4.1 for a synthetic
transcript driven by the PLAC/ARA promoter in
Escherichia coli, indicating that the transcript
distribution was significantly wider than a Poisson
distribution. A two-state model of gene expres-
sion (12–16) can fit these data much better. This
model considers two promoter states: an Off state,
in which no transcription occurs, and an On state,
which has transcription rate kR. The constants kOn
and kOff define the transition rates between the
two states, and gR is a first-order rate constant for
transcript degradation (Fig. 1B). The Off state is
usually associated with a closed chromatin state
in which the binding sites for transcription factors
are inaccessible, whereas the On state is asso-
ciated with the open active chromatin state (14).

According to the two-state model, the aver-
age fraction of cells in the On state is fOn =
kOn/(kOn + kOff), and the average number of
mRNA molecules in each cell is m ¼ fOnkR=gR.
The expression for the Fano factor in steady state
can be written as (12):

s2m ¼ 1þ ð1 − fOnÞkR
ðkOn þ kOff þ gRÞ

ð2Þ

Figure 2A uses a heatmap to illustrate the Fano
factor’s dependence upon kOff and kOn for a fixed
transcription rate kR. To compare the variability
at equal expression levels, the three dashed lines
denote parameter combinations that produce an
average of 2, 25, and 75mRNAs per cell. Although
the average expression level is constant along these
lines, the Fano factor varies significantly, as does
the qualitative shape of the mRNA distribution.
For example, Fig. 2B shows the distributions cor-
responding to the filled squares on them ¼ 25 line
in Fig. 2A. Although each parameter set yields an
average of 25 molecules per cell, they exhibit
three distinctly different behaviors for the varia-
bility of m between cells. On the basis of differ-
ences in the mean, Fano factor, and qualitative
shapes of distributions, we can dissect the param-
eter space into three different “phenotype” classes
(14, 17). In class I, both kOn and kOff are slow,
and cells separate into distinct On and Off pop-
ulations, yielding a bimodal mRNA distribution
(Fig. 2B, left) and resulting in a large Fano fac-
tor. In class II, kOn is slow and kOff is fast, and
therefore most cells are Off. In this case, the low
value of fOn contributes to low means and Fano
factors, but occasional mRNA bursts give rise to
long exponential tails in the mRNA distribution
(Fig. 2B,middle). Finally, in class III, kOn is fast in
comparison to either gR or kOff, and the system
spends very short periods in the Off state. The

dynamics of this special case collapses down to
that of the constitutive expression model, with an
effective transcription rate keffR ¼ kR fOn and a
Poisson-like mRNA distribution (Fig. 2B, right).

A cell can increase the average mRNA copy
number m from 2 (indicated by the blue star in
Fig. 2A) to 25 by either decreasing kOff (purple
arrow in Fig. 2A) or increasing kOn (red arrow in
Fig. 2A). Increasing kOn converts a class II phe-
notype into a class III phenotype, resulting inmore
Poisson-like expression. Conversely, decreasing
kOff shifts the system to class I, corresponding to
bimodal expression. Thus, although both modu-
lation mechanisms yield the same change in av-
erage mRNA levels, their single-cell statistics are
quantitatively and qualitatively different. Below
we highlight several studies that exploit these
differences to learn more about the gene regu-
latory control mechanisms.

As in studies of constitutive expression, single-
cell responses of regulated genes have been ex-
amined at the mRNA level. Raj et al. (15) used
smFISH to study gene expression variability in
mammalian cells. They integrated an inducible
tetO promoter into the genome and quantified
mRNA numbers and locations. The measured
mRNA distributions had long exponential tails
that closely matched those of the class II pheno-
type, corresponding to bursts of mRNA that were
short, infrequent, and intense. Furthermore,
Raj et al. observed that On cells exhibited extra-
bright clusters of nascent transcripts and elevated
levels of nuclear mRNA,whereas Off cells lacked
these transcription site spots and had far fewer
nuclear mRNAs. In this context, spatial variabil-
ity provided quantitative insight into transcrip-
tional dynamics. More recent smFISH studies
have also discovered mRNA distributions from
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Fig. 2. Effects of transcriptional control onmRNA distributions. (A) Heat map of the cell-to-cell variability
(Fano factor, s2/m), versus normalized gene activation rate kOn /gR and normalized deactivation rate
kOff/gR with fixed production and degradation rates (kR = 100, gR = 1). Lines of equal average mRNA
expression are shown for 2, 25, and 75 molecules. The parameter space is separated into three classes
(I, II, III) that exhibit different types of cell-to-cell variability. (B) Representative distributions from each
class: Class I corresponds to systems with long Off and On periods, giving rise to bimodal distributions
with clearly delineated On/Off populations. Class II corresponds to populations with short On and long
Off periods, giving rise to occasional mRNA bursts and long distribution tails. Class III includes systems
with short Off periods, giving rise to continuous production and more graded unimodal distributions.
All three distributions have the same average of 25 mRNAs and correspond to the squares in (A).
Distributions were computed with the finite state projection approach (34).
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all three classes for a myriad of other genes in
several model organisms, including bimodal dis-
tributions of class I in cell-cycle and inducible
genes in yeast (18); long exponential distribution
tails corresponding to class II in E. coli (19),
ribosomal RNA (20), and coding and long non-
coding RNA (21) transcription in yeast; and uni-
modal Poisson-like distributions of class III in
yeast (7).

Single-molecule FISH has also been used to
explore how transcriptional regulation changes
between conditions (15, 19). Raj et al. (15) showed
that an increase in the transcriptional activator
tTA or in the number of activator binding sites
increased the transcriptional activity of the tetO
promoter in mammalian cells. Quantitative com-
parisons of measured mRNA distributions with
the two-state model revealed that activation was
consistent with either kOff modulation (purple ar-
row in Fig. 2A) or kR modulation. In a recent
study, So et al. also integrated experimental and
computational analyses to find that kOff modula-
tion is a common motif, which regulates mRNA
expression in 20 independent E. coli genes, whose
mRNA expressions span four orders of magnitude
(19). Using smFISH (10), they measured mRNA
distributions in 150 different combinations of
genes and growth conditions that modulate those
genes. After correcting for different gene copy
numbers and mRNA lifetimes, the mRNA mean
and Fano factor were computed and plotted for
every gene and experimental condition, and the
resulting scatter plot was closely fit by Eq. 2,
where kOn and kR were constant, and kOff was
selected to match the mean expression.

Although the former studies explored gene
regulation at the mRNA level (7, 15, 18–21),
similar conclusions have been reached through
single-cell analyses at the protein level. Raser and
O’Shea (14) used single-cell measurements of
fluorescent protein concentrations to show that
induction of the PHO5 promoter in budding
yeast increases the expression level while reduc-
ing the cell-to-cell variability. This trend was
explained as the system starting in class II and
increasing kOn to switch toward class III (red
arrow in Fig. 2A). Similarly, Octavio et al. (22)
explored the regulation of the FLO11 gene in
yeast. Using inducible promoters to control the
regulatory proteins Flo8, Sfl1, Tec1, Ste12, Phd1,
Msn1, and Mss1, they pushed the system into
each of the three phenotypes. Then, by elucidat-
ing how each transcription factor altered the
variability in gene expression, they determined
the mechanisms by which each factor modu-
lated transitions between an Off state, an inter-
mediate “competent” state, and the fully active
On state.

Inferring Gene Regulatory Interaction from
Correlations Between Fluctuating Genes
The examples above illustrate how the expres-
sion distribution of a particular transcript or flu-

orescent protein reporter can be used to quantify
the transitions between active and inactive tran-
scription states and to determine the mechanism
by which regulators modulate this process. In
many of these studies, the analysis of regulatory
behavior required the application of an external
input or a change in environmental conditions. It
is not always easy to introduce such a perturba-
tion, but what if they already existed in nature?
As discussed above, most cellular proteins under-
go stochastic fluctuations, which can activate or
repress downstream processes and thereby intro-
duce valuable perturbations. As a result, when
multiple transcript or protein species are moni-
tored in the same cell, important additional infor-
mation can be extracted by analyzing howdifferent
species correlate with one another. This correla-
tion analysis was used in experiments focused on
synthetic gene networks in E. coli, where expres-
sion levels of several genes weremonitored in the
same cell with fluorescent reporters. By analyz-
ing the pairwise correlation between the differ-
ent fluorescent reporters, the major fluctuation
sources could be determined (23, 24).

In a recent study, Stewart-Ornstein et al. (25)
used fluorescent proteins to examine the pairwise
correlations of hundreds of different yeast genes,
whose expression levels varied over three orders
of magnitude. Even without using exogenous per-
turbations, single-cell steady-state measurements
could reveal clear groups of genes whose stochas-
tic fluctuations were strongly coordinated. These
collections of genes, which they labeled “noise
regulons,” corresponded to functional groups re-
lated to stress response, mitochondrial regula-
tion, and amino acid biosynthesis. Furthermore,
Stewart-Ornstein et al. showed that steady-state
correlations were strongly predictive of the pro-
teins’ dynamic response to heat shock.

Using a two-color RNA fluorescent in situ
hybridization assay, Gandhi et al. (18) measured
pairwise correlations between RNA species regu-
lated by the same promoter or by two different
promoters. TheGal4-regulated genesGAL1,GAL7,
andGAL10were induced with 2% galactose, and
their distributions were measured at steady state.
As expected, single-cell correlation analyses showed
strong correlations between GAL1 and GAL7, as
well as between GAL1 and GAL10. mRNA cor-
relations were also found in other regulatory genes.
Transcripts of the genes SWI5 and CLB2, which
are expressed in the G2/M stages of the cell cycle,
were strongly correlated with each other, but
weakly anticorrelated with NDD1, which domi-
nates during the S phase. By contrast, constitutive
genes such asMDN1 (ribosome biogenesis),PRP8
(pre-mRNA splicing), and KAP104 (nucleocyto-
plasmic transport) exhibitedmuch less coordination.

Although correlations at a single time point
can reveal static relationships among different
mRNA and protein species, this view lacks in-
formation about the system’s history and causal
relationships. If two proteins X and Y are cor-

related, the questions remain: Does X activate Y;
does Y activate X; or does a third protein W
control them both? To illustrate this situation,
Fig. 3A shows simple motifs by which proteins
W, X, and Y could relate to one another, and Fig.
3B shows typical scatter plots of the single-cell
expression for proteins X and Y for these motifs.
When static correlations cannot discriminate be-
tween thesemotifs, dynamic correlations in single-
cell fluctuations may help (26). Such analyses
make use of the cross-correlation function (26),
RXYðtÞ ¼ 〈X ðt þ tÞY ðtÞ〉=sXsY, which mea-
sures how fluctuations in Yat time t relate to those
inX at time t + t. Here, 〈:::〉 denotes the covariance
of two variables, and sX and sY are the standard
deviations of X and Y, respectively. The magni-
tude of RXYðtÞ reveals positive or negative regu-
lation, and the timing of peaks in RXYðtÞ reveals
causality in this regulation. As examples, Fig. 3C
plots the cross-correlation functions between pro-
teins X and Y for each of the motifs in Fig. 3A.
For the first motif, where X activates Y, the blue
line in Fig. 3C (left) shows that RXYðtÞ has a
maximum, and because X is upstream of Y, this
peak occurs at a negative delay time. Conversely,
when protein Y is a repressor of X, RXYðtÞ has a
minimum at a positive t (Fig. 3C, second col-
umn, red line). If both X and Y were controlled
by W, the maximum or minimum would occur
at t = 0, and its sign would be positive or neg-
ative depending upon whether W has the same
or different effects on X and Y (Fig. 3C, right
two columns).

Dunlop et al. (26) tested this dynamic cor-
relation approach in live cells by inserting three
fluorescent protein reporters of different colors
into the E. coli genome. Yellow fluorescent pro-
tein (YFP) was fused to the l CI repressor, which
controlled expression of red fluorescent protein
(RFP). Cyan fluorescent protein (CFP) was placed
on a separate constitutive promoter. With the use
of fluorescence time-lapse microscopy, all three
colors could be monitored simultaneously over
several hours. Dynamics of the YFP-RFP pair
were anticorrelatedwith a delay of about 120min,
clearly revealing that CI-YFP repressed RFP (sim-
ilar to Fig. 3C, second column, blue line). Con-
versely, the unregulated YFP-CFP pair exhibited
a delay-free correlation characteristic of common
upstream regulators (extrinsic noise) that affect
both YFP and CFP in a similar fashion (similar to
Fig. 3C, third column). Thus, the causal relation-
ships of all three reporters were uniquely deter-
mined. Extending and applying this approach to
theCRP-GalS-GalE feed-forward loop in E. coli,
they analyzed how the relationship betweenGalS
and GalE varies under different fucose concen-
trations and under the influence of GalR (26).

Although correlations at either mRNA or pro-
tein levels can reveal gene regulatory relation-
ships, the two do not always perform equally
well. To illustrate this scenario, Fig. 3, D and E,
show scatter plots and cross-correlations between
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Fig. 3. Different regulatory motifs yield different steady-state correla-
tions. (A) Schematics of four possible regulator motifs: X activates Y; X
represses Y; W activates both X and Y; and W activates X but represses Y.
For each motif, mRNA is produced according to the constitutive model;
protein is translated from mRNA as a first-order reaction; and both mRNA
and protein degrade as a first-order reaction. Regulation changes to the
transcription rate are defined as kR(X) = aX4/(M4 + X4) for activation
and kR(X) = aM4/(M4 + X4) for repression. (B) Scatter plots of the pop-
ulations of protein X and protein Y at steady state. (C) Dynamic cross-

correlation functions of protein X and protein Y, versus the correlation time
delay. The magnitude of RXY(t) indicates how strongly X(t + t) is correlated
(positive) or anticorrelated (negative) with Y(t). For causal events, where X
activates (or represses) Y, peaks (or dips) appear in RXY(t) at negative values
of t. Blue lines correspond to the motif in (A), and red lines correspond to
the same motif in which X and Y have been interchanged. (D) Scatter plots
for mRNA X and mRNA Y populations. (E) Dynamic cross-correlation for
mRNA X and mRNA Y. Simulations were conducted with the stochastic
simulation algorithm (35).
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the mRNA X and mRNA Y corresponding to
protein X and protein Y, respectively. Although
protein X and protein Y are coordinated for all
four motifs in Fig. 3, this is not the case for their
mRNA levels. This can be explained by the dis-
parate time scales of mRNA and protein. Fast-
degrading mRNA may exhibit fluctuations with
a broad frequency bandwidth. Conversely, slow
degradation of proteins filters out fast fluctua-
tions but keeps slow fluctuations. Constitutively
expressed mRNA X has both fast and slow fluc-
tuations, but protein X only transmits the slow
fluctuations downstream. The result is that the
dynamics of mRNA X and mRNA Y are dom-
inated by uncorrelated fast fluctuations, which
overshadow their correlated slow fluctuations. On
the other hand, protein X and protein Y only
contain the better-correlated slow fluctuations.
That is, two mRNA species can be mostly un-
correlated with one another, yet produce protein
in a coordinated fashion. Gandhi et al. (18) ob-
served such a circumstance in budding yeast,
when they found very little correlation between
pairs of transcripts that encode coordinated pro-
teins of the same protein complex, including pro-
teasome and RNA polymerase II subunits. They
even found correlation lacking in two alleles of
the same gene. In a related study, Taniguchi et al.
(27) analyzed more than 1000 genes in E. coli
and measured both mRNA and protein copy
numbers in single cells. They found that for most
genes, even the numbers of mRNA and protein
molecules were uncorrelated. These studies sug-
gest that understanding of regulatory phenomena
requires one to consider regulation at both the
mRNA and the protein level.

From these studies, it is now clear that var-
iability in single-cell measurements contains a
wealth of information that can reveal new in-
sights into the regulatory phenomena of specific
genes and the dynamic interplay of entire gene
networks. As modern imaging techniques begin
to beat the diffraction limitations of light (28) and
flow cytometers become affordable for nearly
any laboratory bench (29), we find ourselves in
the midst of an explosion in single-cell research.
With the advent of single-cell sequencing (30, 31),
it might be possible to determine the full tran-
scriptome of many single cells in the near future
and to determine the full expression distributions
and correlations for all genes in the genome. We
expect that the approaches described in this re-
view, which have been pioneered with the model
microbial systems, will be readily applied tomam-
malian cells and tissues (32, 33).
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Computational Approaches
to Developmental Patterning
Luis G. Morelli,1,2,3 Koichiro Uriu,1,4 Saúl Ares,2,5,6 Andrew C. Oates1*

Computational approaches are breaking new ground in understanding how embryos form. Here,
we discuss recent studies that couple precise measurements in the embryo with appropriately
matched modeling and computational methods to investigate classic embryonic patterning
strategies. We include signaling gradients, activator-inhibitor systems, and coupled oscillators,
as well as emerging paradigms such as tissue deformation. Parallel progress in theory and
experiment will play an increasingly central role in deciphering developmental patterning.

Animal and plant patterns amaze and per-
plex scientists and lay people alike. But
how are the dynamic and beautiful pat-

terns of developing embryos generated? Used
appropriately, theoretical techniques can assist
in the understanding of developmental processes
(1–5). There is considerable art in this, and the
key to success is an open dialogue between exper-

imentalist and theorist. The first step in this dia-
logue is to formulate a theoretical description of
the process of interest that captures the properties
and interactions of the most relevant variables
of the system at a level of detail that is both use-
ful and tractable. Once formulated, the second
step is to analyze the theoretical model. If the
model is sufficiently tractable, it may be possible

to understand its behavior with “pencil-and-
paper” analysis and compare this analytical solu-
tion directly with experimental data. Very often,
however, the number of variables and the com-
plexity of their interactions preclude this ap-
proach, and the behavior ofmodelsmust be solved
or simulated by using computers in order to be
understood and compared with data. This com-
bined approach, which we refer to as computa-
tional biology, has become popular recently with
the availability of powerful computers and in-
creasingly sophisticated numerical algorithms.
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