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SUMMARY

MicroRNAs are emerging as important regulators
of diverse biological processes and pathologies in
animals and plants. Though hundreds of human
microRNAs are known, only a few have known func-
tions. Here, we predict human microRNA functions
by using a new method that systematically assesses
the statistical enrichment of several microRNA-tar-
geting signatures in annotated gene sets such as
signaling networks and protein complexes. Some of
our top predictions are supported by published
experiments, yet many are entirely new or provide
mechanistic insights to known phenotypes. Our
results indicate that coordinated microRNA targeting
of closely connected genes is prevalent across path-
ways. We use the same method to infer which micro-
RNAs regulate similar targets and provide the first
genome-wide evidence of pervasive cotargeting, in
which a handful of ‘‘hub’’ microRNAs are involved in
a majority of cotargeting relationships. Our method
and analyses pave the way to systematic discovery
of microRNA functions.

INTRODUCTION

MicroRNAs (miRNAs) regulate diverse biological processes in

animals and plants (Bushati and Cohen, 2007) and are among

the most abundant regulatory factors in the human genome,

comprising 3%–5% of known human genes (Griffiths-Jones

et al., 2008). miRNAs recognize target mRNAs by imperfect base-

pairing to sites in the 30 untranslated region (30UTR), usually with

perfect pairing of the miRNA seed region (nucleotides 2–8),

ultimately leading to translational repression and/or mRNA

degradation (Bushati and Cohen, 2007). Thousands of human

genes are predicted to be targeted by miRNAs (Rajewsky,

2006), suggesting that miRNAs play a pervasive role in the regu-

lation of gene expression.

Although hundreds of human miRNAs have been identified

and new ones are continually being discovered (Griffiths-Jones

et al., 2008), the function of most miRNAs remains unknown.
140 Molecular Cell 38, 140–153, April 9, 2010 ª2010 Elsevier Inc.
Increasingly, miRNA expression changes are being linked to

phenotypes, but the mechanistic role of the miRNA in the under-

lying biological network is often unclear. Given that many human

miRNAs can target up to thousands of genes, how often do

miRNAs target a set of related genes to regulate a specific path-

way or process? Though recent studies show that a few miRNAs

have pathway-specific functions (Xiao and Rajewsky, 2009),

earlier work suggests that miRNAs primarily serve to fine-tune

and confer robustness upon the expression of many genes

(Bartel and Chen, 2004; Farh et al., 2005; Stark et al., 2005).

The prevalence of multiple miRNAs targeting the same gene

(‘‘cotargeting’’) is also unclear. Whereas many genes contain

putative binding sites for multiple miRNAs (Krek et al., 2005; Stark

et al., 2005), many putative sites may not be functional in vivo.

More specifically, the combinations of miRNAs that function

together by regulating common targets are unknown. Knowledge

of such cotargeting relationships would also enable one to infer

a miRNA’s function from the function of its cotargeting miRNAs.

Typically, miRNA function is predicted by assessing whether

the predicted targets of a given miRNA are enriched for particular

functional annotations. Such an approach has several limita-

tions: (1) target prediction is imperfect and can lead to spurious

targets (Rajewsky, 2006); (2) having a subset of one’s favorite

pathway genes in the putative target set does not necessarily

mean that the miRNA functions in the pathway; and (3) predicted

target sets are often so large (hundreds to thousands of genes)

and have such heterogeneous functional annotations that

standard algorithms are not sufficiently sensitive to make high-

confidence predictions. Rather than progressing from a miRNA

to a potentially spurious target set that may or may not have

enriched function, here, we introduce a computational method

called mirBridge, which starts with a gene set of known function

and then assesses whether functional sites for a given miRNA

are enriched in the gene set compared to random gene sets

with similar properties.

We apply mirBridge to a variety of annotated gene sets for

signaling pathways, diseases, drug treatments, and protein

complexes. We also use mirBridge to infer miRNA pairs that

tend to function together by regulating common targets and use

the results to assemble a miRNA-miRNA cotargeting network.

Together, our analyses provide: (1) hundreds of miRNA function

predictions, many of which are supported by published experi-

ments; (2) genome-wide evidence that many miRNAs coordi-

nately regulate multiple components of pathways or protein
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complexes; and (3) evidence that miRNA cotargeting is preva-

lent, with a small number of ‘‘hub’’ miRNA families involved in a

large fraction of the cotargeting interactions. Both the mirBridge

method and the predictions that it has generated can serve as

important resources for the future experimental dissection of

miRNA functions.

RESULTS

mirBridge: Linking miRNAs to Gene Sets
Many gene sets contain tens to hundreds of putative targets for

any particular miRNA. However, for a variety of reasons (e.g.,

mRNA secondary structure occludes binding, or the miRNA and

the target are not expressed together), many target sites are not

functional in vivo. The goal of mirBridge is to infer whether an

unusually large proportion and number of putative target sites

for a miRNA (m) in a given gene set (G) are likely to be functional

in vivo. Toward this end, mirBridge computes a score by combin-

ing the results of three statistical tests that evaluate different

aspects of likely functional target-site enrichment in G. It is

essential that the enrichment of sites in G be compared to

enrichment in appropriate control gene sets. Below, we describe

the individual tests and the method for constructing the control

gene sets (see Supplemental Experimental Procedures available

online for details).

The following definitions are essential to the methodology of

mirBridge. First, any gene with one or more seed-matched site

for m in its 30UTR is deemed a ‘‘putative target.’’ Second, seed-

matched sites can be classified into two categories (Figure 1A):

‘‘conserved sites’’ (CS) are sites that are conserved across

mammalian genomes; ‘‘high-context scoring sites’’ (HCS) are

sites with a context score above a predefined threshold. The con-

text score reflects the likelihood of a seed-matched site to confer

repression based on several features, including the distance of

the site from the stop codon, accessibility of the site based on

secondary structure, and the extent of base-pairing beyond

the seed (Grimson et al., 2007).

The first test used by mirBridge, called ‘‘conservation enrich-

ment signature’’ (CE), infers whether the number of CS in G is

significantly higher than that of random gene sets containing

the same number of putative targets as G. This test is similar

to evaluating whether the sites have evolved at a slower rate

compared to random putative target sets but is fundamentally

different than prior tests that utilize sequence conservation

(Lewis et al., 2005; Stark et al., 2005) (see Supplemental Exper-

imental Procedures). The second test, called ‘‘context-score

signature’’ (CTX), evaluates whether the number of HCS is sig-

nificantly higher than that of random gene sets containing the

same number of putative targets as G. The CTX test is designed

to detect enrichment of sites in G that are likely functional, but

not necessarily conserved. The third test, called ‘‘site occur-

rence signature’’ (OC), evaluates whether the number of putative

target sites in G is unusually high compared to random gene sets

containing the same number of genes. Though target site abun-

dance alone is not necessarily indicative of functional targeting

by m, functional targeting enrichment becomes a likely scenario

even when G tests as moderately significant for the CE and/or

CTX tests. Note that both CE and CTX are based on comparison
with random gene sets with the same number of putative targets

to detect enrichment in the proportion rather than the number of

CS or HCS. This ensures that the comparisons are valid, as gene

sets with more putative targets tend to have more CS or HCS.

Because true positives are more likely than false positives to

test as simultaneously significant across the tests, we combine

the three tests and form a composite score (‘‘OC-CE-CTX’’) to

increase sensitivity without sacrificing specificity.

We developed a nearest-neighbor gene sampling algorithm,

motivated by the principle of kernel-based density estimators

(Wegman, 1972), to generate random gene sets that are similar

to the input gene set with respect to general conservation level,

30UTR length, and GC content, which primarily bias the CE, OC,

and CTX tests, respectively. Simultaneous adjustment is partic-

ularly important because these factors are correlated with each

other across genes. Specifically, for the OC test, comparable

random gene sets are generated by replacing each member of

G with a randomly drawn gene that has similar GC content,

30UTR length, and general conservation level (Figure 1B). To

ensure that the number of putative targets in the random gene

sets is the same as that in G for the CE and CTX tests, the same

nearest-neighbor procedure is used, but only putative targets in

G are replaced by random putative targets (Figure 1C).

Finally, to obtain the OC-CE-CTX p value, the p values of the

individual tests are combined using a customized version of the

inverse-normal method that corrects for dependencies among

tests (Joachim, 1999). When multiple gene sets and/or miRNAs

are tested simultaneously, multiple hypothesis testing is cor-

rected by computing the false discovery rate (FDR) using the q

value method (Storey and Tibshirani, 2003). ‘‘FDR’’ and ‘‘q value’’

are used interchangeably below.

Besides 30UTR length, GC content, and general conservation,

other less apparent factors could bias mirBridge results, but their

effects are likely small (see Supplemental Experimental Proce-

dures). The statistical model in mirBridge was also designed

to incorporate additional factors if needed; in principle, any

number of factors can be accounted for by our nearest-neighbor

sampling procedure.

mirBridge is fundamentally different than testing whether the

number of predicted miRNA targets in a gene set is significantly

higher than expected using the Fisher’s exact test (FET), a stan-

dard way to assess the significance of gene set overlaps. First,

mirBridge takes gene set properties into account; second, it

combines different and important biological characteristics of

target sites; and finally, it uses metrics (CE and CTX) that focus

on the proportion of likely functional target sites instead of the

number of predicted target overlaps. In fact, mirBridge has supe-

rior sensitivity and specificity compared to FET, as shown in the

applications below.

Inferring Human miRNA Functions
To link human miRNA families (miRNAs with a shared seed

sequence) to functions, we applied mirBridge to gene sets from

(1) canonical signaling pathways from MSigDB (Subramanian

et al., 2005); (2) KEGG (Kanehisa and Goto, 2000); (3) human

protein complexes from the CORUM database (Ruepp et al.,

2008); (4) gene coexpression modules (Segal et al., 2004); (5)

gene ontology (GO) biological process; (6) GO component; and
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Figure 1. mirBridge Overview

(A) The input to mirBridge is a set of genes. Red and blue squares denote conserved and nonconserved seed-matched sites in the 30UTR, respectively. The

number inside of the squares denotes the context score. For each miRNA target sequence of interest, mirBridge computes the N, K, H, and T as illustrated.
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(7) GO function (Ashburner et al., 2000). At an FDR cutoff of 0.2,

mirBridge predicts 185, 128, 1198, 456, 432, 71, and 175 distinct

miRNA-function associations, respectively (Tables S1–S7). Most

predictions implicate pathways or protein complexes with multi-

ple putative targets for the miRNA, whereas some have only one

(or very few) putative targets containing multiple high-quality

sites (e.g., miR-33 and statin pathway). The latter fits the para-

digm implied in some recent papers in which a miRNA pheno-

type seems to be accounted for by one (or just a few) targets:

‘‘miR-X regulates process Y by targeting gene Z.’’ However,

the prevalence of coordinate targeting of multiple related genes

suggests that most miRNAs exert their phenotypic effects by

targeting multiple network components.

To facilitate a succinct discussion of such a large set of predic-

tions, Tables 1 and 2 show a selection of predictions that either

already have support from the literature or wherein the predicted

pathway (1) has known activity in the tissue where the miRNA is

known to be expressed; or (2) represents core cellular processes

(e.g., ‘‘apoptosis’’) and has a large number of putative targets

for the miRNA. We also favor predictions that reoccur in closely

related or synonymous gene sets, e.g., ‘‘cell cycle’’ and ‘‘G1-to-

S transition.’’

mirBridge Is Sensitive to Biological Signals and Can
Independently Uncover Known miRNA Functions
Although mirBridge is not trained on any data set of known

miRNA functions, several of the top hits already have experi-

mental support in the literature (Table 1), such as the association

of miR-16 with the cell cycle, Wnt signaling, and prostate cancer

(Calin et al., 2005; Linsley et al., 2007) (Figure S1A). This is also

an example in which mirBridge links a disease and the path-

ways underlying its pathology: miR-16 has been shown to

work through the Wnt pathway to function as a tumor suppressor

in prostate cancer (Bonci et al., 2008). Analogously, miR-7 hits

the ErbB pathway in glioblastoma (Kefas et al., 2008; Webster

et al., 2009), miR-221/222 hits the estrogen signaling pathway in

breast cancer (Miller et al., 2008; Zhao et al., 2008), and let-7 hits

the G1-S cell-cycle pathway in breast cancer (Schultz et al.,

2008; Yu et al., 2007). mirBridge can also implicate a pathway

of interest given the tissue specificity of a miRNA: miR-7 is pre-

dicted to regulate the insulin receptor pathway and is known

to be highly expressed in insulin-producing cells of pancreatic

islets (Bravo-Egana et al., 2008; Correa-Medina et al., 2009;

Joglekar et al., 2009). mirBridge also independently uncovered

feedback loops: miR-146 is predicted to target several upstream

signaling genes in the NF-kB pathway, whereas its transcription

is known to be activated by NF-kB (Taganov et al., 2006) (Fig-

ure S1B). Another notable prediction supported by the literature

is miR-34 targeting BCL2 and several additional antiapoptotic
(B) The procedure for evaluating whether N is significantly higher than that of com

random gene sets with similar 30UTR properties were constructed by replacing e

(r1, r2,.rn). The probability that rt is drawn to replace gt is inversely proportional

general conservation level. The histogram depicts the null distribution of N for m

(C) The procedure for evaluating whether K and H are significantly higher than

properties as the putative targets in G (the CE and CTX tests, respectively). The

targets in G (empty red dots) are replaced by random putative targets (empty gray

depict the null distributions of K and H, respectively, for random gene sets with
genes in the BAD pathway (Chang et al., 2007; Cloonan et al.,

2008; He et al., 2007). This prediction provides an attractive

hypothesis for how miR-34 upregulation could lead to apoptosis.

In sum, these results are reassuring and indicate that mirBridge

can capture biologically relevant signals.

mirBridge is significantly more sensitive than the standard

approach of evaluating gene set overlaps using FET. For

instance, when FET is applied to the canonical pathway gene

sets, only five predictions can be made at the 0.2 FDR cutoff

(Table S8); all five have FDRs greater than 0.18, and only one has

support from the literature (miR-16 and the Gleevec pathway,

given that miR-16 is associated with leukemia). Furthermore,

none of the top mirBridge predictions supported by published

experiments were uncovered. For example, for miR-16, none of

the cell-cycle related pathways are ranked near the top, even if

we ignore the statistical significance and order the pathways

within each miRNA family by their q values (the top cell-cycle

related entry has rank 54, q = 0.55). These results suggest that

mirBridge can better uncover biologically relevant signals than

FET.

It is important to note that the comprehensiveness of our

predictions is dependent on the gene sets used. Some known

miRNA functions are not in our predicted list because the appro-

priate gene set(s) were not included in the analysis. For example,

miR-200 is known to function in the epithelial-mesenchymal

transition (Burk et al., 2008; Gregory et al., 2008; Korpal et al.,

2008; Park et al., 2008), but none of the gene sets used in our

analysis captures this process. However, when mirBridge is

applied to genes whose function annotation in the GeneCards

database includes ‘‘epithelial-mesenchymal transition,’’ miR-

141/200a has the lowest q value among all miRNAs (q = 0.08).

To further assess the ability of mirBridge to predict known

miRNA functions independently, we compiled eight additional

miRNA phenotypes from the literature and applied mirBridge to

seemingly relevant gene sets from KEGG or GeneCards (Table

S10). Of nine phenotypes, four miRNA-gene set p values are sig-

nificant, and two are marginally significant (Table 3). In a multiple

hypothesis testing context in which all miRNAs are tested simul-

taneously for the phenotype gene set, however, only two would

have been predicted at a FDR cutoff of 0.2 even though the

desired miRNA ranks at or near the top for all four of the signifi-

cant cases. This suggests that, for these specific gene sets,

mirBridge is sensitive to the relevant biological signals but lacks

sufficient statistical power after multiple-testing correction. It

follows that the hundreds of low-FDR predictions that are made

by mirBridge are compelling candidates for experimental follow-

up given that these emerged in the simultaneous testing of

thousands of miRNA-gene set combinations. We expect the

statistical power of mirBridge to continue to improve as
parable random gene sets (the OC test). To obtain the null distribution for N,

ach gene in the original set (g1.gn; solid red dots) by a randomly drawn gene

to its distance to gt in the 3D space defined by 30UTR length, GC content, and

iR-16 in the cell-cycle gene set.

those of random gene sets containing T putative targets with similar 30UTR

same gene-sampling procedure from (B) is used except that only the putative

dots) so that T is identical across G and the random gene sets. The histograms

T = 5 putative targets for the miR-16 and the cell-cycle gene set.
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Table 1. Selected mirBridge Predictions with Published Evidence

miRNA Function q Value High-Quality Putative Targets Evidence

146 IL1 receptor, NFKB,

Toll-like receptor

signaling

0 TRAF6, IRAK1, TLR4 (Jones et al., 2009; Taganov

et al., 2006)

15/16/195/

424/497

cell cycle; G1-to-S 0 CCNE1, CCND1, CCND3,

CCND2, CDC25A

(Linsley et al., 2007; Liu et al.,

2008)

CCNE1, WEE1, E2F3, CCND1,

CCND3, CCND2, CDC25A

29 collagen 0 COL4A1, COL4A5, COL4A4,

COL4A6, COL4A2, COL4A3,

FGA

(Li et al., 2009; van Rooij et al.,

2008)

7 ErbB signaling;

glioma

0 RAF1, EGFR, FRAP1, MAPK1,

PIK3CD, PAK1, PIK3R3,

RPS6KB1, CAMK2D, PAK2,

TGFA, PTK2, CBL, ERBB4,

CRKL, MAPK3

(Kefas et al., 2008; Webster

et al., 2009)

RAF1, RB1, CALM3, EGFR,

FRAP1, MAPK1, PIK3CD,

PIK3R3, CAMK2D, TGFA,

IGF1R, MAPK3

7 insulin signaling 0.000208 IRS1, IRS2, RAF1, CALM3,

FRAP1, MAPK1, PHKA2,

PIK3CD, PIK3R3, RPS6KB1,

MKNK1, CBL, FLOT2, PRKAG2,

CRKL, SOCS2, PPARGC1A,

MAPK3

(Bravo-Egana et al., 2008;

Correa-Medina et al., 2009;

Joglekar et al., 2009)

15/16/195/

424/497

Wnt pathway 0.0356 FZD10, DVL1, CCND1,

PAFAH1B1, PPP2R5C, FZD6,

CCND3, DVL3, MAPK9, PRKCI,

CCND2, WNT7A, FOSL1,

WNT2B

(Bonci et al., 2008)

103/107 TNF pathway 0.0522 HRB, CASP3, TNF, MAP3K7,

TNFAIP3, NR2C2

(Xie et al., 2009)

122 NO1 pathway 0.0546 SLC7A1, RYR2, CALM3, TNNI1 (Yang and Kaye, 2009)

15/16/195/

424/497

prostate cancer 0.07345 CCNE1, AKT3, PIK3R1,

MAP2K1, IKBKB, E2F3, RAF1,

CCND1, PIK3R3, CHUK,

CCNE1, FGFR1, FGFR2, GRB2,

FOXO1, IGF1R, BCL2, CREB5,

MAPK3

(Bonci et al., 2008)

135 TGF beta signaling 0.07389 SMAD5, ROCK2, SMURF2,

THBS2, ROCK1, SMAD2,

FKBP1A, NODAL, PPP2R1B,

INHBA, TGFBR1, ACVR1B,

BMPR1A, SP1, RPS6KB1,

BMPR2, RUNX2, RBX1, SKI

(Li et al., 2008)

34a/449 Notch signaling 0.07389 NOTCH1, DLL1, NUMBL,

HDAC1, JAG1, NOTCH2,

NOTCH3

(Ji et al., 2008; Ji et al., 2009)

21 cytokine-cytokine

receptor interaction

0.0865 IL12A, CCL20, CCL1, FASLG,

TNFRSF11B, TNFRSF10B, IL1B,

CCR7, LEPR, BMPR2, XCL1,

LIFR, CNTFR, TGFBR2, CXCL5,

ACVR2A

(Lu et al., 2009)

1/206 PIP3 signaling

in cardiac myocytes

0.0977 IGF1, CREB5, YWHAZ, MET,

CDC42, YWHAQ, PTPN1,

PREX1

(Carè et al., 2007; Sayed et al.,

2007)
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Table 1. Continued

miRNA Function q Value High-Quality Putative Targets Evidence

17-5p/20/93.mr/

106/519.d

cell cycle; G1-to-S 0.122 CCNE1, CCND1, CDC25A,

SMAD3

(Cloonan et al., 2008; Pickering

et al., 2009)

CCNG2, RBL1, RPA2, WEE1,

E2F1, CCND2, CDKN1A,

MCM3, CDC25A, RB1, E2F3,

CCND1, CCNE2

221/222 breast cancer

estrogen signaling

0.1432 KIT, CDKN1B, NFYB,

SERPINB5, ESR1, THBS1,

THBS2

(Miller et al., 2008; Zhao et al.,

2008)

34/449 BAD pathway

(apoptosis)

0.1499 KIT, KITLG, BCL2, IGF1,

PRKACB

(Chang et al., 2007; Cloonan

et al., 2008; He et al., 2007)

let-7/98 breast cancer

estrogen signaling

0.1595 CYP19A1, NGFB, CDH1, TP53,

CDKN1A, FASLG, PPIA, THBS1,

DLC1, PAPPA, IL6, DLC1, DST,

PAPPA, CND1

(Schultz et al., 2008; Yu et al.,

2007)

let-7/98 G1-to-S 0.1871 E2F6, TP53, PRIM2, CDKN1A,

CDC25A, RB1, CCND2, CCND1,

CCND2, CCND2

(Schultz et al., 2008; Yu et al.,

2007)

See Tables S1–S9 for more details. ‘‘High-quality putative targets’’ are targets with either a conserved or high context-scoring site (see Experimental

Procedures).
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additional genomes and knowledge of miRNA-target interac-

tions become available.

We also sought to understand cases in which mirBridge failed

to predict the correct functions. Closer examination of the three

failed cases in Table 3 suggests that, for let-7 and miR-133, the

gene sets used do not capture the biology relevant to the miRNA

targeting. The cell cycle may be a key pathway through which

let-7 exerts its effect on lung cancer (Esquela-Kerscher et al.,

2008; Kumar et al., 2008; Schultz et al., 2008), but the nonsmall

cell lung cancer gene set lacks most cell-cycle genes and other

postulated targets such as HMGA2 and MYC (let-7 does hit

the G1-S cell-cycle transition pathway; Table 1). Similarly, for

miR-133 and cardiac hypertrophy, two out of the three known

targets relevant to the phenotype are not in the GeneCards set

(CDC42 and WHSC2; Carè et al., 2007). Finally, for miR-122, it

turns out that inhibition of miR-122 by antagomir treatment tends

to downregulate, rather than upregulate, cholesterol biosyn-

thetic genes (Krützfeldt et al., 2005), suggesting that the effect

of miR-122 on cholesterol biosynthetic genes is indirect. Thus,

the insignificant mirBridge p value for miR-122 and cholesterol

biosynthesis genes is not surprising.

mirBridge Provides Many New miRNA Function
Predictions
The majority of mirBridge predictions are not yet directly sup-

ported by existing experiments (Tables 2 and S1–S7). Some

pathways predicted in common for multiple miRNAs seem

particularly compelling because the miRNAs are known to be

coregulated. For example, the apoptosis pathway is predicted

for miR-23 and -24, which are different in sequence but are coex-

pressed from the same cluster (Chhabra et al., 2009). Some

predictions seem reasonable based on the function of the miRNA

host gene. For example, the statin/cholesterol homeostasis

pathway is linked to miR-33, which is embedded in an intron of
a key transcription factor (SREBP2) that regulates cholesterol

synthesis and uptake (Figure S1C). Other predictions seem

plausible based on known miRNA functions with similar develop-

mental placement and timing. For example, axon guidance path-

ways are predicted for miR-124, which has already been shown

to positively regulate neurogenesis (Cheng et al., 2009; Visvana-

than et al., 2007). Consistently, miR-124 was linked to the

SNARE protein complex, as it putatively targets VAMP3, a

component of SNARE, via three conserved and high context-

scoring sites; VAMP3 is known to function in the docking and

fusion of synaptic vesicles with the presynaptic membrane

(Sudhof, 2004).

mirBridge predictions can also provide mechanistic interpre-

tations of published experiments. For example, it is known that

activation of PIP3 signaling leads to the hypertrophic response

in cardiac myocytes and that miR-1 expression is downregu-

lated upon hypertrophic stress (Carè et al., 2007; Heineke and

Molkentin, 2006; Sayed et al., 2007). mirBridge links miR-1 to

the PIP3 pathway, and the putative miR-1 targets in the pathway

are all prohypertrophic except PTPN1 (Table 1), suggesting that

the downregulation of miR-1 helps to drive pathway activation

(Figure 2). Posttranscriptional repression by miR-1 could allow

these genes to be transcribed at higher (or leaky) levels without

triggering a hypertrophic response, such that a reduction in

miR-1 expression would suffice to rapidly activate signaling at

multiple levels. For example, derepression of the most down-

stream factors (e.g., CDC42) could quickly lead to sarcomere

remodeling, a first step in the hypertrophic response (Nagai

et al., 2003). Increasing levels of upstream factors coupled with

positive feedback loops would intensify the response.

We envision that a useful application of mirBridge would be

to probe function of interest guided by the known expression

profile of miRNAs. Because we are interested in neurotransmitter

pathways, we applied mirBridge to manually curated gene sets
Molecular Cell 38, 140–153, April 9, 2010 ª2010 Elsevier Inc. 145



Table 2. Selected New mirBridge miRNA Function Predictions

miRNA Function q Value High-Quality Putative Targets

33 statin pathway 0.00155 ABCA1, HMGCR

203 G a i pathway 0.00532 MAPK1, JUN, PCLD, SRC, MYEF2, F2RL2, PLD2, EPHB2

23 apoptosis 0.00801 CHUK, APAF1, CASP7, CASP3, BCL2, BIRC4, IRF1, BNIP3L,

LMNB1

205 tight junction 0.01195 PRKCE, CLDN11, EPB41, CNKSR3, INADL, YES1, VAPA,

MAGI2, PARD6G, CLDN8, PTEN, PRKCH, MLLT4, ACTB,

PRKCA, PARD6B

187 antigen processing

and presentation

0.02192 KIR2DL2, KIR2DL1, KIR2DS2, KIR2DS4, KIR2DS5, KIR2DL4,

KIR2DL3, IFNA2, KIR2DL5A

219 nuclear receptors 0.02806 THRB, NR2C2, NR1I2, NR5A2, NR3C1, NR2C2, ESR1

17-5p/20/93.mr/

106/519.d

JNK MAPK pathway 0.0377 MAP3K2, MAP3K5, MAP3K9, GAB1, MAP3K12, NR2C2,

ZAK, DUSP8, MAPK9, DUSP10, MAP3K3, MAP3K11

124.2/506 axon guidance 0.04983 CHP, ROCK1, NFATC1, SEMA6D, ITGB1, GNAI1, NRAS,

GNAI3, SEMA6A, NRP1, NFAT5, EPHB4, PLXNA3, EPHA3,

EPHA2, SEMA5A, ROCK2, SRGAP3, EFNB3, EFNB1, NCK2,

GNAI2, SEMA6C, EFNB2

34a/449 glycosphingolipid

biosynthesis

0.05144 FUT1, FUT5, FUT9, GCNT2, B4GALT2

128 GnRH signaling 0.05144 PRKY, PRKX, MAPK14, MAP2K7, PLCB1, MAP2K4, ADCY8,

ADCY2, GRB2, HBEGF, EGFR, CDC42, ADCY6

24 cytokine-cytokine

receptor interaction

0.05203 IFNG, EDA2R, TNFRSF19, CCR4, FASLG, IL10RB, IL1A,

CCR1, PDGFRA, PDGFRB, EDA, PDGFC, TNFSF9, IL2RA,

IL21R, CX3CR1, IL8RB, EDAR, CCL18, TNFRSF1A, IL1R1,

IL8RA, IL29, IL2RB, ACVR1B, FLT1, IL22RA2, IL19, TNF,

CSF1R, CNTFR, CLCF1

33 PGC-1a pathway 0.0541 YWHAH, CAMK4, PPARA, MEF2C, CAMK2G, PPP3CB,

CAMK2G, PPARGC1A

375 purine metabolism 0.0544 PDE4A, PDE8A, PDE5A, PDE7B, ADCY9, PDE4D, PDE10A,

POLR3G, PDE4D, POLR2, AADCY6, PDE11A

141/200a EGF/PDGF pathway 0.0637 GRB2, MAP2K4, STAT5A, EGFR, PRKCB1, CSNK2A1, JUN,

TAL1

142-5p ubiquitin mediated

proteolysis

0.07389 VHL, UBE2D1, SMURF1, CUL2, UBE2A, WWP1, CUL3,

UBE2B, CDC23, UBE2E3

101 ubiquitin mediated

proteolysis

0.07681 UBE2D1, UBE2D2, UBE2A, VHL, UBE2D3, UBE2G1,

FBXW11, FBXW7, CUL3

142-3p regulation of actin

cytoskeleton

0.07816 ITGAV, APC, MYLK, RAC1, WASL, MYH10, ROCK2, ITGB8,

CRK, CFL2, FGF23, MYH9

19 Ca signaling 0.07827 EDNRB, ADRB1, GRM1, CALM1, CACNA1C, GRIN2A, CHP,

SLC25A6, SLC8A1, ADCY7, ITPR1, PDE1C, ADCY1, ATP2B4,

ADCY9, PRKACB, PLCB1, SPHK2, ERBB4, ITPKB, PTK2B

24 apoptosis 0.1148 BNIP3L, BCL2L11, BIRC4, FASLG, NFKBIE, HELLS, RIPK1,

TRAF1, CASP10, TNFRSF1A, TNF, IRF1, IRF5

135 integrin pathway 0.122 ROCK2, ITGA1, ITGA2, ARHGEF7, PTK2, ARHGEF6, ROCK1,

AKT3, PLCG1, PAK7, ANGPTL2, RHO

93.HD/291-3P/294/

295/302/372/373/520

nuclear receptors 0.1342 VDR, NR2C2, PPARA, ESR1, NR4A2, NR2E1, NPM1, NR2F2

27 statin pathway 0.1396 ABCA1, LDLR, LPL, HMGCR

33 cell cycle 0.1555 CDK6, CCND2, CDC25A, RB1

383 O-glycan biosynthesis 0.1658 GALNT13, GALNT11, GCNT4, GALNT1, GALNT7

148/152 inositol phosphate

metabolism

0.1677 SYNJ1, PTEN, PI4KA, PIK3CA, ITPKB, PLCB1, ITPK1

25/32/92/363/367 phosphatidylinositol

signaling

0.1916 SYNJ1, PTEN, ITPR1, BMPR2, PIP5K3, PIP5K1C, PIK3R1,

PIK3R3, RPS6KA4, PRKAR2B, PCTK1, PRKCE, PIP4K2C,

RPS6KB1, CALM3
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Table 2. Continued

miRNA Function q Value High-Quality Putative Targets

30-3p ubiquitin mediated

proteolysis

0.1928 UBE2J1, UBE2K, UBE2G1, UBE2D1, UBE2D3

153 insulin receptor

signaling

0.1934 GRB2, PIK3R1, RPS6KA3, RPS6KB1, SORBS1, CAP1, IRS2,

FOXO1, AKT3

See Tables S1–S9 for more details. Same format as Table 1.
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for these pathways (see Supplemental Experimental Proce-

dures). miR-218, a known neuronal miRNA (Sempere et al.,

2004), is the most and second-most significant hit for GABA

and glutamate gene sets, respectively (q = 0.025 and 0.033).

That these two neurotransmitter activities may be regulated by

the same miRNA is intriguing given that glutamate and GABA

are, respectively, the major excitatory and inhibitory neurotrans-

mitters and that the latter can be enzymatically converted from

the former. In addition, we tested a gene set for synaptic vesicle

formation because miR-218 is enriched at synapses of hippo-

campal neurons (Siegel et al., 2009). miR-135, a brain-enriched

miRNA (Sempere et al., 2004), and miR-218 are the top two

hits (q = 0.000003 and 0.024, respectively). In sum, the mirBridge

hits for these gene sets extend early experimental findings to

implicate miR-218 as a potential regulator of neuronal activity

at hippocampal synapses.

miRNA Cotargeting Is Prevalent
Our miRNA-pathway map indicates that some miRNAs function

in the same pathway(s) by targeting a similar set of genes.

Indeed, many miRNAs may function together (via cotargeting)

to regulate target-gene expression. To assess the prevalence

of cotargeting and infer which miRNAs are cotargeting partners,

we next used sets of genes likely regulated by particular miRNAs

to create a miRNA-to-miRNA mapping. Specifically, our inputs

to mirBridge were the predicted target sets (PTS) of 73 deeply

conserved human miRNA families. We call a miRNA family Y a

‘‘cotargeting partner’’ of a miRNA family X if at least one of Y’s
Table 3. Testing mirBridge on Several Known Phenotypes Compile

miRNA Known Function p q

Ra

Se

141/200a epithelial-mesenchymal

transition

0.0018 0.08 1

21 apoptosis 0.006 0.39 1

155 B cell

receptor signaling

0.007 0.29 5

181 T cell

receptor signaling

0.008 0.07 5

34 P53 pathway 0.04 0.32 14

223 granulocyte differentiation 0.07 0.62 15

let-7 nonsmall cell

lung cancer

0.55 0.63 68

122 cholesterol biosynthesis 0.83 0.99 103

133 cardiac hypertrophy 0.94 0.86 134

The q values were computed based on simultaneous testing across miRNA
seed-matched sequences has a significant mirBridge q value

in the PTS of X and denote the relationship as ‘‘X/Y.’’ We pre-

dicted cotargeting relationships for all ordered pairs of the 73

families (73 3 72 = 5256 distinct pairs).

Our results indicate that miRNA cotargeting is prevalent: 221

distinct X/Y cotargeting relationships are inferred at an FDR

cutoff of 0.2 (Table S11). A subset of these predictions corre-

sponds to miRNA genomic clusters (Yu et al., 2006), such as the

miR-19b-2/106a cluster on Xq26.2 and the miR-17-18-19a-20-

92 cluster on 13q31.3 (Table S11). Cotargeting pairs in close

genomic proximity are not surprising: these miRNAs are polycis-

tronic and coexpressed and are thus likely to function together

to regulate common targets. In fact, clustered miRNAs are en-

riched for cotargeting relationships: when X and Y are members

of a genomic cluster, they are predicted as cotargeting partners

25% of the time, compared to 3% when X and Y are not clustered.

Consequently, the median q valueof clusteredpairs is significantly

lower than thatof unclustered ones (p< 2.1 3 10�7, Mann-Whitney

Test; see Table S11 for the clusters used in this analysis), indi-

cating that our method for detecting cotargeting is sensitive,

specific, and capable of uncovering biologically relevant signals.

If our predictions reflect bona fide biological signals, we also

expect a significant percentage of the X/Y pairs to possess

mutual cotargeting relationships, i.e., each miRNA’s putative

binding sites would have a score below the FDR cutoff in the

other miRNA’s PTS. Indeed, 96 out of 221 (43%) of the X/Y pre-

dicted pairs do. Though the remaining 57% of the X/Y pairs do

not have the corresponding Y/X pairs falling below the FDR
d from the Literature

nk (Out of 143

ed-Matched Motifs) References

(Burk et al., 2008; Gregory et al., 2008;

Korpal et al., 2008; Park et al., 2008)

(Chan et al., 2005)

(Thai et al., 2007)

(Li et al., 2007)

(Chang et al., 2007; He et al., 2007; Raver-

Shapira et al., 2007; Tarasov et al., 2007)

(Johnnidis et al., 2008)

(Esquela-Kerscher et al., 2008; Johnson

et al., 2007; Kumar et al., 2008)

(Krützfeldt et al., 2005)

(Carè et al., 2007)

seeds for the gene set. See Table S10 for the contents of the gene sets.
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Figure 2. miR-1 and PIP3 Signaling in Cardiac Hypertrophy

The orange repressive arrows depict high-quality putative targets of miR-1 in the PIP3 pathway in cardiac myocytes (see Experimental Procedures). The rest of

the network is based on known interactions compiled from the literature (Heineke and Molkentin, 2006). See Figure S1 for network diagrams of other selected

predictions discussed in the text.
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cutoff, there is nonetheless a significant correlation between

their q values (Spearman correlation = 0.42; p = 0) (Figure S2).

Also, the reciprocal (Y/X) q values of significant X/Y pairs

are lower than those of pairs with q values greater than 0.2

(p < 5 3 10�140 Mann-Whitney test). The general reciprocation

of cotargeting scores indicates that a significant percentage of

our predictions are specific and that the signals that we are

detecting are likely biologically relevant.

We also tested whether cotargeting relationships could be in-

ferred from gene set overlaps in which the X/Y q value was

computed using FET on the number of genes shared between

the PTSs of the miRNA family pair. This analysis failed to provide

informative results because almost all tested pairs have a signif-

icant q value: 2264 (86%) and 2628 (100%) of the pairs have a q

value of less than 0.05 by using the Bonferroni and FDR correc-
148 Molecular Cell 38, 140–153, April 9, 2010 ª2010 Elsevier Inc.
tion, respectively. This suggests that a core set of genes are

frequently predicted as targets for many miRNA family pairs;

these likely correspond to genes with highly conserved 30UTRs

and/or low GC content, properties that favor a gene being pre-

dicted as a target using Targetscan. This result strongly suggests

that the degree of PTS overlap is not sufficiently specific to

detect authentic cotargeting relationships, whereas mirBridge

has superior specificity and is thus able to provide biologically

relevant signals, as shown above.

Network Analysis of Cotargeting Interactions
Our cotargeting predictions can naturally be organized as a

network in which the nodes are miRNA families and the directed

edges between nodes denote the X/Y predictions. A network

representation enables examination of connectivity patterns



Figure 3. The miRNA-Cotargeting Network Inferred by mirBridge

The thickness of the edges is proportional to �log (q).

(A) The ten most-connected nodes and the adjacent edges are highlighted in yellow and red, respectively.

(B) Examples of highly interconnected subnetworks. See also Figure S3.
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beyond pairwise interactions. We first checked whether the

edges in the network are evenly distributed across nodes or

concentrated around a few nodes (‘‘hubs’’). Strikingly, the edges

connecting the 10 most connected nodes (out of 69 nodes with

at least one adjacent edge) account for more than 55% (123/

221) of the edges in the network (Figure 3A and Table S11).

Though overall, the size of a miRNA family’s PTS is correlated

to its connectivity ranking (p = 10�6 Spearman correlation), this

correlation becomes insignificant when restricted to families

with at least 900 predicted targets (p > 0.1). Because only 6

of the top 40 most-connected families have less than 900

predicted targets, the size of a miRNA family’s PTS alone cannot

explain the connectivity pattern among the top 40 families. The

hub miRNA families probably have functions in diverse contexts.

For example, some hubs have a large number of members and

therefore are likely to have more diverse functions depending

on the spatial-temporal expression of individual miRNAs (e.g.,

miR-93.hd/291-3p/294/295/302/372/373/520).

We reasoned that groups of tightly interconnected nodes

might represent miRNAs that perform similar functions. To iden-

tify such groups, we used a graph clustering tool that ignores

edge weights to identify tightly interconnected nodes (Bader
and Hogue, 2003) (Figure 3B). We find that subnetwork 1 has

four families and is the largest and most highly interconnected;

three of the families (miR-17-5p, -130, -93.hd) are among the

most connected families (Figure 3A). This subnetwork is also

well connected to subnetwork 3 (miR-18, -19, -181), probably

because miR-17-18-19-20 are coexpressed from a polycistronic

transcript. The miR-17 cluster is known to be overexpressed in

a number of human cancers, including B cell tumors, whereas

miR-142 is also highly expressed in B cells (Chen and Lodish,

2005; Mendell, 2008). Their shared PTS is enriched for genes

in developmental processes (p < 3.8 3 10�5), consistent with

the miR-17 cluster’s function in the development of B cells, the

heart, and lungs (Mendell, 2008; Ventura et al., 2008). Our linking

of the miR-142 and miR-130/301 families—whose functions are

largely unknown—to the miR-17 cluster suggests that these

miRNA families also participate in similar developmental and

oncogenic processes.

DISCUSSION

We have introduced a systematic method for inferring miRNA

functions by assessing the enrichment of likely functional target
Molecular Cell 38, 140–153, April 9, 2010 ª2010 Elsevier Inc. 149
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sites in gene sets. Key features of mirBridge include combining

test metrics that detect different aspects of functional targeting

and a sampling algorithm for removing gene set biases to im-

prove estimation of statistical significance. Hundreds of human

miRNA-function associations were inferred by mirBridge; some

are reassuringly supported by published experiments, but many

are not previously known and/or provide mechanistic insights

beyond published data.

Our results provide hints about the general principles of

miRNA-mediated regulation in networks. Whereas some miRNAs

could act as global regulators by repressing up to thousands of

targets genome-wide (Lewis et al., 2005), many appear to have

pathway-specific functions, and these miRNAs tend to target

multiple genes in the same pathway. Typically, the predicted

targets of the miRNA are genes that drive pathway activity in a

coherent direction (e.g., miR-16 targeting of G1-to-S-promoting

genes). Such coordinate targeting could partially explain how

individual miRNAs can be potent effectors of pathway activity

even though the amount of repression conferred by miRNAs

tends to be modest for any single target (Baek et al., 2008;

Selbach et al., 2008; Xiao and Rajewsky, 2009). As was observed

earlier (Martinez et al., 2008; Tsang et al., 2007), some of our

predictions (e.g., miR-1) involve miRNAs mediating feedback and

feedforward loops, whose functions include protein homeostasis

and signal amplification, respectively. For example, miRNAs

could be ‘‘master’’ regulators of pathways and thus serve as

effective therapeutic targets because positive feedbacks could

amplify small changes in protein concentration conferred by

miRNA targeting of multiple genes. Our analysis also indicates

that miRNAs can function in, and mediate crosstalk among,

multiple canonical pathways, such as miR-16’s potential roles

across the cell cycle and Wnt pathways to coordinately regulate

cellular growth and proliferation.

mirBridge also facilitates context-specific target prediction:

one can first predict which pathways a miRNA regulates and

then compile high-quality putative targets within a pathway. This

strategy may be especially effective for miRNAs that function in

only a few pathways, as targets predicted genome-wide may

have low specificity (Lewis et al., 2005). Additional filtering can

be used to strengthen the target predictions, for example, by

requiring that the putative target and the miRNA be significantly

correlated in their expression using miRNA-mRNA expression

data sets (Lu et al., 2005) (Table S9).

In addition to providing functional links across miRNAs, our

human miRNA-miRNA map provides, to the best of our knowl-

edge, the first genome-wide evidence that miRNA cotargeting

is prevalent and that a handful of hub miRNA families are

involved in a large fraction of the cotargeting connections. The

abundance of cotargeting further suggests that, whereas indi-

vidual miRNAs may provide only modest levels of repression,

combinatorial targeting by multiple miRNAs (Krek et al., 2005)

can potentially achieve a wide range of target-level modulations.

Given that multiple miRNAs are expressed at different levels in

any given cell type, individual genes can evolve combinations

of miRNA-binding sites to optimize expression levels across

cell types (Bartel and Chen, 2004). miRNA target sites are short

and could thus be acquired or lost relatively quickly over evolu-

tion to fine-tune gene expression levels.
150 Molecular Cell 38, 140–153, April 9, 2010 ª2010 Elsevier Inc.
Designating a group of miRNAs as ‘‘cotargeting’’ does not

necessarily imply that these miRNAs are coexpressed so as to

regulate their common targets at the same time and place. In

fact, the exact opposite is also likely: different miRNAs are

responsible for controlling a given set of targets in different con-

texts. In general, a combination of the above scenarios is likely

for individual cases, and additional data (e.g., miRNA and target

expression profiles) are needed to further dissect the mecha-

nistic basis of individual cotargeting predictions.

mirBridge is currently limited to assessing enrichment at the

level of miRNA families using seed-matched motifs. But this is

largely due to our lack of general understanding of miRNA-target

interaction beyond seed pairing and features captured by the

context score. In principle, the mirBridge methodology is general

and can be applied to any combinations of gene sets, sequence

motifs, and site scoring metrics, including non-miRNA motifs,

such as those involved in regulating mRNA stability. Given

mirBridge’s ability to simultaneously correct for multiple gene

set biases and the increasing availability of genomes and anno-

tated gene sets, mirBridge is poised to serve as a key resource

for the comprehensive functional dissection of miRNAs and

other regulatory sequence motifs in genomes.

EXPERIMENTAL PROCEDURES

Seed-Matched Site Compilation

miRNA family memberships, 30UTR sequences, seed-matched sites, and their

context scores and conservation status were downloaded from TargetScan

(http://www.targetscan.org/vert_40/). For each known human gene, the num-

ber of seed-matched sites for each miRNA family, the number of those that are

conserved, and the context score were computed. Because the context score

depends on the full miRNA sequence, the context score for a miRNA family is

defined as the average of all human members of that family.

mirBridge

The method as described in the text was implemented in Matlab. More details

and related discussions can be found in the Supplemental Experimental

Procedures.

miRNA Function Analysis

Canonical signaling pathway and KEGG gene sets were downloaded from

http://www.broad.mit.edu/gsea/msigdb/index.jsp. The cancer, CORUM, and

GO sets were downloaded from http://robotics.stanford.edu/�erans/cancer/,

http://mips.helmholtz-muenchen.de/genre/proj/corum, and NCBI Gene, re-

spectively. To reduce noise and avoid spurious annotations, we only used

GO annotations with experimental and peer-reviewed evidence. A miRNA-

gene set prediction requires at least one of the miRNA seed motifs (m2-8

and/or m7-A) to test as significant in the gene set. The q value reported for indi-

vidual miRNAs corresponds to the q value of the seed motif with the smaller

p value.

miRNA Family Selection

The deeply conserved miRNAs are ones that are conserved across human,

mouse, rat, dog and chicken. We focused on these miRNAs because they

probably have (1) more conserved functions, (2) a larger number of targets

compared to less-conserved miRNAs, and (3) stronger conservation enrich-

ment signals.

Target Prediction

Targets were compiled for each miRNA by including genes with at least one

conserved seed match (across human, mouse, rat, and dog) or a seed match

with a context score of greater than 68 in the 30UTR (see Supplemental Exper-

imental Procedures). Predictions based on context score alone were included

http://www.targetscan.org/vert_40/
http://www.broad.mit.edu/gsea/msigdb/index.jsp
http://robotics.stanford.edu/~erans/cancer/
http://robotics.stanford.edu/~erans/cancer/
http://mips.helmholtz-muenchen.de/genre/proj/corum
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because functional target sites can be imperfectly conserved. High-quality

putative targets in gene sets (Tables 1 and S1–S9) were compiled using the

same definition.

X/Y Predictions and Analysis

mirBridge was applied to the predicted target set of each miRNA family. Only

the seed-matched motifs of the 73 families were scored. When both seed-

matched motifs of a miRNA family are tested significant, the smaller q value

is used as the X/Y q value. Human miRNA clusters were obtained from

Yu et al. (2006).

Predicted Target Set Overlap Analysis

The number of overlaps between the predicted target set of each miRNA-

family pair was computed. The statistical significance was computed using

Fisher’s exact test (see Supplemental Experimental Procedures).

Predicted Target Set and Pathway Overlap Analysis

Similar to above except that (1) all genes that are not predicted as a target for

any miRNA were removed from the pathway gene sets and (2) the population

size is taken as the number of genes that are predicted as a target for at least

one miRNA family and belong to at least one pathway.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

11 tables, and 10 figures and can be found with this article online at

doi:10.1016/j.molcel.2010.03.007.
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