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SUMMARY

Negative feedback can serve many different cellular
functions, including noise reduction in transcriptional
networks and the creation of circadian oscillations.
However, only one special type of negative feedback
(‘‘integral feedback’’) ensures perfect adaptation,
where steady-state output is independent of
steady-state input. Here we quantitatively measure
single-cell dynamics in the Saccharomyces cerevi-
siae hyperosmotic shock network, which regulates
membrane turgor pressure. Importantly, we find
that the nuclear enrichment of the MAP kinase
Hog1 perfectly adapts to changes in external osmo-
larity, a feature robust to signaling fidelity and oper-
ating with very low noise. By monitoring multiple
system quantities (e.g., cell volume, Hog1, glycerol)
and using varied input waveforms (e.g., steps and
ramps), we assess in a minimally invasive manner
the network location of the mechanism responsible
for perfect adaptation. We conclude that the system
contains only one effective integrating mechanism,
which requires Hog1 kinase activity and regulates
glycerol synthesis but not leakage.

INTRODUCTION

Positive and negative feedback loops are ubiquitous regulatory

features of biological systems in which the system output rein-

forces or opposes the system input, respectively. Quantitative

models are increasingly being used to study the function and

dynamic properties of complicated, feedback-laden biological

systems. These models can be broadly classified by the extent

to which they represent specific molecular details of the network.

At one extreme are the exhaustive models that dynamically track

quantities of virtually all biomolecules in a system, often using

differential equations based on either known or assumed reaction

stoichiometries and rates. At the other end of the modeling spec-

trum is the minimalist approach, which aims to fit and predict

a system’s input-output dynamics with only a few key parame-

ters, each potentially the distillation of a large group of reactions.
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Examples of exhaustive and minimalist modeling approaches

illustrate their unique advantages and disadvantages. For

instance, an exhaustive model of EGF-receptor regulation

(Schoeberl et al., 2002) can impressively predict the dynamics

of 94 specific network elements, but it requires nearly 100

parameters—some of which are not easily measured biochemi-

cally—and could suffer from the omission of important reactions

not yet biologically identified. By contrast, minimalist models

frequently lack such potentially desirable reaction- and net-

work-specific details, yet they excel at providing intuitive and

general insights into the dynamic properties of recurrent system

architectures. For instance, two elegant studies of bacterial

chemotaxis—a system said to ‘‘perfectly adapt’’ because abrupt

changes in the amount of ligand only transiently affect the

tumbling frequency, whereas steady-state tumbling is notably

independent of the ligand concentration—highlighted a general

feature of all perfectly adapting systems (Barkai and Leibler,

1997; Yi et al., 2000). Specifically, it was shown that a negative

feedback loop implementing ‘‘integral feedback’’ is both neces-

sary and sufficient for robust perfect adaptation in any biological

system (Yi et al., 2000). Mathematically, a dynamic variable (e.g.,

x or [cyclin-B]) is an ‘‘integrator’’ if its rate of change is indepen-

dent of the variable itself (e.g., if the dx/dt and d[cyclin-B]/dt

equations contain no terms involving x or [cyclin-B], respec-

tively), and integral feedback describes a negative feedback

loop that contains at least one integrator. Biologically, a biomol-

ecule acts as an integrator if its rate equation is not a function of

the biomolecule concentration itself; such a situation arises if,

say, the synthesis and degradation reactions are saturated

(Supplemental Data available online). By providing specific

mechanistic constraints that apply to any perfectly adapting

system, these two studies underscored the function and signifi-

cance of perfect adaptation in homeostatic regulation and

demonstrated the power of the minimalist modeling approach.

Both exhaustive and minimalist modeling tactics have been

successfully applied to the osmosensing network in the budding

yeast Saccharomyces cerevisiae (Klipp et al., 2005; Mettetal

et al., 2008). The core of this network is a highly conserved

mitogen-activated protein kinase (MAPK) cascade, one of

several such cascades in yeast that regulate processes ranging

from mating to invasive growth while being remarkably robust to

crosstalk despite their many shared components (Hohmann,

2002; Schwartz and Madhani, 2004). Yeast cells maintain an
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Figure 1. Hog1 Translocates to the Nucleus in Response to Hyperosmotic Shock

(A) An upward spike in external osmotic pressure at t = 0 is sensed by Sln1, which propagates a signal via a MAPK cascade that culminates in the dual phos-

phorylation and nuclear import of Hog1. In the nucleus, Hog1 activates gene expression; active Hog1 also plays various roles in the cytoplasm to facilitate

osmoadaptation. Together with Hog1-independent stress responses, these mechanisms increase internal glycerol, thereby restoring turgor pressure across

the membrane. Our ‘‘wild-type’’ strain has YFP fused to Hog1, and the Sln1 branch is the primary osmosensor, since SHO1 is deleted.

(B) Network diagram inferred from (A) showing the system input and measurable outputs. ‘‘Error’’ indicates the deviation from optimal turgor pressure.

(C) Schematic of our simple flow chamber. The pump draws media through the flow-cell, with the osmolarity controlled by a valve. Cells adhere to the coverslip

coated with 1 mg/ml conA in water.

(D) Phase-contrast (top row), Hog1-YFP (middle row), and Nrd1-RFP (bottom row) images are captured at each time point. In the absence of hyperosmotic shock,

Hog1-YFP is distributed throughout the cell (left column). Only transiently does Hog1 accumulate appreciably in the nucleus after a shock (middle column),

restoring the pre-stress distribution at steady state (right column).
intracellular osmolarity in excess of the extracellular osmolarity,

thereby creating positive turgor pressure across the cell wall

and membrane that is required for many processes including

budding itself. Sudden drops in turgor pressure, potentially

caused by an upward spike in the external osmolyte concentra-

tion, are detected by membrane proteins such as Sln1 (Reiser

et al., 2003), which rapidly initiates a MAPK cascade culminating

in the dual phosphorylation of the MAPK Hog1 (Figure 1A). Upon

dual phosphorylation, the normally cytoplasmic and inactive

Hog1 becomes activated and translocates to the nucleus (Fer-

rignoetal., 1998), where it playsdirectand indirect roles ina broad

transcriptional response (O’Rourke and Herskowitz, 2004). Glyc-

erol-producing factors are among the activated genes, and they

facilitate osmoadaptation through the increase of intracellular

osmolarity (Hohmann et al., 2007). In fact, glycerol accumulation

has been shown to comprise 95% of the internal osmolarity

recovery (Reed et al., 1987). The subsequent restoration of turgor

pressure leads to nuclear export of Hog1, which is dephosphory-

lated by several nuclear and cytoplasmic phosphatases.
Nontranscriptional mechanisms also play an important role in

the hyperosmotic-shock response. Some are independent of

Hog1 (e.g., rapid closure of Fps1 channels, which otherwise

allow passive leakage of glycerol; Luyten et al., 1995; Tamás

et al., 2000), but others involve feedback mediated by the

Hog1 pathway (Dihazi et al., 2004; Proft and Struhl, 2004; West-

fall et al., 2008). For instance, in response to hyperosmotic

stress, the glycolytic protein Pfk26, which stimulates production

of glycerol precursors, was found to be activated via phosphor-

ylation at MAPK consensus sites in a Hog1-dependent manner

(Dihazi et al., 2004). Additionally, in a recent study by Thorner

and colleagues, it was shown that Hog1 sequestered in the cyto-

plasm can still mount an effective osmotic response (Westfall

et al., 2008).

Biochemical characterization of most systems is rarely so rich

to be deemed exhaustive, nor so minimal to consider a system

as a black box. Thus, models combining elements from both

approaches can be quite useful, such as a recent study that

started with the exhaustive osmoadaptation model (Klipp et al.,
Cell 138, 160–171, July 10, 2009 ª2009 Elsevier Inc. 161



2005) and abstracted several elements to yield a reduced repre-

sentation (Gennemark et al., 2006). Here we take the reverse

strategy, starting instead with the minimalist model (Figure 1B)

and then using biological measurements and engineering princi-

ples to better understand systems-level dynamics and their

relation with network topology.

In this study, we monitor the single-cell dynamics at high

temporal resolution of both cell volume and Hog1 nuclear enrich-

ment simultaneously in response to hyperosmotic stress. We

observe perfect adaptation of Hog1 nuclear enrichment in

response to step inputs of osmolyte; this adaptation occurs

with very low cell-to-cell variability and is robust to the signaling

fidelity of the MAPK cascade. From extensive theory developed

in control engineering, we know that perfect adaptation in this

feedback system requires an integral-feedback mechanism.

We refine the position(s) of integrator(s) in our network by gener-

ating a range of putative network configurations and systemati-

cally rejecting those inconsistent with our data. Facilitating this

process of elimination is our observation that perfect adaptation

requires Hog1 kinase activity but not new protein production,

suggesting that Hog1 may implement integral-feedback via a

yet-unknown role in protein-protein interactions that increase

the internal osmolyte concentration. Measurements of glycerol

accumulation suggest that this crucial role for Hog1 kinase

activity upregulates glycerol synthesis but does not otherwise

regulate its leakage. Finally, in an experiment imposing severe

constraints on the possible valid network configuration, we

show that neither cell volume nor Hog1 nuclear enrichment

perfectly adapts in response to a ramp input of salt. Together,

our results establish that the system’s negative feedback loop

contains exactly one effective integrating mechanism. Though

the loop may branch such that this effective integrator is

composed of multiple integrating reactions arranged in parallel,

we can reject the possibility that the net feedback loop contains

two or more effective integrating mechanisms arranged in series.

RESULTS

MAPK Cascade Introduces Negligible Noise
while Transducing Osmotic-Shock Signal
To gain further insight into Hog1 signaling dynamics and the

feedback mechanisms that underlie osmoadaptation, we as-

sayed the nuclear accumulation of Hog1 and cellular volume in

single cells over time in response to hyperosmotic shock. We

fused a yellow fluorescent protein (YFP) to the C terminus of

endogenous Hog1 (Hog1-YFP) in haploid cells from which

SHO1 was deleted. SHO1 deletion disables one of the two

primary branches that activate Hog1, leaving the Sln1 branch

as the main activator of Hog1. Importantly, SHO1 deletion elim-

inates crosstalk with other MAPK cascades (McClean et al.,

2007; Schwartz and Madhani, 2004) while still preserving the

Hog1 dynamics (compare Figure 2A and Figure S1; Hersen

et al., 2008) and gene expression profiles (O’Rourke and Hersko-

witz, 2004) of cells where both branches are intact. To identify

the nucleus and thereby facilitate our computation of nuclear

Hog1 enrichment, we also fused a red fluorescent protein to

Nrd1 (Nrd1-RFP), a strictly nuclear factor. Throughout this

work, we refer to this strain as ‘‘wild-type.’’
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We created a simple flow-chamber apparatus to permit the

changing of media with simultaneous acquisition of images.

Cells were grown to log phase and loaded into the chamber

(Figure 1C), where they adhered to a coverslip coated with

concanavalin A. Media with or without excess osmolyte flowed

over the cells throughout each experiment, and in less

than 2 s the media within the chamber could be switched

completely between the two types (data not shown). At each

time point, we acquired phase-contrast, YFP, and RFP images,

allowing us to observe a transient enrichment of Hog1 accumu-

lation in the nucleus shortly after a hyperosmotic shock and

diminished localization shortly before and long after the shock

(Figure 1D).

We developed custom image-analysis algorithms to quantify

the dynamic decrease in single-cell volume and increase in

Hog1 nuclear enrichment in response to a step increase (Fig-

ures 2A and 2B) of the extracellular osmolyte concentration.

For each cell, we compute the ratio of nuclear YFP signal to

whole-cell YFP signal throughout the experiment and define

a cell’s Hog1 nuclear enrichment as the relative change from

the pre-shock level of this ratio (Experimental Procedures).

Single-cell volume dynamics were computed from measure-

ments of cell area (Experimental Procedures) and were inter-

preted as a proxy for turgor pressure. Average Hog1 and volume

data from Figures 2, 3, 5, and 6 are available in the Supplemental

Data (available online). We observed remarkably low cell-to-cell

variability in the network response, which includes the reactions

in the MAPK cascade: for different cells, the amplitude and

timing of changes in Hog1 nuclear enrichment and cell volume

are very similar, with trends that closely follow the population

average (Figures 2A and 2B). In fact, fluctuations in unstimulated

cells were of a similar magnitude (Figure S2), further indicating

that the intrinsic noise of signal propagation is low and suggest-

ing that the experimental setup itself may be the predominant

source of noise in our data. Compared with the recent observa-

tion of significant cell-to-cell variability in the dynamic nuclear

enrichment of the yeast calcium-stress regulator Crz1 (Cai

et al., 2008), these data suggest that the osmoadaptation

signaling system generates output signals with very low noise,

despite the fact that the system itself contains many proteins

expressed at noisy levels (Newman et al., 2006).

Since our flow-cell-based assay allows for simultaneous

measurement of cell volume and Hog1 nuclear localization at

unprecedented timescales, we sampled the osmotic response

every 2 s in response to a step of salt (Figures 2C and 2D). Again,

we argue that the MAPK cascade generates negligible noise since

the cell-to-cell variability in both the input (volume) and output

(nuclear Hog1) are comparable. Together with the data from

Figures 2A and 2B, these data gathered every 2 s reveal four

distinct regimes in the relationship between cell volume and

Hog1 activation in response to osmotic stress (Figure 2E). Within

the first 20 s following a step of salt, cell volume drops precipi-

tously, but Hog1 nuclear enrichment remains at its basal level

while the stress signal propagates through the MAPK cascade.

Between 20 s and 90 s, Hog1 nuclear enrichment rises from its

minimum to its maximum but does not yet affect turgor pressure,

as cell volume remains at its minimum. Shortly thereafter, turgor

pressure begins to restore, and Hog1 nuclear enrichment begins



Figure 2. MAPK Signaling Introduces Very Little Cell-to-Cell Variability in Hog1 Nuclear Enrichment

(A) In response to a step shock of 0.4 M NaCl, dynamics in single-cell Hog1 nuclear enrichment (shown for three cells in green, orange, and purple; defined in

Experimental Procedures) strongly resemble the population average (dark-blue dotted line) obtained from a single experiment (>100 cells). The shaded region is ±

standard deviation (SD) around the population average and represents the cell-to-cell variability of a single experiment.

(B) Cell volume traces are low in noise (salt stimulus, single cells, mean, and shaded area are as in A). After an abrupt decrease in cell volume after t = 0, volume

recovers and exceeds the pre-stimulus value, indicative of cell growth within the flow cell once turgor pressure is restored.

(C and D) Two-second sampling of single-cell Hog1 nuclear enrichment (C) and cellular volume (D) (salt stimulus, single cells, mean, and blue shaded area are as

in A). Yellow shaded region depicts ± standard error of the mean (SEM) for >3 independent flow cells.

(E) For each time point in (A)–(D), the cell volume and Hog1 nuclear enrichment values are positioned on this scatter plot of Hog1 versus volume, illustrating four

distinct regions. Spots are false-colored for clarity, becoming black near the boundaries between regions.
to fall, with both reaching their pre-shock levels simultaneously at

25 min post-shock. Finally, cell growth resumes, as the cell

volume grows and Hog1 returns to its basal level.

Hog1 Nuclear Enrichment Perfectly Adapts
We found that the steady-state Hog1 nuclear enrichment is iden-

tical to its pre-stimulus level over a range of hyperosmotic-shock
strengths (Figure 3A). This dynamic behavior is the hallmark of

perfect adaptation. Importantly, Hog1 perfect adaptation is not

NaCl specific, as we observed it with KCl and sorbitol treatment

as well (Figure S3). In our simultaneous measurements of cell

volume and Hog1 localization, we found a very strong corre-

spondence between the timing of both Hog1 adaptation and

the restoration of turgor pressure, which we interpret as the
Cell 138, 160–171, July 10, 2009 ª2009 Elsevier Inc. 163



Figure 3. Hog1 Nuclear Enrichment Exhibits Robust Perfect Adaptation

(A) In response to hyperosmotic shocks with indicated concentrations of NaCl, the steady-state Hog1 nuclear enrichment returns exactly to the same level as in

unshocked cells. All cells were grown and loaded into the flow cell using media with 0.0 M NaCl. Dotted lines show the average response, obtained by averaging

population averages from independent experiments (n = 3 or 4); error boundaries depict ± SEM.

(B) Cell volume traces corresponding to the experiments in (A), except that all post-shock data points are the average of measurements at three consecutive time

points. Error boundaries are as in (A).

(C) Hog1 nuclear enrichment perfectly adapts even in cells with compromised MAPK signaling. The TetO7 promoter was integrated upstream of the endogenous

PBS2 gene. In the experiments shown, [doxycycline] = 0.06 mg/ml. Error boundaries are as in (A).

(D) The area under the Hog1 curves in (A) and (C) scales linearly with [NaCl], consistent with a single integrator between Hog1 activation and glycerol accumulation

(Supplemental Data); dotted gray lines are guides for the eye. Data points indicate mean ± SD of the area calculated from at least three independent Hog1-

nuclear-enrichment traces. The inset shows the double integral of Hog1 curves in (A), calculated up to the point where the data curves adapt.
moment that the rate of volume growth (i.e., slope of volume

curve) in stressed cells matches that of unstressed cells (Figures

3A and 3B). Interestingly, for cells stressed with media contain-

ing 0.6 M NaCl, this turgor pressure recovery appears to occur

at a volume less than the pre-shock cell volume. This observation

is consistent with membrane invagination that has been shown

previously to occur only in cells under acute hyperosmotic stress

(Slaninová et al., 2000): by decreasing membrane surface area,

a particular turgor pressure can be achieved at a smaller volume.

We conclude from these data that the Hog1 nuclear enrich-

ment level perfectly adapts and that this behavior is tightly

coupled with perfect adaptation of turgor pressure. Taken

together with extensive theoretical analysis of adaptive systems

in engineering disciplines, these findings require that the system

implement integral-feedback control (Ingalls et al., 2006; Sontag,

2003; Yi et al., 2000). The presence of integral feedback makes

perfect adaptation a robust system feature that does not require

a careful tuning of the system parameters, such as protein levels

or rate constants. To demonstrate the robustness of this perfect
164 Cell 138, 160–171, July 10, 2009 ª2009 Elsevier Inc.
adaptation, we measured the Hog1 response after changing the

signaling fidelity of the MAPK cascade by controlling the expres-

sion of PBS2, which encodes the kinase of Hog1. To this end, we

placed the genomic copy of PBS2 under the inducible control of

a Tet promoter. At saturating doxycycline levels, we observed

Hog1-nuclear-enrichment dynamics comparable with wild-type

cells (data not shown). By contrast, at low-level induction of

the Tet promoter, the amplitude of the Hog1 response was signif-

icantly less than in wild-type, and we did not observe saturation

in the peak amplitude as a function of salt (Figure 3C). Despite

these gross differences, however, Hog1 nuclear enrichment still

perfectly adapted. We conclude that integral feedback is a struc-

tural feature of the network; thus, perfect adaptation is a robust

property of the system and not a consequence of precisely tuned

parameters.

Strategy for Finding the Integrator
Our data begin to restrict the possibilities of where in the network

the integrator can be. The potential locations we consider are



four subsystems denoted H, I, D, and G (Figure 4). The H

subsystem represents all relevant reactions that link an osmotic

disturbance at the membrane with Hog1 nuclear enrichment; for

example, the MAPK cascade and nuclear-import reactions are in

this subsystem. In the D subsystem are Hog1-dependent mech-

anisms that promote glycerol accumulation, such as the tran-

scriptional activation of genes that encode glycerol-producing

enzymes and potential protein-protein interactions initiated by

Hog1 in the cytoplasm or nucleus that lead to glycerol accumu-

lation. In subsystem I are the Hog1-independent mechanisms

that contribute to osmolyte production, such as export-channel

closure and gene expression mediated by stress factors other

than Hog1. Finally, subsystem G represents the metabolic reac-

tions involved in glycerol synthesis and any other reactions

that contribute to glycerol accumulation. Positing that each

Figure 4. Perfect Adaptation and Other Data Reject

Many Potential Network Schematics

We permute the model from Figure 1B (shown in reduced form

at top left) such that each of the subsystems H, D, I, and G, is

an integrator (shaded orange) or not (shaded green), yielding

the sixteen possibilities (a) through (p). For the reasons listed

at top right, which consider data from Figures 2, 3, 5, and 6,

certain network schematics can be rejected. Only network

(d) satisfies all the constraints.

subsystem either contains one or more integrators

or contains none, we generated the 16 possible

network configurations to guide our further analysis

(Figure 4).

A critical aid in finding which of the subsystems

contains the integrator(s) is the fact that with

respect to the furthest-downstream integrator in

a feedback loop, quantities upstream perfectly

adapt, and those downstream do not (Supple-

mental Data). For instance, the observation that

turgor pressure perfectly adapts—indeed, this is

arguably the primary function of regulating osmotic

stress—stipulates that at least one integrator must

exist in H, I, D, or G since turgor pressure is

upstream of each of these systems within the feed-

back loop. This allows us to reject network config-

uration (a), where none of the subsystems acts as

an integrator. The observation of Hog1 perfect

adaptation imposes an additional constraint: if the

only integrator in the feedback loop were in

subsystem H, then Hog1 nuclear enrichment would

not perfectly adapt because it is downstream of H.

Thus, at least one of the subsystems I, D, and G

must contain an integrator, permitting the rejection

of configuration (b).

The high temporal resolution of our Hog1

measurements provides another severe constraint

on possible network configurations. Our assay

permits precise quantification of the area under

the Hog1 curve (i.e., its integral). We find that in

both wild-type cells and PTet-PBS2 mutant cells,

integrated Hog1 scales linearly with the shock

strength (Figure 3D) (note: the fact that their slopes differ does

not affect the subsequent argument). If the system were

composed only of reactions that could be modeled with linear

dynamics, then such a result would be trivial; however, the fact

that the peak Hog1 amplitude saturates as a function of salt (Fig-

ure 3A) is strong evidence of nonlinearity in the H subsystem and

makes the data in Figure 3D quite informative. In particular, these

data suggest that exactly one integrator exists between the input

to subsystem D and the output of subsystem G, in addition,

perhaps, to other serially arranged nonintegrating subsystems

with nearly linear input-output steady-state characteristics

(Supplemental Data). We can reject the scenario in which both

D and G are integrators since the double integral of Hog1 would

be expected to scale linearly with shock strength, which is clearly

not the case (Figure 3D, inset). Conversely, if neither D nor G is an
Cell 138, 160–171, July 10, 2009 ª2009 Elsevier Inc. 165



integrator, then the fact that Hog1 perfectly adapts means that I

must be an integrator. Not only do we experimentally refute this

possibility in the next section, but we can also theoretically

dismiss it because the nonlinearity in H would eliminate the linear

scaling we observe between shock strength and integrated

Hog1. Thus, we conclude that either D is an integrator or G is

an integrator, allowing us to reject configurations (a), (b), (c), (f),

(k), (n), (o), and (p).

Perfect Adaptation Requires Hog1 Kinase Activity,
which Affects Glycerol Synthesis but Not Leakage
To distinguish among the remaining putative network configura-

tions, it was important to separate the roles of Hog1-dependent

(D subsystem) and Hog1-independent (I subsystem) reactions.

To this end, we mutated the endogenous Hog1 gene in our

wild-type strain such that the kinase activity of the mutant

(hog1-as) could be specifically, rapidly, and inducibly ablated

by the ATP-analog 1-NM-PP1 (‘‘PP1’’) (Westfall and Thorner,

2006). PP1 treatment has been shown to completely eliminate

Hog1 kinase activity, unlike many of the previously studied

constitutively ‘‘dead’’ isoforms, which were shown to retain

both residual kinase activity (Westfall and Thorner, 2006) and

the ability to perfectly adapt (Figure S4). In the presence of

PP1, perfect adaptation is lost, as steady-state Hog1 accumula-

tion does not return to its pre-stimulus level (Figure 5A). To

isolate the salt-specific response, these results and those in

Figure 5B were corrected for the effect PP1 has on cells not

shocked with salt (Figure S5, Experimental Procedures). Though

the peak amplitude is less than in cells untreated with PP1

(Figure 5A, inset), this failure of PP1-treatred cells to adapt is

not an artifact of the documented defect in nuclear transport of

hog1-as (Westfall and Thorner, 2006) because nuclear enrich-

ment dropped precipitously upon removal of the stimulus

(Figure S6). Furthermore, the effect is specific to Hog1 kinase

activity since cells expressing wild-type Hog1 perfectly adapted

even in the presence of PP1, though they too had diminished

peak amplitude (Figure S7). Importantly, PP1 treatment elimi-

nates the post-shock volume recovery (Figure 5B), suggesting

that kinase-dead Hog1 persists in the nucleus because turgor

pressure is not restored. We conclude that Hog1 kinase activity

is necessary for the proper functioning of the integral-feedback

controller in the osmoadaptation network.

Since PP1 treatment effectively severs the feedback loop

between nuclear Hog1 and the Hog1-dependent mechanisms

(i.e., it disconnects the D subsystem from its input), the loss of

perfect adaptation further constrains the possible locations for

the integrator(s). First, the Hog1-independent subsystem (the I

subsystem) cannot contain the last integrator in the feedback

loop. If it did, then the turgor pressure would perfectly adapt in

the presence of PP1, and Hog1 likely would as well, yet we

observe neither (Figures 5A and 5B); thus, we reject scenarios

(c), (f), (i), and (l) from Figure 4. We can similarly reject scenarios

where both I and G (the glycerol-accumulation subsystem) act as

integrators (i.e., scenarios (j), (m), (o), and (p), Figure 4) since

these scenarios would also ensure perfect adaptation in the

system in the presence of PP1, which was not observed.

We expected that the failure of Hog1 nuclear enrichment to

perfectly adapt in the absence of Hog1 kinase activity resulted
166 Cell 138, 160–171, July 10, 2009 ª2009 Elsevier Inc.
from insufficient glycerol accumulation. Therefore, we compared

internal glycerol accumulation in cells either treated or not

treated with PP1. In cells not treated with PP1 (‘‘�PP1’’), intracel-

lular glycerol rose rapidly after hyperosmotic shock but remained

constant in unshocked cells (Figure 5C). In PP1-treated cells

(‘‘+PP1’’), hyperosmotic shock caused a slight increase in

internal glycerol, but the level achieved was significantly less

than in �PP1 cells, consistent with loss of both turgor-pressure

restoration and Hog1 perfect adaptation. There was a qualitative

similarity between the traces of Hog1 nuclear enrichment and the

rate of internal glycerol accumulation in �PP1 cells (compare

Figure 3A and Figure 5D). Like the linear scaling of integrated

Hog1 with salt shock (Figure 3D), this correspondence is

expected from network scenarios where exactly one integrator

(in addition, perhaps, to some appropriate upstream and/or

downstream linear subsystems) exists between Hog1 and glyc-

erol. In the simplest case where the subsystem between Hog1

and glycerol contains only a single integrator and nothing else,

the rate of glycerol accumulation would effectively be the deriv-

ative of the integral of Hog1 nuclear enrichment and should,

therefore, be simply a scaled version of the Hog1 curve as

observed. In +PP1 cells, where perfect adaptation is lost, this

correspondence is also lost (compare Figures 5A and 5D) as

the Hog1 and glycerol-accumulation-rate curves diverge at their

post-stimulus steady-state levels (i.e., the rate of glycerol accu-

mulation drops to zero, whereas Hog1 nuclear enrichment

remains nonzero).

Insufficient glycerol accumulation in +PP1 cells prompted us

to investigate the ways in which glycerol synthesis and leakage

depend on Hog1 kinase activity. We measured cell-density-

normalized levels of total glycerol and extracellular glycerol

over time in the presence and absence of osmotic shock and

PP1 (Figures 5E and 5F). In �PP1 cells, hyperosmotic shock

leads rapidly to a transient decrease in glycerol leakage (Fig-

ure 5E) and a persistent increase in glycerol synthesis (Figure 5F)

as compared to cells unstressed with salt. The results in +PP1

cells are partially influenced by a nonspecific effect of PP1. In

the absence of salt shock, +PP1 cells increase glycerol synthesis

and equivalently increase glycerol leakage, a behavior we found

to be independent of Hog1 since it also occurred in cells with

wild-type Hog1 (data not shown). Nonetheless, in +PP1 cells

treated with salt, glycerol leakage is rapidly and transiently

diminished, just as in�PP1 cells; yet the absence of Hog1 kinase

activity prevents an increase in glycerol synthesis, unlike in�PP1

cells. Together, these data suggest that Hog1 kinase activity

plays a critical role in rapidly regulating glycerol synthesis but

not its leakage, consistent with a recent report (Westfall et al.,

2008).

Neither Cell Volume nor Hog1 Perfectly Adapts
in Response to a Ramp Input
Four putative network configurations remain (Figure 4, (d), (e), (g),

and (h)), and we use an experiment motivated by control engi-

neering to restrict the options even further. The key concept is

that the number of integrators arranged in series in a system

can be deduced by assaying for perfect adaptation in response

to very specific input trajectories. In general, perfect adaptation

to an input corresponding to the nth integral of a step function



Figure 5. Hog1 Kinase Activity Is Required for Perfect Adaptation of Hog1 Nuclear Enrichment and Glycerol Accumulation via a Role

in Upregulating Glycerol Synthesis

(A) Nuclear enrichment of (hog1-as)-YFP in cells treated with 24 mM PP1 prior to hyperosmotic shock with 0.4 M NaCl. This trace is corrected to highlight the salt-

specific response (Figure S3). In the inset, the same strain is stressed in the same manner, except PP1 is omitted. In both the main curve and the inset, the mean

(n = 3) ± SEM is plotted.

(B) Mean volume traces (n = 3) ± SEM from the corresponding experiments in (A), again corrected to highlight the salt-specific response (Figure S3).

(C) Dynamics in the concentration of intracellular glycerol (OD540 measurement from glycerol kit; see Experimental Procedures), corrected for cell growth (OD600

measurement) by taking the ratio, were measured in hog1-as cells in the presence and absence of 24 mM PP1 (administered 30 min before experiment) and hyper-

osmotic shock with 0.4 M NaCl (administered at t = 0). Data points represent the mean (n = 3) ± SD.

(D) The glycerol accumulation rate was computed as the slope of the traces in (A), and the time of each plotted point corresponds to the midpoint of the two time

points used in the slope computation (e.g., the slope between the 0 min and 15 min time points is plotted at 7.5 min). Error bars represent the combined standard

deviation from data points in (A), assuming measurements were independent at different time points.

(E and F) Dynamics in the extracellular (E) and total (F) glycerol concentration (see Experimental Procedures) in experiments outlined in (C) and described in the

main text. Data points and error bars are as described in (C).
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implies that the system contains at least one feedback loop with

at least n + 1 integrators arranged in series, where n is a positive

integer. For the step input itself, where n = 0, perfect adaptation

demonstrates the existence of one or more integrators arranged

in series. Perfect adaptation in response to a linear-ramp input

(n = 1, since a ramp is simply the integral of a step) reveals the

existence of two or more integrators in series, and so on.

We performed a flow-cell experiment in which the salt concen-

tration ramps upward over time (Figure 6A), reaching a plateau

Figure 6. Neither Cell Volume nor Hog1 Nuclear Enrichment

Perfectly Adapts in Response to a Ramp Input

(A) The calculated concentration of NaCl in the flow chamber as a function of

time (see Experimental Procedures). We measured the fluorescence intensity

of rhodamine diluted in water and converted to [NaCl] based on the respective

dilutions. The mean (n = 3) ± SEM is shown.

(B and C) Temporal changes in relative volume increase (B) and Hog1 nuclear

enrichment (C) in response to ramp input shown in (A) (mean and error are

same as in A). During the ramp period, volume and Hog1 fail to perfectly adapt,

but they later adapt during the plateau period.
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after nearly 45 min. The slope of our ramp was chosen to recon-

cile two opposing factors: (1) that the ramp be steep enough to

observe a signal in both volume and Hog1 and (2) that the

ramp be shallow enough that both volume and Hog1 can reach

steady state before the exterior salt concentration becomes so

toxic that it occludes the response specific to the hyperosmotic

shock system. In response to our ramp input and critically before

the beginning of the plateau, we observed that neither volume

nor Hog1 perfectly adapts (Figures 6B and 6C). Importantly,

shortly after the plateau begins, both volume and Hog1 return

to pre-stimulus levels, indicating that their failure to adapt in

the presence of the ramp is specific to the stimulus itself and

not because of the high final salt concentration of 0.75 M.

The cell volume clearly reaches steady state within the ramp

period and does not adapt, but it could be argued that Hog1

nuclear enrichment does not achieve steady state and could

actually perfectly adapt were the ramp to persist for longer.

Since even a pessimistic extrapolation of the pre-plateau Hog1

data would lead to perfect adaptation only after more than

2 hr, we argue that a second integrator permitting such adapta-

tion is largely irrelevant because the extracellular salt concentra-

tion would be in excess of 2 M at the time of adaptation, and the

cells would almost certainly have perished.

In combination with our other findings, our ramp-input results

confirm that there is exactly one integrator arranged in series in

the system. This finding rejects many model configurations

(Figure 4), but critically it invalidates (g) and (h), which had not

been otherwise refuted. We argue that the most likely network

configuration is (d), where subsystem D functions as an inte-

grator and G does not. If G were to act as an integrator, then

cell volume and turgor pressure would continue to recover as

long as the input to the G subsystem is nonzero. But, when

subsystem D is disabled in the presence of PP1, the only input

to subsystem G is the output from subsystem I. Thus, the

observed failure in volume recovery in PP1-treated cells

(Figure 5B) would only occur if the output of subsystem I prema-

turely goes to zero (i.e., if it were a ‘‘differentiator’’). This obser-

vation would require that all Hog1-independent mechanisms

completely desensitize within approximately 20 min (i.e., the

time needed for hog1-as nuclear enrichment to reach steady

state; Figure 5B) despite persistence in their stimulus (i.e., the

acute loss of turgor pressure). On the basis of this argument,

we consider it extremely improbable that subsystem G acts an

integrator. Therefore, we reject scenario (e), leaving (d) as the

last remaining configuration. We used a system of coupled

differential equations to implement this concise model and found

that it can indeed recapitulate the key features of our data

(Figure S8, Supplemental Data). In sum, we conclude that the

integrator responsible for perfect adaptation in response to

a step input is a Hog1-dependent mechanism upstream of glyc-

erol synthesis.

DISCUSSION

Using both biochemical techniques and engineering principles,

we demonstrate that the low-noise (Figure 2), robust perfect

adaptation of Hog1 nuclear enrichment and cell volume (Figure 3)

results from a single integrating mechanism (Figures 4 and 6) that



Figure 7. A Simple Model Based on Our Data Captures Key Data Features

Cartoon representation of key features of yeast hyperosmotic shock response, explained in detail in the Discussion. Hyperosmotic shock is applied at t = 0. Green

membrane channels are open, allowing the transport of glycerol, shown as purple circles. The channel upon closure is depicted in red.
requires Hog1 kinase activity (Figures 5A and 5B) and regulates

glycerol synthesis (Figures 5E and 5F). Interestingly, despite a

well-known role in mediating an osmostress-induced transcrip-

tional response, Hog1 does not require gene expression to

perfectly adapt (Figure S9, Westfall et al., 2008).

It is worth noting that our results are not inconsistent with

multiple Hog1-kinase-dependent integrating reactions operating

in parallel (our analysis here specifically rejects the possibility of

multiple integrators in series). Redundant parallel integrating

reactions would nonetheless yield one ‘‘effective’’ integrating

mechanism, where each individual integrating reaction would

strengthen the effective integrator and make the adaptation

more rapid. Compared to a single integrating reaction, a parallel

arrangement would also make the system more robust to muta-

tion since disabling one of the parallel integrating reactions

would simply delay adaptation rather than prevent it altogether.

Although future experiments will be required to determine

exactly which reaction(s) is an integrator, the search may be

facilitated by considering reactions downstream of Hog1 that

are most likely to operate at saturation since saturated reactions

are one way to biologically implement integration (Supplemental

Data) (Gomez-Uribe et al., 2007). We tested whether the series of

reactions involving Hog1, Pfk26, and Pfk1,2 could be the inte-

grator. Pfk26, which is activated in a Hog1-dependent manner

after hyperosmotic stress (Dihazi et al., 2004), synthesizes

factors that enhance the production of glycerol precursors by

the highly abundant—and potentially saturating—Pfk1,2 com-

plex. We knocked out PFK2, which has been shown to decrease

the Pfk1,2 complex activity by nearly 95% (Arvanitidis and Hei-

nisch, 1994), but saw no loss of perfect adaptation or appre-

ciable delay in the adaptation kinetics (Figure S10), suggesting

that this chain of reactions does not implement integral feed-

back. Other highly expressed substrates of Hog1 (Kim and
Shah, 2007) should be investigated in the future for integrating

properties.

A Dynamic Perspective on Hyperosmotic
Shock Recovery
Our results yield the following dynamic portrayal of osmoregula-

tion (Figure 7). In the absence of hyperosmotic shock, cells main-

tain a constant internal glycerol concentration. Glycerol is

synthesized at a rate slightly higher than that required to keep

pace with cell growth, and some glycerol is leaked (Figure 7,

panel i). Within 20 s after a hyperosmotic shock, the cell volume

drops to its minimum (Figure 2D), but Hog1 is not yet beginning

to be enriched in the nucleus (Figure 2C), though some cyto-

plasmic Hog1 likely becomes activated and begins to upregulate

glycerol synthesis (Figure 7, panel ii). After 20 s, the volume

remains at its minimum but Hog1 becomes maximally enriched

in the nucleus and glycerol synthesis continues to increase

(Figure 7, panel iii). Beyond the first 5 min (Figure 7, panel iv),

cell volume rises (Figures 2B and 3B), nuclear Hog1 accumula-

tion begins to fall (Figures 2A and 3A), glycerol continues to be

synthesized (Figure 5F), and some glycerol begins to leak to

the exterior (Figure 5E). It is noteworthy that internal glycerol

continues to increase beyond 15 min in �PP1 cells (Figure 6A)

but not in +PP1 cells, indicating that +PP1 cells prematurely

leak as much glycerol as they synthesize. If leakage prevention

were stronger and/or endured for longer, then these cells could

also accumulate enough glycerol to perfectly adapt; these data

suggest that Hog1 kinase activity may play a role in the mainte-

nance of glycerol retention beyond 15 min, though its effect may

be indirect.

Beyond 25 min (Figure 7, panel v), the Hog1 nuclear enrich-

ment returns to its pre-stimulus level (Figures 2A and 3A), the hall-

mark of perfect adaptation. Although the pre- and post-stimulus
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rates of glycerol accumulation are identical (Figures 6C and 6D),

glycerol synthesis and leakage are significantly higher after the

stimulus than before it (Figures 6E and 6F).

A Systematic Approach for Biological Systems Analysis
Our modeling efforts here and in Mettetal et al. underscore the

power of applying engineering principles to any biological

system that has well-defined and quantifiable inputs, internal

variables, and outputs. In analyzing such systems, measurement

of the frequency response (Mettetal et al., 2008) provides an esti-

mate of the number of relevant dynamic variables that a minimal

model should have; additionally, these measurements may

reveal the basic computation or function that the system

performs. For systems potentially involving hundreds of reac-

tions, each with unique kinetics, such analysis can appreciably

reduce the complexity of a model without compromising, and

even potentially enhancing, the insight into systems-level

behavior. Once the minimum number of dynamic variables has

been estimated, the existing biochemical knowledge of the

system can be leveraged to infer which biological quantities

correspond to the relevant dynamic variables and to create

a basic network diagram such as the one in Figure 1B. Candidate

molecules that may correspond to the relevant dynamic vari-

ables should include (1) factors known to be important in the

system (e.g., glycerol and cell volume for the yeast osmotic-

shock response) and (2) factors whose dynamics are expected

to change on an appropriate timescale (e.g., fast protein-protein

interactions versus slow gene-expression events). By measuring

the dynamics of the internal variables in the system’s network

diagram, the model can be further constrained, and links can

be drawn more confidently between model elements and biolog-

ical mechanisms.

Perfect adaptation is one such dynamic feature that restricts

potential models, where a basic result from control engineering

provides important information about biological mechanism

(Stelling et al., 2004). We expect similar analyses to be particu-

larly useful in the study of other homeostatic systems that are

ubiquitous in biology (e.g., blood calcium levels; El-Samad

et al., 2002), where perfect adaptation is presumably the para-

mount dynamic property of the network. Most of these systems

likely achieve robust perfect adaptation through a negative feed-

back loop with one or more integrators; thus, an important future

endeavor is to better understand how biological systems imple-

ment integration at the molecular level. Since the simple loss of

integral feedback can fundamentally transform the function of

a system—from one with transient output into one with persis-

tent and potentially deleterious output—identifying and charac-

terizing biological mechanisms providing integral feedback

should be instrumental in the future study of homeostatic

systems, the design of perfectly adapting biosynthetic circuits,

and the development of therapeutics to combat disease.

EXPERIMENTAL PROCEDURES

Strain Background and Construction

Our haploid ‘‘wild-type’’ strain (DMY017) was derived from the DMY007 strain

(Mettetal et al., 2008), the only difference being that the SHO1 ORF was

excised via standard PCR-based methods. Our PP1-sensitive strain
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(DMY034) was created by deleting the HOG1 ORF from DMY017 (DMY030),

generating a single-base mutation of HOG1 on a plasmid using QuikChange

(Stratagene), and then inserting the resulting hog1-as ORF (Westfall and

Thorner, 2006) into DMY030 using PCR integration.

Fluorescence Microscopy and Image Analysis

Flow-chamber construction, cell preparation, image acquisition, and image

segmentation were all performed as described (Mettetal et al., 2008). For

ramp experiments, a syringe pump (Harvard Apparatus) dispensed media con-

taining concentrated NaCl into a graduated cylinder containing fresh media

agitated by a magnetic stir bar. A peristaltic pump pulled liquid directly from

the graduated cylinder into the flow cell. In both step and ramp experiments,

each cell in an experiment is assigned an index. To quantify the Hog1 response

of cell number i we compute the cell’s raw nuclear enrichment ri(t), defined as

the ratio of nuclear YFP intensity to whole-cell YFP intensity (a comparison of

different quantification methods is in the Supplemental Data, Figure S11).

Specifically, the raw nuclear enrichment is given by riðtÞ= <ynuclear >
<ywhole�cell>

, where

the numerator is the average of the ten brightest nuclear pixels—unlike the

average of the whole nucleus, this top-ten metric compensates for the dimin-

ishing ability to properly segment nuclear boundaries as Nrd1-RFP bleaches—

and the denominator is the average intensity within the entirety of cell i.

Defining ri(t) as a ratio of YFP intensities provides some correction for photo-

bleaching.

We define the Hog1 nuclear enrichment, hi(t), of cell number i by

hiðtÞ= riðtÞ
ri ðt0Þ � 1, where ri(t0) is the raw nuclear enrichment of cell number i before

osmostress. We estimate ri(t0) by the average raw nuclear enrichment for the

four pre-shock time points.

To quantify single-cell volume, we first compute the number of pixels ni(t)

that constitute cell number i as a function of time. This number is proportional

to the cell’s area, so assuming that the cell is a sphere, (ni(t))
1.5 is directly

proportional to the volume. We define the relative volume increase, vi(t), of

cell number i by viðtÞ=
� niðtÞ

ni ðt0Þ
�3

2 � 1. Here ni(t0) is the pre-shock number of pixels

of cell number i, which we estimate by taking the average of ni(t) over the four

pre-shock time points.

To correct the Hog1 and volume data from our +PP1 and +CHX experi-

ments, we subtract the mean trace (N R 3) in unstressed cells (i.e., an hour-

long experiment with only 0 M [NaCl]; Figure S5) from the mean trace in

stressed cells (N R 3). We assume the error in stressed and unstressed exper-

iments is independent, so we add the respective variances and then calculate

the standard error of our corrected mean trace.

Glycerol Assays

Glycerol levels were measured using the Free Glycerol Reagent Kit (Sigma).

For details about preparing cells and separately acquiring intracellular, extra-

cellular, and total glycerol levels, see the Supplemental Data.

SUPPLEMENTAL DATA

Supplemental Data include Supplemental Experimental Procedures, 11 fig-

ures, and raw data and can be found with this article online at http://www.

cell.com/supplemental/S0092-8674(09)00508-X.
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