
One of the most astounding findings of the Human 
Genome Project was that our genome contains as many 
genes as that of Drosophila melanogaster. This finding 
begged the question: how do you get one organism to 
look like a fly and another like a human with the same 
number of genes? One possibility is that the rich rep-
ertoire of non-protein-coding sequences found in the 
genomes of complex organisms adds many new parts 
with which to generate complexity1. However, a decade 
of research has put forward the rather different idea that 
instead of looking at the length of the parts list as the 
determinant of organismal complexity, we should look 
at how those parts fit together2,3. From this perspective, 
complexity arises from novel combinations of pre-existing  
proteins, and the ability to evolve new phenotypes rests 
on the modularity of biological parts.

In addition to natural examples of modularity3, 
strong evidence to support this post-genomic view of 
biology has come from the synthesis of new biological 
systems. Rational synthesis of biological systems can 
hint at the natural history of how a particular system 
came to acquire its properties4,5. More often, however, 
we use synthetic circuits to explore, in a hands-on 
fashion, the set of design principles that determine the 
structure and operation of biological systems.

The core aim of synthetic biology is to develop and 
apply engineering tools to control cellular behaviour by 
using precisely characterized parts, such as cis-regulatory 
elements, to achieve desired functions. An important 
direction, for example, has been to engineer cells with 
practical applications in the areas of bioremediation6,  
biosensing7 and biofuel production8,9, or even with 

potential clinical applications10–12. In this Review, however,  
we focus on how synthetic circuits help us to under-
stand how natural biological systems are genetically 
assembled and how they operate in organisms from 
microbes to mammalian cells. In this light, synthetic 
circuits have been crucial as simplified test beds in 
which to refine our ideas of how similarly structured 
natural networks function, and they have served as 
tools for controlling natural networks. We highlight 
the contribution of synthetic biology to the generation 
of increasingly quantitative descriptions of gene expres-
sion and signal transduction, to uncovering the diversity 
of behaviours that can arise from positive and negative 
feedback systems, and to advances in the rational con-
trol of spatial organization and cell–cell interactions. 
We pay particular attention to recent progress in using 
synthetic systems to uncover novel aspects of cell biol-
ogy, such as how cells decide to undergo apoptosis and 
the molecular basis for communication between the 
endoplasmic reticulum and mitochondria. We aim to 
show that synthetic biological approaches have given 
us many insights into how the simple building blocks 
that underlie complex natural systems work, in addition 
to basic tools with which to quantitatively characterize  
natural phenomena, both of which are crucial for the 
field to progress towards the analysis and complete  
control of natural circuits.

Quantitative descriptions of gene expression
The first step in assembling a biological circuit is to 
gather the component parts. In cells, circuits are accom-
plished by gene expression, and so a great deal of effort 
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Modularity
A property of a system such 
that it can be broken down into 
discrete subparts that perform 
specific tasks independently of 
the other subparts.

Bioremediation
The treatment of pollution with 
microorganisms.

Synthetic biology: understanding 
biological design from synthetic circuits
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Abstract | An important aim of synthetic biology is to uncover the design principles of 
natural biological systems through the rational design of gene and protein circuits. 
Here, we highlight how the process of engineering biological systems — from  
synthetic promoters to the control of cell–cell interactions — has contributed to our 
understanding of how endogenous systems are put together and function. Synthetic 
biological devices allow us to grasp intuitively the ranges of behaviour generated  
by simple biological circuits, such as linear cascades and interlocking feedback loops, 
as well as to exert control over natural processes, such as gene expression and 
population dynamics.
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Figure 1 | controlling the flow of information from DnA to proteins using 
synthetic elements. The diagram shows the transcriptional and post-transcriptional 
processes in gene expression that can be manipulated by synthetic biology tools, 
with some example applications. The differences in shading reflect variations  
in the strength of the input from the four regulators (for example, dark pink 
represents strong input, and light pink represents weak input). CR, complementary 
region to the RBS; RBS, ribosome binding site; TF, transcription factor.  
Promoter library diagram is reproduced, with permission, from REF. 24  (2007) 
Macmillan Publishers Ltd. All rights reserved. RBS accessibility diagram is 
reproduced, with permission, from REF. 38  (2004) Macmillan Publishers Ltd.  
All rights reserved. Aptamer diagram is reproduced, with permission, from REF. 34  
(2001) Elsevier.

Motif
A subcircuit that is embedded 
in a larger network and that is 
found to be statistically 
overrepresented in that larger 
network when compared with  
a random network with similar 
graphical properties.

in synthetic biology has gone into investigating the rules 
surrounding the expression of genes, particularly the 
processes of transcription and translation. The precise 
measurements afforded by artificially constructed sys-
tems allow us to transform qualitative notions of tran-
scriptional repression, transcriptional activation and 
post-transcriptional regulation into quantifiable effects 
— such as the precise relationship between promoter 
architecture and the rate of transcription, and the exact 
degradation rate specified by a given sequence motif.

Transcriptional regulation. The earliest contributions 
of synthetic biology to understanding natural biological 
processes include detailed, quantitative measurements 
of transcriptional regulation, which build on a founda-
tion laid 50 years ago in the groundbreaking work of 
researchers such as Jacob and Monod13. synthetic con-
structs have been used to map out the transfer function 
that relates the input concentrations of transcription 
factors (TFs)14,15 and inducers16 to the output concentra-
tions of reporter genes14,17,18, single mRnA molecules19,20 
or single proteins21. Many of these constructs have also 
been used to measure the mean output of the transcrip-
tional process and the higher-order moments (such as the 
variance) in organisms ranging from Escherichia coli and 
Bacillus subtilis to mammalian cells. single-molecule 
studies in these model organisms have directly estab-
lished that mRnA and proteins are produced in bursts 
of activity22.

A key question in the study of transcriptional regula-
tion is how the architecture of promoters affects tran-
scriptional activity. For example, below we describe 
several studies that have shown how the number and 
genomic positions of TF binding sites affect transcrip-
tional activity. Given the combinatorial control of gene 
expression, it is also crucial to study how multiple TFs 
interact with dnA and with each other to tune mRnA 
production. endogenous promoters use all of these 
parameters to specify either a desired transcription rate 
or a Boolean function, such as an And gate that allows 
transcription to occur only when all TF binding sites in 
the promoter are occupied.

Promoter library studies in bacteria and eukaryotes. 
The experimental breakthrough that allowed quantita-
tive measurements of the transcriptional power of dif-
ferent promoter architectures was the use of combinatorial  
promoter libraries23. libraries of promoters that drive 
reporter proteins, such as luciferase or fluorescent 
proteins, allow for an unbiased measurement of tran-
scriptional activity over the space of possible promoters 
— such an unbiased method can be used to ascertain 
rules that describe the responsiveness of a promoter to 
TFs. earlier work used randomly mutated promoters 
to draw inferences about the functional subparts of the 
promoter, such as the TATA box; by contrast, the con-
struction of combinatorial promoter libraries involves 
identifying specific operator sites that bind TFs and ran-
domly ligating them together in a way that shuffles their 
relative positions and copy numbers (FIG. 1). The studies 
highlighted below have combined such promoter librar-
ies and modelling to show that the strength of a promoter 
is determined largely by the position of TF binding sites 
with respect to key promoter elements, such as the TATA 
box, and with respect to each other.

The simplest case is to understand how the posi-
tioning of a single operator affects the expression of a 
promoter. In bacteria, operators are classified as being 
in the core, proximal or distal regions of the promoter 
(FIG. 1). Working in E. coli, cox et al.24 and Kinkhabwala 
and Guet25 independently observed that repressors can 
effectively repress expression from all three promoter 

R E V I E W S

860 | deceMbeR 2009 | vOluMe 10  www.nature.com/reviews/genetics

© 2009 Macmillan Publishers Limited. All rights reserved



Transfer function
A mathematical or graphical 
representation of the 
relationship between the input 
and output of a system.

Higher-order moment
For a probability distribution, a 
number that characterizes the 
shape of the distribution, as 
opposed to the mean.

Variance
The second-order moment  
of a probability distribution;  
it characterizes the width of  
the distribution.

Boolean function
A special class of transfer 
function that takes binary 
values as inputs, performs a 
logical operation and yields 
binary values as outputs.

Combinatorial  
promoter library
A collection of promoters that 
is constructed by randomly 
ligating together promoter 
subregions, such as the 
sequence between –35 and 
–10 from the start codon, 
taken from different promoters. 
Such random ligation of 
subregions allows for the 
combinatorial generation of 
novel promoters from a small 
number of parts.

Aptamer
A short nucleic acid or peptide 
sequence that specifically 
binds to a target molecule.

Riboswitch
A segment of an mRNA 
molecule that specifically binds 
a target molecule; riboswitches 
are closely related to aptamers.

subregions. cox et al. showed that the strength of 
repression is greatest when the repressor site is in the  
core region of the promoter, less strong when in  
the proximal region and weakest when in the distal 
region. conversely, activators work only in the distal site 
and have no effect in the core and proximal sites24. both 
studies go on to develop simple models of promoter 
activity by taking into account the binding reactions of 
TFs to dnA in thermodynamic equilibrium.

It was expected that the situation would be far more 
subtle in eukaryotes, in which chromatin structure can 
strongly influence expression levels26. However, even in 
Saccharomyces cerevisiae, 49% of the variation in expres-
sion in the promoter library could be explained by a 
simple thermodynamic model that incorporated just 
TF–dnA and TF–TF interactions27 — interactions that 
were also suggested in theoretical work28. More surpris-
ingly, Gertz et al. provided evidence that weak binding 
sites, which are important for bacterial transcription, 
can also be important in eukaryotes. Focusing on the 
TF multicopy inhibitor of Gal1 (Mig1), Gertz et al. 
showed that repression from one weak and one strong 
Mig1 binding site can be as effective as two strong Mig1 
binding sites. This is particularly crucial given that 
24% of all yeast promoters contain putative weak Mig1 
binding sites.

The promoter library studies open the way to con-
sidering some general questions in transcriptional 
control. For example, the theoretical frameworks in the 
E. coli and yeast studies differ slightly: the E. coli stud-
ies do not require TF–TF interactions and frame the 
issue mostly in the language of boolean logic, whereas 
the yeast studies make heavy use of TF–TF interactions, 
particularly in the analysis of weak binding sites. Future 
single-molecule studies of transcriptional control can 
help to resolve the relative importance of TF–dnA and 
TF–TF interactions in generating transcriptional activ-
ity. Furthermore, the fact that simple equilibrium bind-
ing explains much, but not all, of the effect of promoter 
architecture on expression level suggests that the next 
goal should be to track down the source of the remain-
ing variation. Genomic location can make an important 
contribution to expression and expression fluctua-
tions29, perhaps by affecting local chromatin context. 
Knowing how to apportion the variation to these differ-
ent effects will be particularly helpful when these studies  
are extended to mammalian systems, in which there is 
considerably less control over where synthetic transgene 
constructs are integrated into the genome.

Post-transcriptional and post-translational regula-
tion. Although much of the early work in synthetic 
biology focused on transcriptional regulation, sub-
stantial progress has also been made in incorporating 
post-transcriptional effects on RnA and proteins into 
synthetic circuits. At the RnA level, for example, muta-
genesis screens based on synthetic constructs have been 
used to determine the sequences that are recognized by 
RnA-editing enzymes to change adenine into inosine30. 
Furthermore, as regulatory RnAs have been increasingly 
recognised as important drivers of gene expression, 

synthetic circuits have included elements from the RnA 
interference pathway31, aptamers32–34 and riboswitches35,36 
to control the flow of genetic information37.

synthetic circuits that involve enzymatic RnAs have 
mostly been developed as platforms for tuning gene 
expression, but many of these platforms can easily be 
extended to understand natural biological phenom-
ena. In the study by Grate and Wilson, for example, 
an aptamer is used to control the expression of cyclin 
b2 (clb2), a key regulator of the cell cycle, in a tetra-
methylrosamine (Tmr)-dependent manner 34. The 
authors slowed the speed of the cell cycle by adding Tmr; 
this method can be useful for measuring how the level of 
clb2 affects the speed at which the cell cycle progresses 
while keeping all transcriptional feedback constant.

synthetic studies have also directly modified how 
mRnA is translated into proteins and how long pro-
teins persist before being degraded. several experi-
ments in bacterial systems, especially those studying 
the stochastic nature of gene expression, have altered 
the translation rate by mutating ribosomal binding sites 
(Rbss)17,38. Apart from showing another possible layer 
of quantitative regulation of gene expression, studies 
involving Rbs variants provided early evidence that 
E. coli cells could tune the stochasticity in the expres-
sion level of a given gene independently of its mean. 
lastly, Grilly et al. have developed a circuit that controls 
the degradation of a target protein using the clpXP pro-
tease machinery from E. coli39. Typically, models of gene 
expression treat protein degradation as an exponential 
decay process, with the decay being due to the growth of 
cell volume over time. Regulated proteolysis, however, 
can depend on the formation of enzyme–substrate com-
plexes as intermediates on the way to degradation. In 
finding that the degradation follows Michaelis–Menten 
kinetics, Grilly et al. made one of the few quantitative 
comparisons of specific protease activity with models 
of enzyme kinetics.

Taken together, these results point to some interest-
ing similarities between transcription and translation 
— both are inherently noisy processes that can be quan-
titatively modulated by specific sequence elements, such 
as Rbss and protease-recognition sites. Future studies 
can use the ideas and methods from the study of tran-
scription, such as combinatorial library approaches, to 
systematically explore the process of translation.

Integrating transcriptional and post-transcriptional 
control. The two approaches described above — using 
a natural inducible promoter or engineering specific 
promoter architectures to tune transcriptional activity, 
and using specific sequence sites to tune translational 
yield — can be combined to achieve precise and flex-
ible control over gene expression17,31. An example of this 
combined approach for studying natural processes in 
mammalian cells can be found in recent work in which 
Tet- and lac-controlled regulation was adapted and 
combined with RnAi for use in Hela cells40 (FIG. 2).

As synthetic biology begins to create more realistic  
systems that contain many moving parts, demand will 
increase for circuits that control every step of the process 
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Basal expression
The level of transcription  
that occurs in the absence  
of an inducer.

Directed evolution
A cyclic sequence of steps, 
including modification, 
selection and amplification. It 
is used, typically in vitro, to 
enrich for proteins or nucleic 
acids that show properties that 
are desired by the researcher 
but that are not necessarily 
found in nature.

Metabolic flux
The rate of turnover  
of metabolites in a  
metabolic pathway.

Allosteric site
A region of an enzyme that is 
physically distinct from the 
active site and that can induce 
conformational changes, 
usually by binding small 
molecules, to affect the 
accessibility or efficiency  
of the active site.

that turns dnA sequences into proteins. such layered 
circuits can help to show why certain regulatory schemes 
are used over others for controlling gene expression 
in a given context. For example, gene expression in 
natural systems can be attenuated by epigenetic silenc-
ing, transcriptional repressors or post-transcriptional  
regulators, such as microRnAs (either alone or in con-
cert with other molecules); this leads to the questions 
of why a system uses one system rather than the other, 
and to what extent different layers of regulation generate 
collective effects that no one layer can accomplish. One 
area that will be increasingly under study, and that may 
help to unravel the issues surrounding layered circuits, 
is the dynamics of the different steps that contribute 
to expression; the studies highlighted above almost 
exclusively focus their attention on steady-state behav-
iour. Although intuition tells us that TFs act slowly 
compared with post-transcriptional elements, such as 
regulatory RnAs (which presumably do not have to be 
transported back to the nucleus and then locate a spe-
cific genomic locus), there is currently a lack of data 
that would enable us to turn these intuitive notions into 
quantitative facts.

Rewiring genetic and signalling pathways
engineering cellular pathways has allowed insights into 
two key properties: the precise measurement and con-
trol of the input–output relationship of a pathway, and 
the functional architecture of the pathway constituents 
themselves. In particular, engineering signalling path-
ways has provided insights into the functional signifi-
cance of specific protein sequences and structures by 
showing exactly which protein domains and which 
amino acid residues are responsible for mediating  
specific interactions along the pathway.

The challenges of rewiring pathways. Initially, path-
way engineering was primarily explored in the con-
text of metabolism41. Metabolic engineering typically 
involved the use of genetic screens and directed evolution 
to maximize targeted metabolic fluxes. synthetic efforts 
in boosting metabolic fluxes have begun to pay off, as 
shown in a recent study in which a synthetic protein 
scaffold was used to draw metabolic enzymes spatially 
closer to each other42 — however, it should be noted 
that this study did not involve any pathway rewiring. 
by contrast, the rational rewiring of pathways involves 
specific manipulations of the components of the system 
to achieve a desired outcome. The most crucial aspect 
of protein and gene structure that synthetic biologists 
use to rewire pathways is the inherent modularity of 
many proteins43 (signalling proteins, for example, typi-
cally have dedicated domains for recognizing binding 
partners that act independently of other functional 
domains). Most rewiring studies therefore focus on sig-
nal transduction and genetic cascades (BOX 1). There are 
fewer examples of achieving metabolic control through 
specifically designed changes in protein sequence44,45. 
changes in the structure of an allosteric site in a meta-
bolic enzyme are more prone to alter the active site than 
changes in the allosteric site in a signalling protein46. 

Nature Reviews | Genetics

IPTG

baxlacI shRNAtetR

Re
la

tiv
e 

an
ne

xi
n 

V
 o

r P
I r

et
en

tio
n

0.0025 1,0002.5

IPTG (µmol)

0

3

2.5

2

1.5

0

b

a

Induced apoptotic cells (annexin V)
Induced dead cells (PI)
Non-transfected cells (annexin V)
Non-transfected cells (PI)

Transcriptional
Post-transcriptional

Figure 2 | An integrated transcription and translation 
circuit for controlling gene expression in mammalian 
systems. a | The output of the genetic switch created by 
Deans et al.40 can be monitored by a GFP reporter or a 
gene of interest; here, the gene of interest that we focus 
on is bax, a pro-apoptotic gene. bax is under the 
transcriptional control of the Lac repressor (LacI) and 
under the translational control of a short hairpin RNA 
(shRNA), which itself is under transcriptional control  
of the TetR repressor. In the ‘off’ state, LacI inhibits 
transcription of bax. Additionally, LacI inhibits transcription 
of the tetR repressor; this allows the transcription of  
the shRNA, which goes on to inhibit translation of bax  
by cleaving its mRNA. The result of this dual-layered 
repression is the creation of an ‘off’ state with  
complete repression; in the initial characterization, each 
mode of repression alone reduced reporter levels by 
about 80%, leaving a basal expression of 20%, but the 
combination resulted in >99% repression. The circuit 
can be tunably activated by adding varying amounts of 
isopropyl-β-d-thio-galactoside (IPTG), which blocks the 
effects of LacI. b | The fraction of cells that undergo 
apoptosis is determined by the Bax expression  
levels. Data obtained by tuning Bax with IPTG, as 
described above, offer some tantalizing clues as to  
the fundamental molecular biology underlying the 
apoptosis pathway. In particular, the data are consistent 
with the idea that the decision to undergo apoptosis 
(assessed by the retention of propidium iodide (PI) dye 
(which stains dead cells) relative to the retention of 
annexin V (which stains apoptotic cells) compared with 
the transfection protocol alone) is determined by 
reaching a threshold level of Bax. Although the Bax 
threshold data are not conclusive, the result shows the 
power of this technique, which allows the rational 
tuning of gene expression and the examination of the 
consequences. Part b is reproduced, with permission, 
from REF. 40  (2007) Elsevier.
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Box 1 | Rationally rewiring the input–output relationship of signalling pathways

As the bottom left of the figure shows, membrane proteins (light blue) can 
be engineered to have sensors (green) and can be made to interact with 
adaptors (red), which can in turn be made to interact with other adaptors 
(dark blue). More formally, the input–output relationship can be controlled 
in two ways: by changing the stimulus that a receptor is triggered by  
(shown in part a of the figure) or by changing the transducing molecules that 
the receptor uses to pass the information from the environment to the 
cellular interior (shown in parts b and c).

chimeric receptors
Chimeric receptors are an example of the first type of change. As shown in 
part a, a chimeric receptor can be made so that, for example, a light signal 
triggers the salt signal transducer OmpR (the ‘rewiring’ is depicted as a red 
arrow) instead of its normal transducer Rcp1 (wild-type interactions are 
depicted as black arrows). Indeed, in principle, chimeric receptors can be 
made so that any stimulus triggers any response regulator (other possibilities 
are shown as grey arrows). Although chimeric receptors have been used 
previously104, chimeric photoreceptors in particular are exceptional  
for allowing much higher sensitivity measurements and for avoiding  
crosstalk effects.

In the case of Escherichia coli, the rewiring is accomplished by transcrip-
tionally fusing the cytosolic signal transduction domain of the pathway 
sensor — the histidine kinase domain of EnvZ — to cyanobacterial 
phytochrome 1 (Cph1), resulting in a system in which the response regulator 
of EnvZ, OmpR, can be triggered by light50. The pathway activity is measured 
by placing the lacZ gene, the product of which creates a black compound, 
under the control of the OmpR-depdendent ompC promoter.

The response to a light gradient input serves as a precise measurement of 
the transfer function of the pathway (example in part a). The transfer curve 
seems to indicate that the pathway operates in a threshold linear manner, 
although whether this is due to the phytochrome sensor rather than the 
pathway needs to be explored. Such thresholding could serve to protect  
the cell from overreacting to small signals.

Shimizu-Sato et al. applied similar principles in yeast, but instead fused a 
galactose 4 (Gal4)-binding domain (GBD) to the red-light-absorbing 
phytochrome Pr and a Gal-activating domain (GAD) to the the binding 

partner of Pr, phytochrome interacting factor 3 (PIF3), therefore bypassing 
the Gal signalling cascade51. Any gene of interest can therefore be controlled 
by placing it under the control the gal1 promoter and exposing the cells to 
red light instead of Gal.

swapping specificity-determining residues
Once activated, the signal from the sensor must be specifically transduced 
to affect specific downstream processes. By studying covariance among 
residues from interacting proteins, statistical scores, such as mutual 
information, can be used to predict which residues determine the specificity 
of the interaction. As shown in part b, specificity-determining residues from 
the protein RstB (shown in bold) were substituted into EnvZ, resulting in  
an EnvZ–RstB chimeric protein. As a result, phosphotransfer occurred 
between EnvZ–RstB and RstA rather than OmpR (which is the normal partner  
of EnvZ)63.

engineering adaptor proteins
Finally, a great deal of signal processing takes place in between the 
triggering of a sensor by the environment and the output of the pathway, 
especially in eukaryotes. One major intermediate in eukaryotes is the class 
of proteins known as guanine exchange factors (GEFs), which control 
morphological pathways. Yeh et al. swapped wild-type GEFs that control the 
formation of filopodia and lamellipodia for synthetic GEFs that could be 
induced by the small molecule forskolin and that could generate novel 
morphological outputs67 (part c). Specifically, they substituted an 
autoinhibitory domain in the wild-type GEFs with a protein kinase A 
(PKA)-responsive inhibitory domain, PDZ. Placing an endogenous pathway 
under tunable control allows crucial aspects of cell biology to be 
characterized in quantitative detail. Interestingly, Yeh et al. found that the 
morphological output was only manifested probabilistically — it is  
the fraction of cells that display either filopodia (shown here) or 
lamellopodia (not shown) that increases with increasing forskolin. GEF1*, 
synthetic GEF1. Part a, lower panel, is reproduced, with permission, from 
REF. 50  (2005) Macmillan Publishers Ltd. All rights reserved. Part b  
is modified, with permission, from REF. 63  (2008) Elsevier. Part c is 
reproduced, with permission, from REF. 67  (2007) Macmillan Publishers Ltd. 
All rights reserved.

R E V I E W S

nATuRe RevIeWs | Genetics  vOluMe 10 | deceMbeR 2009 | 863

© 2009 Macmillan Publishers Limited. All rights reserved



Osmotic shock
A sudden change of the 
osmotic pressure gradient 
generated by the balance of 
the concentration of dissolved 
molecules inside and outside 
the cell.

Two-component system
The dominant architecture  
of environmental signal 
transduction systems in 
bacteria. It consists of a sensor 
kinase that transforms the 
environmental signal to  
a phosphate signal, and a 
cognate response regulator 
that further transmits the  
signal to the ultimate  
effector molecules.

Microfluidic device
A device in which fluids are 
conveyed to samples in 
channels with diameters in the 
order of 1 μm; these chambers 
can be used to precisely and 
dynamically control the 
microenvironment to which 
cells are exposed.

Bode plot
A special class of transfer 
function that relates the 
frequency of the input, such  
as a stimulus that triggers a 
signalling cascade, to the 
output of the system, such as 
the amplitude of the response.

Scaffold protein
An element of a signal 
transduction pathway that 
simultaneously binds multiple 
members of the pathway. 
Scaffold proteins increase the 
local concentrations of 
pathway proteins and therefore 
increase the probability of 
them interacting.

Mutual inhibition
A network architecture that 
consists of two interacting 
pathways in which the output 
of each pathway inhibits the 
activity of the other pathway.

Kinetic insulation
A mechanism in which a signal 
is transduced through a 
particular pathway based  
on the temporal profile of  
the signal; for example, a 
transient signal can be 
interpreted by the cell as  
using one particular pathway, 
whereas a slowly varying signal 
can be interpreted as using a  
different pathway.

This property allows for the regulation of metabolic 
fluxes by effects such as allostery, but the relative lack of 
modularity also makes it difficult to forward engineer 
new behaviours by altering one domain but leaving the 
others unchanged.

even in signalling systems, researchers are presented 
with severe challenges. Among the major limitations in 
understanding the signal propagation characteristics 
of many pathways is confusion over what cue triggers 
the cascade and whether the cue affects other processes 
that are taking place in the cell. For example, many 
organisms have dedicated signalling systems for relay-
ing information about an osmotic shock to the cell, but 
the presence of abundant osmolyte will affect numerous 
processes besides signalling, such as global TF binding47. 
The examples described below show how techniques 
that both specifically and sensitively activate a selected 
cascade can allow researchers to focus on pathway 
behaviour independently of such off-target effects.

Manipulating the sensors. One of the most direct ways 
of rewiring the input–output relationship of a pathway 
is by directly changing the cue that the pathway sensor 
responds to. If the cue is chosen so that its level can be 
directly modulated, the pathway transfer functions can 
be measured in a similar way to the method described 
above for promoters. For example, Armbruster et al. 
generated a G protein-coupled receptor that responded 
to a pharmacologically inert compound, which could 
then be titrated to measure the pathway response48, 
and Anderson et al. engineered sensors that can detect 
changes in tumour-related microenvironments12. 
Alternatively, the ligands that drive pathway activ-
ity can be manipulated: cironi et al. linked together 
epidermal growth factor (eGF) and mutated forms 
of interferon-α 2a (IFnα2a) so that the only cells that 
could correctly respond to the IFnα2a signal were those 
that co-expressed the eGF receptor49.

A particularly striking example of how sensor  
rewiring can shed light on the operation of a cascade 
in vivo in a sensitive and specific manner can be found in  
the use of chimeric photoreceptors (BOX 1). Two stud-
ies used light itself as the cue to drive a signalling 
system50,51; this approach is unlike traditional imple-
mentations of light-driven systems52–54, such as those 
that use light to activate a small molecule, which then 
activates a desired biological process55. levskaya et al. 
engineered the E. coli envZ–OmpR two-component  
system to respond to light, whereas shimizu-sato 
et al. fused a phytochrome and its binding partner to 
selected pathway proteins in the S. cerevisiae galactose 
pathway. levskaya et al. proceeded to map out the 
input–output transfer function with high precision by 
exposing a lawn of rewired bacteria to a light gradient. 
The measurements of transfer function in the bacteria 
suggested that a threshold level of the environmen-
tal cue is needed before pathway activity is triggered. 
Although careful titration of an osmolyte would have 
allowed precise measurement of the transfer func-
tion, such as through the use of microfluidic devices56, 
matching the sensitivity of a simple light gradient is 

difficult to accomplish. Furthermore, matching the 
specificity afforded by using light to drive pathway 
activity is probably impossible. However, given the 
ease with which we can deliver precisely controlled 
light signals to cells compared with delivering chemi-
cal signals, the levskaya et al. and shimizu-sato et al. 
studies can be easily extended to tasks such as meas-
uring Bode plots, as was recently done for the yeast 
osmo-response system57,58.

Manipulating sensor–transducer interactions. swapping 
the sensor in a signalling pathway is a way to engineer the  
input side of the input–output relationship, whereas 
changing the identity of the molecules that carry the 
signal from the sensor to downstream effectors can 
affect the output side. In fact, given the high degree of 
sequence homology between many sensor–transducer 
pairs, there is great interest in developing a detailed 
description of sensor–transducer interactions to under-
stand the multiple ways in which pathways prevent 
crosstalk59 — for example, by using scaffold proteins60, 
mutual inhibition61 and kinetic insulation62.

This is the basic strategy that was followed by skerker 
et al. to rewire the envZ–OmpR system63. This study 
made heavy use of the large amount of sequence data 
available for two-component systems to computation-
ally detect individual amino acid residues that co-vary 
between cognate pairs. specifically, they calculated the 
mutual information between all possible pairs of resi-
dues from sensors and response regulators and found 
the pairs that maximized mutual information. These 
pairs were thought to be the specificity-determining 
residues. Remarkably, they then substituted a given 
sensor’s specificity-determining residues for a differ-
ent sensor’s specificity-determining residues, keeping 
all other residues intact, and thereby activated the lat-
ter sensor’s pathway with the former sensor’s trigger. 
Furthermore, they performed the same rewiring feat 
by substituting specificity-determining residues in the 
response regulator (BOX 1).

For now, the relative paucity of sequence data pre-
cludes the use of this technique for other systems, such 
as eukaryotic homologues of two-component systems. 
nevertheless, this study provides a framework that goes 
beyond crude domain-level protein engineering all the 
way to molecular details. A particularly enticing pos-
sibility is the unification of a bioinformatically guided 
rewiring approach with data on crystal structure, espe-
cially structures of protein–protein complexes. using 
a crystal structure of a complex made up of proteins 
similar to envZ and OmpR, skerker et al. showed that 
the specificity-determining residues for the sensor 
kinase and the response regulator probably occur at the 
interface of the two proteins, which suggests that the co-
evolving residues interact physically rather than allos-
terically. combining structural and rewired pathway 
data can indicate how to explore further the numerous 
systems in which docking site interactions have been 
identified64,65. synthetic pathways and crystallography 
together can be key in unravelling the fundamental bio-
physical interactions that underlie signal transduction.
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Boolean truth table
The table of inputs and  
outputs that specifies a certain 
Boolean function.

Bistable
A property of a dynamical 
system in which two discrete 
states of the system are  
stable; in a biological setting, 
bistability implies that a 
system will persist in a given 
state even if the stimulus  
that drove it to that state  
is removed.

Manipulating the intermediate transducers. Altering the 
way in which a sensor interacts with its environmental 
cues and its immediate downstream signalling partner 
is the most obvious way to manipulate signal transduc-
tion. The next most obvious way is to follow the signal 
and tackle the intermediate transducers in the pathway. 
For example, Howard et al. took the pro-apoptotic Fadd 
death domain and fused it to Grb2 and shcA, which are 
members of the receptor tyrosine kinase (RTK) path-
way; as a result, RTK-triggered signals could be used to 
drive apoptosis66.

At the adaptor level, one key target for pathway engi-
neering is the family of guanine nucleotide exchange 
factors (GeFs) that regulate the actin cytoskeleton 
through the Rho family of GTPases67. Yeh et al. exploited 
the presence of an autoinhibitory domain in GeFs that 
can be swapped for an inhibitory domain that is under  
the control of a small molecule. The authors swapped the  
wild-type GeFs that control the formation of filopo-
dia and lamellipodia for synthetic GeFs that could be 
induced by the small molecule forskolin (BOX 1). They 
then ‘daisy-chained’ two GeFs in series and showed 
that the combined, and therefore longer, GeF system 
was more sensitive to inducers and displayed a sharper 
separation between ‘on’ and ‘off ’ states. These results are 
in line with previous synthetic studies that examined the 
sensitivity and sharpness of transcriptional cascades as 
the cascade length was varied68. As seen above in the 
case of apoptosis in the RnAi switch, placing an endo-
genous pathway — morphological in this case — under 
tunable control allows crucial aspects of cell biology to 
be characterized in quantitative detail.

Connecting pathway rewiring to evolvability. Another 
interesting and complementary theme that emerges 
from rewiring studies is how differently rewired circuits 
can yield the same output. The library of combinatorially  
synthesized gene networks constructed by Guet et al. 
contains instances of systems that have different con-
nectivity properties but the same Boolean truth table, and 
those that have the same connectivity properties but dif-
ferent boolean truth tables69. Along these lines, Isalan 
et al. showed that randomly rewiring the transcriptional 
network of E. coli results in growth defects in only 5% 
of the rewirings, a level of tolerance that is difficult to 
replicate in man-made systems70. The phenomenon 
of a circuit being rewired but having its logic main-
tained seems to have occurred in the evolution of the 
mating type switch in yeast — alpha genes in Candida 
albicans activate the alpha mating type, whereas alpha 
genes in S. cerevisiae repress the alpha mating type71. 
Theoretical studies on the evolvability of biochemical 
networks suggest that networks that are wired differ-
ently but produce the same output constitute a ‘neutral 
space’, which allows flexibility in the design of networks 
and therefore eases the way for phenotypic changes to 
take place72,73. continuing on the theme of using rewired 
pathways to highlight system flexibility, Antunes et al. 
transplanted a bacterial two-component system from 
E. coli into the eukaryotic plant Arabidopsis thaliana. 
The bacterial transcriptional activator managed to 

cross into the nucleus to drive gene expression, which 
has fuelled speculation that pathway evolution can be 
driven by horizontal gene transfer between organisms 
from different kingdoms74.

Synthetic feedback networks
synthesis has uncovered several rules that govern how 
dnA is turned into proteins and how proteins inter-
act to generate diverse phenotypes without the need 
for a combinatorial explosion in the number of genes. 
However, in the examples considered above, the flow 
of information is largely an ordered sequence of events: 
diverse outcomes in these systems resulted from combi-
natorial rearrangements of modular parts. Furthermore, 
the complexity of naturally occurring cellular networks 
is often dominated by feedback and feedforward loops. 
by incorporating these features, synthetic circuits have 
taught us about the dynamics and systems-level functions  
of more complex molecular interactions.

Initial work in this area primarily focused on the 
identification75 and experimental characterization of 
simple motifs that occur frequently in genetic and sig-
nalling networks. In this first generation of synthetic 
biology studies, the mimicking of natural systems has 
confirmed theoretical expectations that positive feed-
back systems can be bistable76–79 and that negative  
feedback systems are noise resistant80 and can speed up  
circuit dynamics81. More recently, engineered feedback 
loops have been extended to signalling and metabolic 
systems: the generation of novel protein–protein and 
genetic interactions has allowed the exploration of 
how signalling pathways set their sensitivity to inputs 
and how they tune their kinetics82,83. One concrete way 
in which synthetic circuits are helping us to approach 
more complicated interaction networks is by serving as 
benchmarks against which theoretical and computational  
tools can be tested84,85 (BOX 2).

Oscillatory behaviours. Here, we give an example of 
how the above techniques can be used to arrange bio-
logical parts into a biologically relevant dynamic system: 
an oscillator (BOX 3). cells display a range of oscillatory 
behaviours. some oscillators have tunable periods, such 
as the dependence of the cell cycle period on the nutri-
ent levels available, whereas others are more robust to 
changes in parameters, such as the circadian oscillator. 
examples include oscillatory signalling from nuclear 
factor-κb, which oscillates to control gene expres-
sion86, and the p53–murine double minute 2 negative  
feedback loop, which oscillates to drive the dnA  
damage response87.

How can a robust but tunable oscillator be con-
structed in a living cell? The construction of in vivo 
oscillators provides an example of how the interplay 
between the analysis of naturally occurring systems, 
modelling and the construction of synthetic systems can  
yield insights into biological phenomena. The story 
began with the observation that the simplest oscilla-
tor design, a delayed negative feedback loop, could not 
sustain oscillations beyond a small number of periods 
when operating in a cell. Instead, naturally occurring 
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Bayesian inference
A method in which 
observations are used to 
calculate the probability that a 
particular hypothesis about the 
data is true, such as whether 
two genes in a network interact.

oscillators hinted at the crucial role of interlocking posi-
tive feedback in maintaining a robust oscillator, and this 
system was used in the genetic oscillators recently syn-
thesized by stricker et al.88 and Tigges et al.89 (BOX 3).

As the studies in BOX 3 show, oscillators are among 
the simplest in vivo systems that can be used to under-
stand interactions between different types of feedback 
loop. simple motifs are broadly understood by systems 
biologists, but the interactions between these motifs are 
not. It is worth considering that even for interlocking 
positive and negative feedback loops, multiple behav-
iours are possible when the parameters of the system are 
varied and stochastic effects are included. For example, 
in the yeast galactose-utilization pathway, the negative 
feedback loop effectively counteracts the positive feed-
back loop and limits the parameter space over which the 
system is bistable90. beyond two or three loops, however, 
we are usually at a loss to describe the system — espe-
cially a natural one that may contain even more inter-
actions than are being accounted for. synthetic circuits 
are helping us to systematically understand how motifs 
interact to generate ever-richer behaviour.

The ultimate goal: spatiotemporal control
If there is one context in which all of the various biologi-
cal processes that are tackled by synthetic biologists come 
together it is in the engineering of spatiotemporal inter-
actions, both intracellular and intercellular. engineering 

cell–cell interactions in a rational manner requires the 
manipulation of communication devices (signalling 
pathways), the specification of the desired transcrip-
tional responses and their strength using promoters, and 
the arrangement of these elements in a circuit architec-
ture that robustly encodes the desired function. If we 
hope to systematically improve our understanding of the 
functional compartments of the cell, cell development 
and ecology, it is imperative that we integrate the lessons 
learned from diverse areas of synthetic biology.

Uncovering intra- and intercellular processes in an 
organism. Perhaps the most striking feature of the 
eukaryotic cell is its organization into functional subcom-
partments, including the nucleus for genetic material,  
mitochondria for respiration and the endoplasmic  
reticulum for protein production. For the eukaryotic 
cell to accomplish its tasks, the behaviour of these com-
partments must be coordinated in space and time. A 
recent study in S. cerevisiae has yielded new insights 
into how mitochondria and the endoplasmic reticu-
lum communicate by using a genetic screen coupled 
with a synthetic construct that is designed to specifi-
cally tether the two organelles91. Kornmann et al. found 
that the synthetic tether complemented mutations in 
maintenance of mitochondrial morphology 1 (Mmm1), 
mitochondrial distribution and morphology 10  
(Mdm10), Mdm12 and Mdm34, therefore identifying 
these four proteins as constituents of a complex that 
ties the organelles together and allows the exchange of 
phospholipids (which are needed by the mitochondrial 
membranes) and calcium (which acts as a signalling 
molecule between the two).

Two properties that we still cannot reliably engineer 
are the dynamics of a circuit and spatial control. both 
of these behaviours have one major biological process 
in common: development. In anticipation of one day 
tackling developmental processes and other intercel-
lular pathways, some groups have designed circuits to 
spatiotemporally control gene expression. For example, 
using a network that mimicks naturally occurring feed-
forward circuits, basu et al. have designed cells that can 
respond to the signal acyl-homoserine lactone (AHl) 
from nearby cells but ignore equal concentrations of this 
signal from faraway cells92. This feat is accomplished 
by a key property of the feedforward network in the 
signal-receiving cells — it responds not only to the con-
centration of the signal but also to the rate of increase of 
that concentration. signal-sending cells that are near to 
signal-receiving cells increase the rate of AHl concen-
tration more rapidly than signal-sending cells that are 
distant from signal-receiving cells. basu et al. built on 
this work to create a circuit that could respond to only a 
narrow range of AHl signals, and in so doing recapitu-
lated another feature of developmental processes — the 
ability of cells to behave like a band filter93.

The exquisite coordination that is a hallmark of 
development almost certainly requires the use of net-
works that can act as genetic timers and counters. 
Friedland et al. have provided a design for a network 
that constitutively pumps out GFP mRnA transcripts 

 Box 2 | Synthetic circuits aid the modelling of biological systems

One of the most important functions of synthetic circuits is in building and refining 
analytic and computational models of biological systems. When modelling a gene or 
protein circuit, a series of choices must be made. The first choice is the scale at which 
the input–output relationship is to be measured — typically this choice boils down to 
whether one wants to view the system as a Boolean logic operator or a dynamical 
system. The dynamical system framework can be further broken down along two 
dimensions, depending on whether spatial or stochastic effects need to be taken into 
account. Spatial effects can usually be ignored when the biochemical reactions that 
make up the system occur on timescales that are slower than the time it takes to mix 
the reactants by diffusion. Stochastic effects can usually be ignored if the dynamical 
variables of the system can be represented as continuous rather than discrete 
entities — that is, when we are interested in the concentrations of a molecule rather 
than the number of molecules. Synthetic circuits have been used to explore all of 
these issues in some detail.

Until recently, the choice of modelling methodology was based on a best guess of 
which effects were important to include, along with post-hoc comparison of the 
model with data. Detailed comparisons of different modelling paradigms have been 
lacking. Cantone et al.84 and Ellis et al.85 have offered the field some guidance through 
the introduction of benchmark networks — that is, networks that have defined 
topologies and that interact only minimally with endogenous systems — against 
which to test proposed modelling methods. In particular, Cantone et al. created a 
relatively sophisticated synthetic transcriptional network of five genes that serves as 
an ‘oracle’ that is queried by different perturbations (such as overexpression of the 
network genes and induction by transcriptional inducers). Finally, they tested 
methods based on ordinary differential equations, Bayesian inference and information 
theory to uncover the connectivity of the network; they found that differential 
equation and Bayesian inference approaches were better at uncovering the functional 
relationships than the information theory-based approach, as expected for such a 
small network. Cantone et al. therefore provide an example of how synthetic circuits 
can be helpful in refining our understanding of large-scale biological systems by 
improving the algorithms we use to analyse genomic and proteomic data sets.
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Box 3 | How to build a robust genetic oscillator

The simplest way to achieve oscillation is through the use of a delayed 
negative feedback loop105. Imagine that a system is constructed with two 
genes, A and B, and that protein A activates the transcription of B, whereas 
protein B inhibits the transcription of A. Turning on gene A leads to a build 
up of protein A, but also of protein B. After some time, enough protein B 
builds up to cause the levels of protein A to decrease: this results in a 
decrease in the levels of protein B, which allows the levels of protein A to 
rise, and so on.

However, when a simple negative feedback circuit, such as the one 
described above, is constructed, the oscillations are in general not robust. 
In the repressilator built by Elowitz and Leibler106, which consists of a cycle 
of three transcriptional repressors and a fluorescent protein read-out (see 
the figure, part a), the oscillators fall out of phase and ‘damp out’ after a 
small number of cycles. Swinburne et al. engineered an autoinhibitory 
circuit in which the delay timescale in the negative feedback was set by the 
length of an intron engineered into the construct (not shown); they also 
found that even for a given intron length, the oscillation period varied 
widely from cell to cell107. The source of the damping in both cases can be 
found in the stochastic nature of gene expression: random amounts of 
protein produced at random times result in uncoordinated behaviour that 
causes the components that make up the oscillator to fall out of phase. The 
synthetic genetic oscillator was missing a key feature.

A strong hint as to the identity of that key feature was provided by the 
analysis of naturally occurring oscillators. In particular, the cell cycle 
oscillator contained interlocking positive feedback loops in addition to the 
core negative feedback loop that was generally assumed to generate  
the oscillations (part b). Experiments in the cell cycle of frog embryos, along 
with computational simulations, suggested that the positive feedback loops 
could stabilize two states that the system would cycle between through the 
negative feedback loop108–110, creating a relaxation oscillator. Could 
something as simple as positive feedback be responsible for robustness in 
genetic oscillators in organisms as diverse as bacteria and mammals? And 
can positive feedback enable cells to independently tune the amplitude  
and frequency of the oscillations?

Two recent studies, in agreement with earlier work111, indicate that 
coupling positive and negative feedback is indeed sufficient to ensure 
stable oscillations. Stricker et al. implemented a transcriptional circuit in 
Escherichia coli that drives a fluorescent reporter88 (part c). The circuit 
integrates the output of an autoregulatory positive feedback loop driven 
by the araC gene and a negative feedback loop in which AraC turns  
on lacI expression, which leads to araC transcriptional repression.  
Tigges et al., working in mammalian cells, used a tetracycline-regulated 
transctivator (tTA) to drive transcriptional positive autofeedback and 
negative feedback mediated by tTA-dependent transcription of a tTA 
antisense RNA89; the state of the circuit is measured by the tTA-dependent 
transcription of GFP. The plots in part c show the steady cycling of the 
fluorescent reporter levels in each circuit over time.

Experimentally, Stricker et al. observed that the dual feedback oscillator 
was robust to a number of perturbations, including changes in inducer level 
and temperature. These features could not be adequately described by their 
initial modelling of this circuit112 — it was only through the addition of 
various biological steps in the negative feedback loop, such as transcription 
factor–DNA binding and multimerization, that the model could reproduce 
the robustness of the oscillator to parameter changes. The authors concluded 
that from the point of view of the operation of the oscillator, what matters  
is not the details of which processes make up the negative feedback loop  
but instead that the negative feedback loop includes a delay; by contrast,  
the positive feedback loop only ensures robustness and tunability.

The system built by Tigges et al. shares many of these details, with the 
delay in the negative feedback coming from post-transcriptional repression 
of the circuit’s transcriptional activator, but the system itself is sensitive to 
molecular details, such as the relative ratios of the circuit components — for 
some ratios of circuit components, oscillations were abolished. Part a is 
reproduced, with permission, from REF. 106  (2000) Macmillan Publishers 
Ltd. All rights reserved. Part c (microbial) is reproduced, with permission, 
from REF. 88  (2008) Macmillan Publishers Ltd. All rights reserved. Part c 
(mammalian) is reproduced, with permission, from REF. 89  (2009) 
Macmillan Publishers Ltd. All rights reserved.
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Relaxation oscillator
An oscillator made up of two 
states and characterized by 
cycles of relatively long 
persistence in a state followed 
by rapid transitions to the 
other state.

Limit cycle oscillation
A periodic solution to a set  
of differential equations that  
is characterized by either 
attracting or repelling  
nearby solutions.

Lotka–Volterra model
A first-order nonlinear set of 
ordinary differential equations 
that are used to model the 
interactions between predators 
and prey. The model is most 
well known for admitting 
periodic solutions in which 
predator numbers rise and fall 
with prey numbers after a 
specified lag time.
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Figure 3 | Using synthetic circuits to engineer cell–cell interactions. Studies of ecology and evolution are often 
dependent on carefully characterizing the interactions of different organisms. In a natural setting, however, such data 
collection often proves to be noisy at best and impossible at worst. At the same time, mathematical models in 
theoretical ecology and evolutionary biology are among the most sophisticated in all of the life sciences. 
Laboratory-scale experiments on cellular interactions could quantitatively test some of the remarkable predictions 
and open the way to new theory. a | Among the most elementary interactions in nature is the predator–prey 
interaction. The prey in this case produces the quorum-sensing pathway protein LuxI, which is engineered to drive a 
transcriptional cascade in the predator that produces CcdA, which inhibits the DNA replication inhibitor CcdB, 
thereby allowing the predator to replicate. The predator produces the quorum-sensing pathway protein LasI, which 
activates CcdB in a LasR-dependent manner in the prey. CcdB expression in the prey prevents it from replicating. The 
graph shows that the cyclic dynamic is similar in style to that of genetic oscillators: high levels of prey lead to low 
levels of CcdB and therefore high levels of predator; high levels of predator lead to high levels of CcdB and therefore 
low levels of prey, which subsequently leads to high levels of CcdB in predators, and so on. As shown in Balagadde 
et al.100, predator–prey interactions can result in limit cycle oscillations around an unstable fixed point of the dynamics; 
these interactions are most commonly studied in the framework of the Lotka–Volterra model. b | Simpson’s paradox is a 
statistical phenomenon that captures the fact that even if the producer of a common good grows at a slower rate in 
all given subpopulations than a non-producer, it can nevertheless make up an increasing fraction of the population as 
a whole. Although Simpson’s paradox usually arises as a result of misinterpretation of data, natural populations can in 
fact display heterogeneities in sample size that often underlie the paradox. The particular implementation in Chuang 
et al.102 casts bacteria that generate the rhamnolipid (rhl) autoinducer as the producers. Although Rhl is only 
expressed by producers, which consequently grow more slowly, both producers and non-producers use this Rhl, 
which is rewired to activate the synthesis of a chloramphenicol resistance gene called catLVA. The graphs depict how 
the fraction of producers changes over time in different subpopulations. Dots represent the initial fraction of 
producers in a given subpopulation, and the length of the line emanating from each dot represents the change in the 
fraction of producers in that given subpopulation. As shown in the left graph, in which each data point represents a 
particular subpopulation, the fraction of producers decreases as the cells are exposed to chloramphenicol. But as 
shown in the right graph, in which each data point represents a pooled set of subpopulations from a given 
experimental run, the fraction of producers actually increases in the global population, therefore illustrating 
Simpson’s paradox. The graph in part a is reproduced, with permission, from REF. 100  (2008) Macmillan Publishers 
Ltd. All rights reserved. The graphs in part b are reproduced, with permission, from REF. 102  (2009) American 
Association for the Advancement of Science.
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Turing test
In computer science, a 
hypothetical test that is meant 
to decide whether a machine is 
displaying intelligent behaviour.

Syncytium
A collection of cytoplasm that 
contains several nuclei.

Reaction–diffusion
A class of mathematical 
models in which the 
concentrations of  
the molecules being modelled 
are tracked in space as well as 
time, taking into account the 
chemical transformations that 
the molecules can undergo and 
their diffusive motion.

Turing instability
A mathematical condition in 
reaction–diffusion systems  
in which differences in the 
diffusion of activating and 
inhibiting morphogenic 
molecules result in pattern 
formation; particular  
patterns form when  
inhibitors diffuse faster  
than autoactivators.

that are translationally inhibited but can have their inhi-
bition removed by a transactivating RnA (taRnA)94; the 
transcription of the taRnA is inducible by arabinose, so 
the network output, in the form of discrete amounts of 
GFP, represents pulses of arabinose.

Finally, Isalan et al. have gone as far as building a 
mock-up of a realistic D. melanogaster embryo; they mod-
elled the syncytium as a collection of paramagnetic beads 
coated with dnA, in which genetic networks analogous 
to the gap gene system could be placed95. Interestingly, 
this ‘minimal embryo’ led the authors to suggest that pat-
tern formation in the real embryo requires activator mol-
ecules to propagate faster than inhibitors, which implies 
that the gap system is a reaction–diffusion system that 
uses a mechanism unlike Turing instabilities to lay down 
patterns. As the authors point out, this is hardly surpris-
ing given that the gap system uses non-homogeneous  
initial conditions in the form of spatially localized com-
ponents deposited in the insect egg, and as the activa-
tor is not autocatalytic. Whether these observations  
hold true in natural embryos remains to be seen.

Modelling ecological interactions. As is the case with 
the band filter circuits described above, most synthetic 
circuits involved in cell–cell communication make use 
of the quorum-sensing pathway96 (FIG. 3a). These circuits 
usually borrow components from organisms like Vibrio 
fischeri, although attempts at incorporating other sys-
tems have also been successful97,98. examples of using 
such systems to study natural phenomena are more 

limited. balagadde et al., by adapting an earlier design99, 
used the quorum-sensing proteins to drive the expres-
sion of an antibiotic to create a synthetic predator–prey 
system100, and brenner et al. used a similar system to 
study the ability of cells to signal in the context of a 
biofilm101. chuang et al. recently used engineered cir-
cuits for cell–cell interactions to study the evolutionary 
phenomenon of simpson’s paradox (FIG. 3b), in which 
the cells that provide a useful product to the population 
make up a diminishing fraction of the population but 
nevertheless increase in absolute number by promoting 
population growth102. Gore et al. provide another exam-
ple of synthetic ecology in their study of the evolution-
ary game dynamics underlying sucrose metabolism in 
yeast103. The study establishes that sucrose metabolism 
can be thought of as a snowdrift game, in which cells 
that metabolize sucrose (cooperators) and those that do 
not (cheaters) stably coexist in a population, thereby 
showing how competition between different alleles can 
actually promote diversity in a population.

studies such as these on fundamental aspects of ecol-
ogy and evolution are difficult to carry out in natural 
environments owing to the multiplicity of confound-
ing factors, but synthetically engineered populations 
provide a way to cleanly separate different effects. 
studies on engineered populations not only highlight 
the ability to connect the molecular details of a net-
work to population-level effects but also the utility of 
abstracting away from such details and focusing on 
general cell–cell interactions. Taking sucrose metabo-
lism from Gore et al. as an example, it was possible to 
predict population-level responses to changes in the 
cost of cooperation based on the theoretical characteri-
zation of the interaction between cheaters and coopera-
tors; no direct knowledge of the molecular details was 
needed. Indeed, this approach of constructing synthetic 
systems that are dedicated to characterizing how cells 
interact can be useful in cases such as cancer dynam-
ics, in which the underlying molecular details are either 
poorly understood or exceedingly complicated but in 
which population-level measurements are both feasible 
and relevant to understanding the phenomenon.

Perspectives
The synthetic biology community has made great strides 
in working out some of the most basic features of regu-
latory networks and cellular pathways. We are exerting 
greater control over the process of gene expression, and 
we have a wealth of information regarding the effects 
of network topology on system function. Topological 
details, such as connectivity, cascade length and feed-
back structure, have been explored. but there is much 
work to do before we can treat biological circuits in the 
same way as we treat electronic ones (BOX 4).

looking back on the various examples of circuits 
and processes that synthetic biologists have examined, 
we can see that the usefulness of synthetic circuits 
can be measured in three different dimensions. First, 
synthetic circuits can serve as easily manipulable toy 
models that we can characterize in exacting quantita-
tive detail to give insights into how similarly structured 

 Box 4 | Creating extremely complex synthetic systems

In the future the synthetic circuits deployed in cells will grow in complexity and will 
integrate multiple cellular processes, as has been done for genetic regulation and 
metabolism83. There is likely to be increasing overlap between synthetic biology  
and large-scale cell biology owing to the creation of synthetic organelles, the in vivo 
construction of which will be guided by synthetic regulatory networks. Progress 
along these fronts is currently limited by many of the same obstacles found across 
the subdisciplines of biology: we are still in need of more ways to specifically 
modulate the expression levels of genes of interest and the activity states of 
pathways of interest, and we require more sensitive techniques (ideally at 
single-molecule resolution) to measure the abundance of mRNAs, proteins and 
specifically modified proteins in live cells.

Methodological advances will be particularly useful for tightly constraining models 
of biological networks. Obstacles that occur when synthetic circuits are adapted 
from the blackboard to the cell can often be traced to the fact that the system under 
study does not behave as the initial modelling indicated. This, in turn, is usually due 
to the fact that the systems are under-determined, meaning that many different 
models can usually describe the circuit data. Higher resolution data, both in terms of 
abundances of the relevant molecules and as a function of time, will constrain the 
space of possible models substantially and should allow for more rational, 
predictable design processes.

Assuming these technical obstacles are overcome, in a future in which man-made 
circuits increasingly look like their byzantine natural counterparts, it is not 
unreasonable to expect nearly synthetic or fully synthetic cells to make their 
appearance. At these extreme levels of complexity, it may prove difficult or even 
unhelpful to mechanistically model the relevant systems. However, comparing the 
performance of natural cells or circuits with their synthetic equivalents in a rigorous 
fashion – perhaps through the formulation of a Turing test for synthetic biology – 
will probably prove useful, as differences in performance can point to possible  
design principles.
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