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The propagation of information through signaling cascades spans a wide range of time scales,
including the rapid ligand-receptor interaction and the much slower response of downstream gene
expression. To determine which dynamic range dominates a response, we used periodic stimuli to
measure the frequency dependence of signal transduction in the osmo-adaptation pathway of
Saccharomyces cerevisiae. We applied system identification methods to infer a concise predictive
model. We found that the dynamics of the osmo-adaptation response are dominated by a fast-
acting negative feedback through the kinase Hogl that does not require protein synthesis. After
large osmotic shocks, an additional, much slower, negative feedback through gene expression

allows cells to respond faster to future stimuli.

he mechanisms cells use to sense and re-
I spond to environmental changes include
complicated systems of biochemical re-
actions that occur with rates spanning a wide
dynamic range. Reactions can be fast, such as
association and dissociation between a ligand and
its receptor (<1 s), or slow, such as protein syn-
thesis (>10” s). Although a system may comprise
hundreds of reactions, often only a few of them
dictate the system dynamics. Unfortunately, iden-
tification of the dominant processes is often dif-
ficult, and many models instead incorporate
knowledge of all reactions in the system. Although
occasionally successful (/—4), this exhaustive ap-
proach often suffers from missing information,
such as unknown interactions or parameters.

Here, we used systems-engineering tools to
study how oscillatory signals propagate through
a signal transduction cascade, which allowed
us to identify and to model concisely the in-
teractions that dominate system dynamics. The
cornerstone of this approach is to measure the
cascade output in response to input signals os-
cillating at a range of frequencies (5, 6). By
comparing the frequency response of the wild-
type network to that of mutants, the molecular
underpinnings of network dynamics can be de-
termined. Studies of neural and other phys-
iological systems have used systems theory (6),
and control theory has also been applied to
cellular networks (7—-74).

We focused on the high-osmolarity glycerol
(HOG) mitogen-activated protein kinase (MAPK)
cascade in the budding yeast Saccharomyces
cerevisiae. This cascade forms a core module of
the hyperosmotic shock—response system and is
particularly well suited to frequency-response
analysis for several reasons. First, both the input
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(extracellular osmolyte concentration) and output
(activity of the MAPK Hogl) of the network are
casily measured and manipulated. Second, the
molecular components of the network have been
well studied, which facilitates connecting dy-
namic models with molecular events. Finally, the
system contains multiple negative-feedback loops
that operate on different time scales (4, 15, 16). It
is still unclear which negative-feedback loop or
loops dominate the signaling dynamics and
whether the different feedback loops have dis-
tinct biological functions. We determined the
properties of the main negative-feedback loops in

the HOG network and arrived at a concise pre-
dictive model of the signaling dynamics. Fur-
thermore, by analyzing the system’s dynamics
over a range of osmotic-shock strengths, we
begin to understand how the multiple-feedback
architecture might be beneficial for osmotic ho-
meostasis in fluctuating environments.

After a hyperosmotic shock, membrane pro-
teins trigger a signal transduction cascade that
culminates in the activation of the MAPK Hogl,
which is primarily cytoplasmic before the osmo-
shock (17, 18). When activated, Hogl accumu-
lates in the nucleus (Fig. 1A), where it activates a
broad transcriptional response to osmotic stress
(19). Constitutively active phosphatases dephos-
phorylate and deactivate Hog1, which leads to its
export from the nucleus. When osmotic balance
is restored, through changes either to the extra-
cellular environment or to the intracellular osmo-
lyte concentration, cascade activity ceases, and
the Hog1 nuclear enrichment decreases (Fig. 1A).
To estimate the amount of phosphorylated Hogl
in living cells, we simultaneously monitored the
cellular localization of Hog1-YFP, a yellow fluo-
rescent protein fused to Hogl, and Nrd1-RFP, a
red fluorescent protein fused to a strictly nuclear
protein. To quantify Hogl nuclear localization,
we define the function, R(¥) = (KYFP>uciens/
<YFP>j))population S the ratio (averaged over
many cells) of mean YFP pixel intensities in
the nucleus and the whole cell [(Fig. 1A), red
circles].
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Fig. 1. Enrichment of Hog1l nuclear localization is driven by pulsed salt shocks. (A) Localization of the
fusion protein Hog1-YFP and the nuclear marker Nrd1-RFP by fluorescence microscopy. We applied and
removed NaCl (0.2 M) as shown by the blue line. The population average translocation response (red
circles) was defined by the ratio of average YFP fluorescence in the nucleus to the average whole-cell YFP
fluorescence. (B) Oscillations of Hog1-YFP translocation in a population of cells (red circles) in response to
square-wave oscillations in the input of extracellular NaCl (blue line).
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Cells were periodically shocked in a flow
chamber (fig. S1) in which a computer-actuated
valve supplied square-wave pulses of medium,
with and without 0.2 M NaCl [(Fig. 1B), blue
line]. Localization of fluorescent proteins was
concurrently imaged [(Fig. 1B), red circles]. Using
Fourier analysis (20), we approximated both the
input and output signals as sine waves oscillating
with a period 7, = 2m/m and quantified the output
signal by the magnitude of the amplitude (4) at
the driving frequency A(w) and the relative phase

shift o(w) (Fig. 2A) (27). We measured the re-
sponse of the system to square-wave stimuli with
periods ranging from 7, = 2 min to 7o = 128 min
(fig. S2). These responses were analyzed to ob-
tain so-called Bode plots (Fig. 2, B and C) (20),
representing the frequency-dependent amplitude
A(w) and phase ¢(w).

We used linear-systems theory to develop a
predictive model for the response to arbitrary os-
motic input signals u(f) (20). We fitted a gen-
eral second-order linear time—invariant (LTI)

Fig. 2. Fourier analysis,
model fits, and model pre-
dictions of Hogl nuclear
enrichment. (A) Illustration
of the input (NaCl concen-
tration, blue line), the net-
work response (Hogl-YFP
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with model prediction of the phase (brown line). (D) Response of the system to a step increase of 0.2 M
NaCl compared with the step response predicted by the model. The “low Pbs2” data (boxes) are gathered
from the Pbs2 underexpressing mutant strain and were used to generate the model fit [gray line in (B)]

and model predictions [gray lines in (C) and (D)].

Fig. 3. Network topology im-
plied by pulsed-input anal-
ysis corresponds to biological
network. (A) Diagrammatic
representation of the mecha-
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model to the data in Fig. 2B and used the ex-
tracted parameters and a simple nonlinear
element (20, 22) to predict the response to a
step input of 0.2 M NaCl. The model accurate-
ly predicted both the response amplitude and
the time required to return to basal activity [(Fig.
2D), blue circles].

Because our model was not instructed by
knowledge of the underlying biology, we sought
to explore how it is similar to and different
from the canonical molecular model of the
hyperosmotic-shock response. Thus, we con-
verted our LTI model into a model that is more
readily interpreted in terms of biological pro-
cesses (20):

Y= (dou —x) = vy
_ (1)
x = o(dou — x) + By

This model contains two negative-feedback loops,
which act to reduce the difference, (Aou — x),
between the stimulus 4gu and the internal-state
variable x. Fig. 3A shows a schematic of the
model, and Fig. 3B shows the canonical bio-

..E_+CHX
' 0.1 M

A -CHX

z C
816 0.35 M
c
o
o
%]
& 14
1.2
0 10 20 30 40 0 10 20 30 40
1.6 0.5M
1.4
1.2
0 20 40 60 0 20 40 60
time [min] time [min]
= Pulse 1 —Pulse 2 —Pulse 3 —Pulse 4

Fig. 4. Gene expression facilitates response to
subsequent pulses. Consecutive-pulse responses
were compared for cells treated with (A) 0.1 M
NaCl, 16-min period (i.e., 8 min at 0.1 M followed
by 8 min at 0.0 M); (B) 0.2 M NaCl, 32-min period;
(€) 0.35 M NaCl, 45-min period; and (D) 0.5 M
NaCl, 60-min period. (E to H) Similarly treated
cells also exposed to cycloheximide.
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chemical mechanisms that regulate the osmotic-
shock response. Because of the high degree of
correspondence between our derived model and
the extensive Hogl literature, we interpret the
state variable, x, as the intracellular osmolyte
concentration and y as enrichment of phosphoryl-
ated Hogl above its baseline level. Thus, inter-
preted in biological terms, our model predicts that
one feedback pathway depends on Hog1-induced
glycerol accumulation (i.e., By changes x through
the activity of the observable y), whereas a
second glycerol-accumulating pathway is Hogl-
independent [i.e., a(4ou — x) changes x indepen-
dently of y].

To gauge the relative strength of the two
feedbacks, we applied the same Fourier tech-
nique to a mutant strain expressing a reduced
amount of Pbs2, the MAPK kinase that phospho-
rylates Hogl (Fig. 3B). Because Hogl is not acti-
vated as highly after a hyperosmotic shock in this
strain, we can effectively isolate Hog1-dependent
feedback from Hogl-independent feedback
by comparing the response dynamics (fig. S4)
to those of the wild-type strain. Bode plots for
this strain were different from those of the wild-
type strain (Fig. 2, B and C). Matching the LTI
model to the 4(w) data alone yielded a good fit
[(Fig. 2B), black squares], as well as an ac-
curate prediction for the ¢(w) data [(Fig. 2C),
black squares] and the step response [(Fig.
2D), boxes]. The latter prediction [(Fig. 2D),
gray line] reproduced both the reduced max-
imum response and the slower response dy-
namics observed in this strain. This suggests
that the Hogl-dependent feedback loop plays a
major role in rapidly regulating the osmotic-
shock response (20).

We compared our model with known bio-
logical details of the hyperosmotic-shock re-
sponse (4, 15, 16). Yeast regulate their intracellular
osmolyte concentration through two parallel
mechanisms. In a Hogl-independent manner, the
membrane protein Fpsl quickly (<2 min) re-
sponds by decreasing the glycerol-export rate
(23, 24), thereby leading to glycerol retention.
Further, active Hogl increases expression of the
glycerol-producing proteins Gpd1 and Gpp2. This
raises the intracellular glycerol level over longer
time scales (>30 min) (25).

Although the topology of our derived model
corresponds closely to that of the known biolog-
ical system (Fig. 3, A and B), dynamic differ-
ences suggest that the current view of the MAPK’s

role in osmotic regulation is incomplete. Cells
begin to recover from the NaCl pulse within 5 min
and are finished responding within 15 min. Both
of these time scales are faster than required for
gene expression, which is typically greater than
15 min (4). This suggests that both feedback
loops in our model control the rapid accumula-
tion of glycerol, consistent with previous reports
(23, 24, 26).

Our model suggests that gene expression
plays a minimal role in the hyperosmotic-shock
response, yet the expression of hundreds of genes
changes in response to hyperosmotic shock. We
hypothesized that gene expression may be more
important as a longer—time scale feedback in
this system, so we looked for pulse-to-pulse
variability in the response of cells stimulated
with periodic pulses of NaCl (fig. S5). Cells
were shocked either in the absence (Fig. 4, A to
D) or presence (Fig. 4, E to H) of cyclohexi-
mide, a small molecule that inhibits protein
synthesis. As predicted by the initial data, cells
responded very similarly to an initial pulse of
osmolyte regardless of their ability to synthe-
size new proteins (Fig. 4, black lines). Never-
theless, we found that cells stimulated multiple
times recovered from each subsequent pulse
faster in the absence of cycloheximide and slower
in its presence, revealing a longer—time scale
component absent from our earlier data. These
results suggest that nontranscriptional feedback
mediates short-time scale osmolyte accumula-
tion (4, 16, 26, 27), whereas gene expression
plays a role in osmolyte production only on
longer time scales and for more intense shocks.
Accordingly, we found that stronger shocks cause
cells to increase their rate of glycerol production
(fig. S6) in a manner that depends on gene ex-
pression, which permits faster recovery to sub-
sequent fluctuations (28).

These results demonstrate the promise of
applying engineering principles to cellular
networks, particularly when predicting the
response of the system to dynamic stimuli. In
more complex systems, measuring the activity
level of all relevant state-space variables could
help with determining the effective network
structure.
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