
Molecular Cell

Resource
MicroRNA-Mediated Feedback and Feedforward
Loops Are Recurrent Network Motifs in Mammals
John Tsang,1,2 Jun Zhu,3,4,* and Alexander van Oudenaarden1,*
1Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
2Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA
3 Institute for Genome Sciences and Policy
4Department of Cell Biology

Duke University, Durham, NC 27708, USA

*Correspondence: avano@mit.edu (A.v.O.), jun.zhu@duke.edu (J.Z.)

DOI 10.1016/j.molcel.2007.05.018
SUMMARY

MicroRNAs (miRNAs) are regulatory molecules
that participate in diverse biological processes
in animals and plants. While thousands of
mammalian genes are potentially targeted by
miRNAs, the functions of miRNAs in the context
of gene networks are not well understood.
Specifically, it is unknown whether miRNA-
containing networks have recurrent circuit
motifs, as has been observed in regulatory net-
works of bacteria and yeast. Here we develop
a computational method that utilizes gene
expression data to show that two classes of
circuits—corresponding to positive and nega-
tive transcriptional coregulation of a miRNA
and its targets—are prevalent in the human
and mouse genomes. Additionally, we find
that neuronal-enriched miRNAs tend to be
coexpressed with their target genes, suggest-
ing that these miRNAs could be involved in
neuronal homeostasis. Our results strongly
suggest that coordinated transcriptional and
miRNA-mediated regulation is a recurrent motif
to enhance the robustness of gene regulation in
mammalian genomes.

INTRODUCTION

MicroRNAs (miRNAs) are posttranscriptional regulatory

molecules recently discovered in animals and plants

(review in Bartel [2004]). They have been shown to regu-

late diverse biological processes ranging from embryonic

development to the regulation of synaptic plasticity (Car-

thew, 2006; Kloosterman and Plasterk, 2006). Primary

miRNA transcripts are predominantly transcribed by

RNA polymerase II. After multiple steps of transcript pro-

cessing, the mature miRNA (�22 bp) is incorporated into

the RISC complex in the cytoplasm. Mature miRNAs sup-

press gene expression via imperfect base pairing to the
Mo
30 untranslated region (30UTR) of target mRNAs, leading

to repression of protein production and, in some cases,

mRNA degradation (Bartel, 2004; Carthew, 2006; Valen-

cia-Sanchez et al., 2006). Hundreds of miRNA genes

have been identified in mammalian genomes (Griffiths-

Jones et al., 2006), and computational predictions

indicate that thousands of genes could be targeted by

miRNAs in mammals (John et al., 2004; Krek et al.,

2005; Lewis et al., 2005; Rajewsky, 2006). These findings

suggest that miRNAs play an integral role in genome-

wide regulation of gene expression.

Similar to electronic circuits, gene regulatory networks

(GRNs) are made up of basic subcircuits, such as feed-

back and feedforward loops. Pioneering work in E. coli

has shown that certain subcircuits are favored by evolu-

tion and hence are significantly more abundant than

others (Shen-Orr et al., 2002). The identification of these

recurring subcircuits, called network motifs (Milo et al.,

2002), has offered key insights into gene regulation. For

instance, �35% of E. coli transcription factors repress

their own transcription, and such negative autoregulatory

circuits can significantly accelerate transcriptional re-

sponse time (Rosenfeld et al., 2002) and dampen protein

expression fluctuations (Becskei and Serrano, 2000). Like

transcriptional repressors, miRNAs are likely embedded

in a large number of GRNs, in which certain miRNA-con-

taining circuits may be recurrent. While all miRNAs oper-

ate through a repressive mechanism, their functions in

networks need not be simply repressive; they could

have diverse functions depending on the unique GRN

context of individual miRNA-target interactions. Hence,

the identification of recurring miRNA-containing motifs

in GRNs would greatly increase our understanding of

the functional roles of miRNAs in gene regulation.

Only a few studies have experimentally explored

miRNA function in the context of a GRN. They suggest

that a key recurring function of miRNAs in networks is to

reinforce the gene expression program of differentiated

cellular states. For instance, the secondary vulva cell

fate in C. elegans is promoted by Notch signaling, which

also activates miR-61; miR-61 in turn posttranscriptionally

represses an inhibitory factor of Notch signaling, thereby

stabilizing the secondary vulva fate (Yoo and Greenwald,
lecular Cell 26, 753–767, June 8, 2007 ª2007 Elsevier Inc. 753
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2005). Networks of similar architecture can also be found

in the asymmetric differentiation of left-right neurons in

C. elegans (Johnston et al., 2005), eye and sensory organ

precursor development in Drosophila (Li and Carthew,

2005; Li et al., 2006), and granulocytic differentiation in

human (Fazi et al., 2005).

The repressive effect of miRNAs on target expression is

modest and is often limited to the level of translation with

little effects on transcript abundance (Bartel, 2004). Thus,

an important question is if miRNAs act in concert with

other regulatory processes, such as transcriptional con-

trol, to regulate target gene expression at multiple levels

and with greater strength. One possibility is that the tran-

scription of the miRNAs and their targets is oppositely reg-

ulated by common upstream factor(s)/process(es) (type II

circuits, Figure 1). For instance, an upstream factor could

repress the transcription of a target gene and simulta-

neously activate the transcription of a miRNA that inhibits

target gene translation. Type II circuits may be prevalent,

as genome-scale studies have shown that predicted tar-

get transcripts of several tissue-specific miRNAs tend to

be expressed at a lower level in tissues where the miRNAs

are expressed (Farh et al., 2005; Sood et al., 2006; Stark

et al., 2005). In contrast, there is little evidence for circuits

in which the transcription of the miRNAs and their targets

are positively coregulated (type I circuits, Figure 1); only

one such example has been confirmed experimentally,

where miR-17-5p represses E2F1, and both are transcrip-

tionally activated by c-Myc in human cells (O’Donnell

et al., 2005). While type I circuits may seem counterintui-

tive and its functional significance has not been fully char-

acterized, type I circuits have the potential to provide

a host of regulatory and signal processing functions (Horn-

stein and Shomron, 2006), such as the fine-tuning and

maintenance of protein steady states (see the Discussion).

While individual examples of type I and II circuits exist in

mammalian GRNs, our goal is to determine whether these

circuits are recurrent (i.e., more prevalent than would be

expected by chance). Although existing experimental

data suggest that type II circuits are prevalent and type I

circuits are not, the number of examples is far too few

to be conclusive. It is possible that the apparent lack of

evidence for the prevalence of type I circuits is due to

the bias in the choice of experimental systems, i.e.,

most existing studies used cellular differentiation systems

where type II circuits function to reinforce differentiation

decisions.

Given the dearth of known miRNA-containing networks,

it is infeasible to directly determine whether type I/II cir-

cuits are recurrent. However, if a miRNA is involved in

a larger number of type I (type II) circuits than expected

by chance, one would expect the transcription of the

miRNA and a significant number of its targets to be pos-

itively (negatively) correlated across diverse conditions.

There are three challenges that complicate the identifica-

tion of such correlation signatures. The first challenge is

that large-scale expression data sets containing both

miRNAs and protein-coding genes are lacking. We ad-
754 Molecular Cell 26, 753–767, June 8, 2007 ª2007 Elsevier I
dress this challenge by taking advantage of the large

number of miRNAs that are embedded in the introns of

protein-coding genes in human and mouse (Rodriguez

et al., 2004). With few exceptions (e.g., miR-7 during Dro-

sophila embryogenesis [Aboobaker et al., 2005]), the ex-

pression profiles of embedded miRNAs examined thus

far are highly correlated to their host genes at both the tis-

sue and individual cell levels (Aboobaker et al., 2005; Bas-

kerville and Bartel, 2005; Li and Carthew, 2005), suggest-

ing that they tend to be cotranscribed at identical rates

from the same promoter(s) (Kim and Kim, 2007). Hence,

the relative level of host-gene transcription across condi-

tions can accurately serve as a proxy for that of the em-

bedded miRNA(s), even though the steady-state levels

of host-gene mRNA and that of the embedded miRNA(s)

may be different.

The second challenge is that only a few miRNA targets

have been verified in vivo and computational target pre-

dictions can be noisy (Rajewsky, 2006). We address this

challenge by developing a robust method that does not

Figure 1. Two Classes of miRNA-Containing Circuits

U denotes an upstream factor or a process that regulates the

transcription rate of a miRNA (m) and one of its targets (T). In type I

(II) circuits, the transcription rate of m and T are positively (negatively)

coregulated by U. Both type I and II circuits are topologically charac-

terized by miRNA-mediated feedback or feedforward loops acting

on T. Note that in the case of the positive (type II) and negative (type I)

feedback circuits, U regulates the transcription rate of m indirectly

through T.
nc.
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rely on target prediction to detect significant overabun-

dance of type I and/or II circuits.

The third challenge is that most existing mammalian

expression data sets tend to study tissues, not individual

cell types. While expression correlation over tissue condi-

tions is likely due to transcriptional coregulation by com-

mon upstream factors, cell type heterogeneity in tissues

can complicate the analysis. For example, some miRNAs

and their targets could be expressed in distinct cell types

within a tissue even though their averaged expression at

the tissue level may suggest that their expression is corre-

lated. To address this challenge, we analyze expression

data from homogeneous neuronal cell populations

(Arlotta et al., 2005; Sugino et al., 2006).

We consistently observe that type I and/or II circuits are

prevalent for a significant fraction of the embedded

miRNAs we analyzed, independent of the gene expres-

sion data sets used in the analysis, suggesting that these

two circuit types are recurrent motifs in mammalian

genomes. Strikingly, brain-enriched miRNAs tend to tar-

get brain-enriched genes, and type I circuits are espe-

cially prevalent in mature neurons. Our findings not only

confirm that type II circuits are abundant but also reveal

the surprising genome-wide prevalence of type I circuits,

suggesting that miRNAs are employed in recurrent gene

regulatory circuits to perform important biological func-

tions in mammals.

RESULTS

Genes Highly Correlated in Expression with a miRNA

Are More Likely to Be Predicted as Targets

We first sought to determine if embedded miRNAs tend to

correlate in expression with their putative targets, a

phenomenon we term ‘‘targeting bias,’’ by analyzing the

Novartis human expression atlas (Su et al., 2004) that

comprises 79 distinct tissues/cell types (Figure 2A). Hier-

archical clustering indicates that a large number of

embedded miRNA host genes are characterized by upre-

gulation in immune/cancer (group II) and brain tissues

(groups I and IV), suggesting that these miRNAs are im-

portant in cell proliferation and brain functions, respec-

tively. For embedded miRNAs (e.g., miR-9/9*, �153, �128)

that are known to be expressed in the adult brain (Cao

et al., 2006), their host genes belonged to groups I

and IV, while host genes of cancer-related miRNAs

(Esquela-Kerscher and Slack, 2006), such as miR-15a/

16, are clustered in group II (Figure 2A). These observa-

tions further assure us that host-gene transcription

patterns can be used as a proxy for that of the embedded

miRNA.

To assess targeting bias, we first made a ranked list of

genes for each embedded miRNA based on the extent of

their expression correlation and compiled a list of targets

for each miRNA using the TargetScanS algorithm (Lewis

et al., 2005). To examine if a miRNA’s predicted target

set is enriched in genes that are highly correlated or

anticorrelated in expression with the miRNA, we devised
Mol
a statistical test based on the hypergeometric distribution

(see the Experimental Procedures). For the 60 miRNAs we

analyzed, 75% have a significantly higher number of

predicted targets (p < 0.05) in the top or bottom ten

percentile of the ranked expression correlation list. For

instance, the number of predicted targets of miR-153

that fall in the top ten percentile of its ranked list is twice

more than expected (p < 10�30). In contrast, the predicted

target set of only 8% of the miRNA we analyzed show

significant enrichment for genes in the middle ten

percentile of the ranked list (Figure 2B). Interestingly,

most brain-enriched miRNAs (group IV) exhibit targeting

bias for positively correlated genes (Figure 2B, all with

p < 0.01). Similar targeting bias trends were observed

for mouse embedded miRNAs using the Novartis mouse

expression atlas (Su et al., 2004) (data not shown). From

these results, we conclude that many embedded miRNAs

indeed exhibit targeting bias in which their expression is

often highly correlated or anticorrelated with putative

targets.

A Computational Method for Predicting if a miRNA

Is Biased for Type I/II Circuits Given an Expression

Data Set

Although our observation of targeting bias is encouraging,

one potential concern is that the analysis requires miRNA

target prediction, which can be noisy (Lewis et al., 2005;

Rajewsky, 2006). Furthermore, genes with different ex-

pression patterns might have different 30UTR length distri-

butions (Stark et al., 2005). In principle, these problems

might have contributed to the targeting bias we observed.

Therefore, we developed an alternative method that

avoids target prediction and uses a measure that is inde-

pendent of 30UTR lengths. The new measure stems from

the observation that putative miRNA binding sites have

a higher probability of being evolutionarily conserved

across mammalian genomes (Lewis et al., 2005; Xie

et al., 2005). We reasoned that if a miRNA (m) is enriched

in type I (II) networks, a higher-than-expected proportion

of putative binding sites in the 30UTR of genes positively

(negatively) correlated in expression with m should be

functional in vivo and hence evolutionarily conserved. In

essence, given a group of genes (G) and a miRNA seed,

our method counts the number of seed matches (S) in

the 30UTRs of G and the number of those matches that

are conserved (C) (gray box in Figure 3); then it computes

a conservation enrichment (CE) score to indicate whether

the observed conservation rate (CR = C/S) is significantly

higher than that of randomly drawn gene sets (Figure 3

step 3; CE > 1.65 corresponds to p < 0.05). Because

the CR measure is normalized by the number of binding

site occurrences, it is independent of biases in 30UTR

length and base composition.

To determine whether or not a miRNA m exhibits bias

for type I and/or II circuits given an expression data set,

we first rank genes by their expression correlation with

m and slide a fixed-size window across the ranked list

to generate a series of gene groups (G) with decreasing
ecular Cell 26, 753–767, June 8, 2007 ª2007 Elsevier Inc. 755
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Figure 2. Targeting Bias Analysis of Human Embedded miRNAs

(A) The expression profiles of human embedded miRNA host genes in the Novartis atlas. Four prominent clusters were identified by hierarchical clus-

tering.

(B) Targeting bias enrichment scores of miRNAs from major expression clusters. The color scale reflects the degree of deviation from the 5% signif-

icance level (DZ), while black denotes insignificant enrichment/depletion (i.e., p > 0.05).
degrees of expression correlation to m (Figure 3, step 1).

For each group in G, we compute the CE score of the two

7-mer seeds (m1-7 and m2-8) of m (Figure 3, steps 2–3)

(Lewis et al., 2005). If m is enriched in type I (II) networks,

the CE score of at least one of the seeds in highly (lowly)

ranked groups is likely to be significant. We designate

a miRNA to exhibit type I (II) bias if the CE score of its

top (bottom) ten percentile gene set is significant (i.e.,

CE > 1.65; Figure 3, step 4).
756 Molecular Cell 26, 753–767, June 8, 2007 ª2007 Elsevier In
Many Human and Mouse Embedded miRNAs Exhibit

Bias for Type I/II Circuits

We applied CE analysis to human embedded miRNAs,

again using the Novartis atlas. Of the 60 miRNAs we

analyzed, 67% have a significant CE score in their top

ten or bottom ten percentile sets (p < 0.05) (Figure 4A),

compared to only 8% having a significant CE score in

their middle ten percentile sets (i.e., group of genes hav-

ing insignificant expression correlation). Overall, the CE
c.
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Figure 3. Computing the CE Score Profile of a miRNA Given an Expression Data Set

(Step 1) Sort all genes on the microarray based on their expression correlation to the miRNA host gene. (Step 2) For each sliding-window subset, the

conservation rate (CR) of the miRNA seed matches is computed by counting the number of occurrences of conserved and nonconserved matches

(gray box). (Step 3) The CR is used to compute the CE score based on the background CE score distribution obtained from randomly drawn gene sets

(s denotes the standard deviation of the background CR distribution). The CE score is the number of standard deviations (s) away from the expected

conservation rate (CR) of gene sets drawn at random. (Step 4) The centers of each sliding window subset (e.g., the top ten percentile set centers at 95)

are plotted against the corresponding CE scores. We summarize the data by showing the scores of the top ten, middle ten, and bottom ten percentile

sets as a heatmap. The yellow scale reflects the amount of deviation (DCE) from the 5% significance level (i.e., CE > 1.65). Insignificant scores (CE %

1.65) are shown in black.
scores of the top ten and bottom ten percentile sets are

significantly higher than that of the middle ten percentile

sets (Kolmogorov-Smirnov test, p = 2 3 10�11 and 3.6 3

10�5, respectively). Representative CE score profiles are

shown in Figures 4B–4D. Interestingly, more miRNAs

show type I bias (48% versus 27%), partially due to the

relative abundance of brain-enriched miRNAs we ana-

lyzed. As was observed in the targeting bias analysis,

a large number of miRNAs (8 out of 12) in the brain cluster

(group IV) show type I bias, but none show bias for type II

(Figure 4A), suggesting that these miRNAs are not primar-

ily involved in reinforcing the suppression of genes ex-

pressed outside the brain (except miR-9, which shows

bias for both). The biases shown by non-brain-enriched
Mole
miRNAs (i.e., groups I and IV) are more evenly distributed

among the two types (e.g., group II, Figure 4A). Several

miRNAs have significant CE scores in both the top ten

and bottom ten percentile sets, such as miR-9 and miR-

15a/15b/16 (both copies, chromosomes 3 and 13),

indicating that their involvement in both circuit types is

prevalent.

To assess if the abundance of type I/II biases is a gen-

eral feature of mammalian gene regulation, we conducted

CE analysis on embedded miRNAs in mouse using the

Novartis mouse expression atlas comprising 61 tissues/

cell types (Su et al., 2004). The overall trends are consis-

tent with those of human: of the 45 miRNAs analyzed,

69% exhibit bias for either type, with 42% and 36%
cular Cell 26, 753–767, June 8, 2007 ª2007 Elsevier Inc. 757
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Figure 4. CE Analysis of the Novartis Expression Atlas for Human and Mouse

(A) DCE scores of the top ten, middle ten, and bottom ten percentile sets of human embedded miRNAs we analyzed. The scores of miRNAs in groups II

(immune/cancer expression signature) and IV (brain-enriched) are shown. Since some host genes have multiple microarray probes, the probe IDs are

also shown.

(B–D) Representative CE profiles of biased miRNAs along with their expression patterns. Expression conditions are the following: im, immune/cancer;

br, brain; org, organs; ts, testis related. (B) CE score profile of miR-198. Expression patterns of genes in the top ten percentile set are also shown. (C)

miR-153 is brain enriched, and its type I CE score profile is typical of miRNAs in group IV. (D) miR-15b and miR-16 (embedded in the same host gene)

exhibit both type I and II biases.

(E) DCE scores of the top ten, middle ten, and bottom ten percentile sets of mouse embedded miRNAs we analyzed. Brain-enriched miRNAs only

exhibit significant CE scores in their top ten percentile sets.
758 Molecular Cell 26, 753–767, June 8, 2007 ª2007 Elsevier Inc.
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displaying bias for type I and II (9% showing both),

respectively (Figure 4E). In comparison, less than 7%

have a significant CE score in their middle ten percentile

set. As is the case for human, mouse brain-enriched

miRNAs only exhibit type I bias, whereas other biased

miRNAs are more evenly distributed among the two

types. Since type I/II signatures are prevalent in human

and mouse, these signatures are unlikely a result of data

irregularity or noise particular to one expression data

set, and we conclude that both circuit classes are recur-

rent in mammalian miRNA-containing networks.

The fact that brain-enriched miRNAs tend to target

brain-enriched genes suggests that some of them may

be positively coregulated by transcription factors that

specify neuronal fates (e.g., NRSF/REST [Ballas et al.,

2005]; see the Discussion). However, due to the heteroge-

neity of cell types in brain tissues, it is possible that the

expression of some of these miRNAs and their targets

does not overlap at the single-cell level. This suggests

that some brain-enriched miRNAs may also be enriched

in type II circuits, even though tissue-level analysis only

shows type I bias due to the lack of coverage of individual

cell types. Therefore, expression data on homogeneous

neuronal cell populations are needed to confirm if type I

circuits are indeed prevalent in the adult brain (see below).

Non-brain-enriched miRNAs with type I bias are less likely

to be confounded by cell type heterogeneity, because,

unlike brain-enriched miRNAs, they tend to be differen-

tially regulated across diverse tissue and homogeneous

cultured cell conditions (e.g., miR-198; Figure 4B); hence,

positive expression correlation between a miRNA and

its targets across diverse conditions suggests that they

are transcriptionally coregulated by common upstream

factors/processes.

The Prevalence of Type I/II Biases Persists

in Homogeneous Neuronal Cell Population

Expression Profiles

To address the concern that the human and mouse data

sets consist mostly of tissues but are lacking in homoge-

neous cell types, we conducted CE analysis on embed-

ded miRNAs using two additional mouse expression

data sets: the developmental time course of three types

of motor neurons (MDEV) (Arlotta et al., 2005) and profiles

of 12 homogeneous neuronal cell types (NCELL) from five

different brain regions (Sugino et al., 2006). Both data sets

were obtained by careful isolation of homogeneous neu-

ronal cell populations.

The MDEV profiles comprise three motor neuron types

over four developmental stages (E18, P3, P6, and P14).

The samples were isolated from the mouse neocortex

using a combination of anatomical and cell sorting tech-

niques. The expression data are highly reproducible

across biological replicates isolated from different mice

(Arlotta et al., 2005), indicating that noise resulting from

the crosscontamination of other cell types is minimal. Of

the 42 embedded miRNAs analyzed, 45% exhibit bias,

with 29% and 24% having significant CE scores in their
Mol
top ten and bottom ten percentile sets, respectively;

only 12% show significant CE scores in their middle ten

percentile sets (Figure 5). It is not surprising that a smaller

percentage of miRNAs exhibit bias compared to the No-

vartis atlas, as this data set only covers the development

of a few neuronal subtypes, and fewer miRNAs are ex-

pected to be regulated under these conditions. In fact,

the prevalence of type I/II signatures is quite remarkable,

considering the limited coverage of conditions, suggest-

ing that miRNAs have diverse functions and are deployed

in a myriad of pathways. The biased miRNAs include ones

known to be neuronal (e.g., miR-7) and those whose host

genes have brain-enriched expression patterns (e.g.,

miR-326). However, several have host genes that are

broadly downregulated in brain tissues of the adult brain

according to the Novartis atlas (e.g., miR-106b), indicat-

ing that they may be transiently expressed during brain

development. For instance, the host of miR-106b has

a type II signature, and its expression is elevated at E18

but continues to fall as development proceeds (data not

shown), suggesting that it may function in a large number

of type II networks to reinforce the suppression of genes

specific to later developmental stages.

Similar trends were observed in the NCELL data set,

though a higher proportion (61%) of the miRNAs analyzed

exhibit bias, consistent with the fact that this data set con-

sists of more diverse conditions than the MDEV profiles

(Figure 5D). Interestingly, significantly more miRNAs ex-

hibit type I bias than type II (44% versus 17%). Since

this data set consists of mature neurons, our results sug-

gest that type I circuits may be more prevalent in networks

that carry out homeostatic neuronal functions (see the

Discussion). The large proportion of miRNAs that exhibit

type I and/or II bias at the individual cell type level strongly

suggests that cell type heterogeneity alone is unlikely to

explain the similar results we observed in the human

and mouse atlas data sets. We conclude that type I and II

circuits are indeed prevalent in the human and mouse

genomes.

While some miRNAs consistently exhibit bias across all

data sets we analyzed, others only show bias in some

data sets (for examples, see the Supplemental Data avail-

able with this article online). This is to be expected, as the

bias detected by our method largely depends on the con-

ditions profiled in each data set. As with protein-coding

genes, the transcription of a miRNA is likely regulated

by multiple cis regulatory modules (Howard and David-

son, 2004); thus, a miRNA can be involved in a large num-

ber of type I or II circuits via different cis modules (see the

Discussion). A particular set of profiled conditions in

a given data set may only reveal transcription patterns

due to the regulation of a subset of these modules. In es-

sence, two key factors determine if a miRNA would exhibit

bias as detected by CE analysis: first, if the expression of

the miRNA is differentially regulated across the profiled

conditions; and second, if a higher-than-expected num-

ber of functional targets (functional implies the seed

matches of the miRNA have a higher probability of being
ecular Cell 26, 753–767, June 8, 2007 ª2007 Elsevier Inc. 759
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Figure 5. CE Analysis of the Mouse Motor Neuron Development and Homogeneous Neuronal Cell Data Sets

(A) DCE scores of the top ten, middle ten, and bottom ten percentile sets of mouse embedded miRNAs in the MDEV data set.

(B and C) CE score profiles of miR-103 and miR-342, representative of miRNAs showing type I and II bias, respectively.

(D) DCE scores of the top ten, middle ten, and bottom ten percentile sets of embedded miRNAs in the NCELL data set.
conserved) are positively or negatively coregulated with

the miRNA. As more expression data containing both

miRNAs and protein-coding genes become available,

CE analysis can readily be applied to further dissect the

prevalence of type I and II circuits in diverse biological

contexts.

Identification of miRNAs with Neuronal-Enriched

Expression Patterns

Motivated by the observation that brain-enriched miRNAs

tend to target brain-enriched genes, we reasoned that

brain-enriched miRNAs can be identified by searching

for miRNAs with significant CE scores in a group of genes

with a brain-enriched expression signature. To test this

idea, we applied CE analysis to a group of mouse genes

whose expression is upregulated across all neuronal tis-

sues profiled in the Novartis atlas (Figure S1). Table 1 lists

all miRNA seed matches with a significant CE score (CE >

2.33, p < 0.01). Strikingly, nine out of ten seeds at the top

of the list correspond to miRNAs known to be brain

specific or brain enriched. For instance, miR-124a is one

of the most abundant and ubiquitously expressed

miRNAs in the brain (Lagos-Quintana et al., 2002). Other

notable brain-enriched miRNAs in the list include

miR-9, -125, -153, and -218 (Cao et al., 2006). This result

further supports our conclusion that brain-enriched
760 Molecular Cell 26, 753–767, June 8, 2007 ª2007 Elsevier
miRNAs tend to target brain genes and provides direct

evidence that the CE score is a biologically sensitive

measure of whether a miRNA functionally interacts with

a statistically significant number of targets in a gene

group. High-scoring miRNAs in Table 1 not previously

shown to be neuronal warrant experimental confirmation

of their brain-enriched expression pattern.

DISCUSSION

In this study, we found that the expression of embedded

miRNA host genes and their predicted miRNA targets

tends to be positively or negatively correlated (Figure 2),

suggesting that the coordinated transcriptional regulation

of a miRNA and its targets is an abundant motif in gene

networks. This result encouraged us to develop a robust

method that does not rely on target prediction to deter-

mine if such circuits are prevalent in the human and

mouse genomes (Figure 3). We found that many miRNA

seed matches are evolutionarily conserved at significantly

higher rates in genes whose expression pattern is highly

correlated (either positively or negatively) with that of the

corresponding miRNA (Figures 4 and 5), indicating that

putative targets that are coordinately regulated with

a miRNA tend to be functional in vivo. This phenomenon

is widely spread in mammalian genomes: a large fraction
Inc.
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Table 1. Mouse miRNAs with Significant CE Scores in a Brain-Enriched Gene Group

Seed CE Score Matched miRNA(s)

Brain/Neuronal

Expression Citation

AAGCCAUa 4.68 mmu-miR-135a/mmu-
miR-135b

Sempere et al., 2004

UGCCUUAa 4.42 mmu-miR-124a Lagos-Quintana et al.,

2002

AAGCACAa 4.13 mmu-miR-218 Sempere et al., 2004

UGCAAACa 4.10 mmu-miR-452 Dostie et al., 2003

CACUGCCa 3.79 mmu-miR-34a/c mmu-

miR-449

Kim et al., 2004

AGCACAAa 3.74 mmu-miR-218 Sempere et al., 2004

CUGUAGAa 3.36 mmu-miR-139 Sempere et al., 2004

ACUGCCUa 3.28 mmu-miR-34b/c Kim et al., 2004

ACUGCCAa 3.22 mmu-miR-34a mmu-

miR-449

Kim et al., 2004

CCUCUGC 3.21 mmu-miR-298

AUUCUUU 2.87 mmu-miR-186

GUAUGUA 2.78 mmu-miR-466

AGCAAUA 2.76 mmu-miR-137

UGCAGUAa 2.74 mmu-miR-217 Dostie et al., 2003

CCCAGAGa 2.71 mmu-miR-326 Kim et al., 2004

AGACGGAa 2.69 mmu-miR-340 Kim et al., 2004

GGAGAAGa 2.66 mmu-miR-207 Dostie et al., 2003

ACCAAAGa 2.66 mmu-miR-9 Lagos-Quintana et al.,

2002

ACGCACA 2.62 mmu-miR-210

GCAGACAa 2.62 mmu-miR-346 Kim et al., 2004

CUAGGAA 2.60 mmu-miR-384

CCGUGUU 2.57 mmu-miR-411

UCUGAUC 2.52 mmu-miR-383

GGACCAAa 2.49 mmu-miR-133a/b Mortazavi et al., 2006

AGUCAUA 2.47 mmu-miR-468

GUUCUCA 2.42 mmu-miR-146

UAACCUA 2.40 mmu-miR-154

AUGGAGUa 2.38 mmu-miR-136 Miska et al., 2004

GCAAUAA 2.37 mmu-miR-137

a miRNAs known to be expressed in the brain.
(44%–69%) of the miRNAs analyzed show bias toward

coordinated regulation with their targets, independent of

the particular gene expression data sets analyzed

(Figures 4 and 5). We speculate that the abundance of

type I/II circuits in the genome may be even higher

because the profiled conditions in the expression data

we analyzed are limited (e.g., miR-106 exhibits type II

bias in the MDEV data set, but not in the Novartis atlas).

Taken together, our results strongly argue that type I
Mo
and II circuits are recurrent network motifs in mammalian

gene networks.

Negative expression correlation between a miRNA and

its putative targets has been reported for several tissue-

specific mammalian miRNAs (e.g., miR-133), where an

increase in the miRNA level often coincides with a

decrease in the levels of its target transcripts at the tissue

level (Farh et al., 2005; Sood et al., 2006). However, this

phenomenon cannot be solely attributed to the repressive
lecular Cell 26, 753–767, June 8, 2007 ª2007 Elsevier Inc. 761
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nature of miRNA-mediated gene regulation, because tar-

geting by miRNAs often leads to translational inhibition

but has limited effects on target mRNA levels (Bartel,

2004; Doench et al., 2003; Doench and Sharp, 2004). A

plausible explanation is that the observed negative corre-

lation is due to type II circuits where the suppression of

target mRNA levels is mainly driven by transcriptional

control and miRNAs play a modulatory role to reinforce

such decisions (Bartel and Chen, 2004). This notion is

further supported by the observed positive expression

correlation between a miRNA and its targets in type I

circuits: elevated miRNA levels do not necessarily lead

to lower target mRNA abundance at the tissue and indi-

vidual cell type levels.

The prevalence of positive expression correlation in

miRNA-target pairs is surprising and counterintuitive,

given the repressive nature of miRNAs. Although some

positively correlated miRNA-target pairs may result from

localized expression of a miRNA and its target in distinct

cell types within a tissue (Stark et al., 2005), mutually

exclusive expression cannot account for all positively cor-

related miRNA-target pairs. Indeed, type I signatures

remained prevalent when CE analysis was applied to

expression data sets obtained from homogeneous neuro-

nal cell populations in the adult mouse forebrain and at

distinct stages of cortical motor neuron development (Fig-

ure 5), suggesting that these miRNA and their targets are

coexpressed at the single-cell level. In type I circuits, the

expression of the target gene is controlled by two oppos-

ing pathways, one of which is miRNA mediated and

serves as a negative feedback/feedforward loop. This

configuration implies that miRNAs modulate rather than

solely establish the expression level of their target genes

(Bartel and Chen, 2004). Supporting this notion, transla-

tion inhibition and mRNA degradation mediated by

miRNAs are modest even for reporter genes with more

than one miRNA binding site in in vitro overexpression

assays (Brennecke et al., 2005; Farh et al., 2005). The

same notion also suggests that the functional importance

of miRNAs is beyond simple gene repression but is deter-

mined by the underlying network structures.

The finding that brain-enriched miRNAs tend to target

brain-enriched genes suggests that the primary function

of these miRNAs is not to reinforce the suppression of

genes specific to other tissues. However, our result

does not imply that neuronal-enriched miRNAs tend to

only participate in type I circuits in the adult brain. Indeed,

we found that these miRNAs could exhibit bias for either

network type when data from homogeneous neuronal

cell populations were used in our analysis. Interestingly,

the number of miRNAs exhibiting type I bias is still signif-

icantly higher than those showing type II bias in the

NCELL data set, even though this phenomenon was not

observed in the MDEV data set. This suggests that type I

circuits may be more prevalent in networks operating

in homeostasis—perhaps partly due to the need for

such circuits to maintain protein steady state and reg-

ulate local translation in neurons (see below)—as
762 Molecular Cell 26, 753–767, June 8, 2007 ª2007 Elsevier Inc
NCELL consists of mature neurons, whereas MDEV

only covers developing neurons.

The following aspects might complicate the interpreta-

tion of our results. First, the prevalence of type I/II circuits

could be a special feature of embedded miRNAs. This is

unlikely, however, because more than 80% of all known

miRNAs in human and mouse reside in introns of coding

or noncoding genes (Kim and Kim, 2007; Rodriguez

et al., 2004). In this sense, there are no obvious features

that distinguish the miRNAs we analyzed from the rest.

In addition, embedded miRNAs are not homogeneous

by any measure: they have diverse expression patterns

and likely function in disparate biological processes. Sec-

ond, posttranscriptional control of the host gene and/or

the miRNA could uncouple their expression (Obernosterer

et al., 2006; Thomson et al., 2006; Wulczyn et al., 2007).

However, this phenomena is likely condition specific

(e.g., early development [Thomson et al., 2006]), as the

steady-state expression of host genes and their embed-

ded miRNA(s) tend to be correlated (Aboobaker et al.,

2005; Baskerville and Bartel, 2005; Li and Carthew,

2005; Rodriguez et al., 2004). Importantly, the topology

of type I and II circuits does not preclude the possibility

of posttranscriptional control of the miRNA. For example,

the miRNA need not be immediately active after transcrip-

tion in both circuit types (e.g., a delay between transcrip-

tion and maturation).

Negative Autoregulatory Feedback

by Embedded miRNAs

The prevalence of type I signatures suggests that miRNAs

may be often employed in negative feedback circuits (Fig-

ure 1). An interesting instance of negative feedback cir-

cuits involves the targeting of a host gene by its own

embedded miRNA(s). Based on TargetScanS predictions,

we identified three autofeedback miRNAs in human

(miR-26a, -128b, and -488; Table S1a). Since prior exper-

iments have shown that nonconserved sites can confer

normal levels of repression when the target transcript is

coexpressed with the miRNA (Brennecke et al., 2005;

Farh et al., 2005), and that high-affinity sites without

perfect seed matches may also be functional in vivo

(e.g., good 30 compensatory matches [Brennecke et al.,

2005]), we identified 18 additional putative negative auto-

feedback loops (Tables S1b and S1c) by searching for

nonconserved seed matches and high-affinity sites

(DG < �20 kcal/mol).

Type I and II Circuits in Neural Development

The positively correlated expression of miRNAs and tar-

gets in type I circuits could be due to their sharing of

cis regulatory modules regulated by common upstream

transcription factors. In neuronal development, NRSF is

a master transcriptional repressor that inhibits the expres-

sion of neuronal genes in nonneuronal cells and in neuro-

nal progenitors prior to differentiation (Chong et al., 1995).

Experimental and computational studies have identified

hundreds of protein-coding genes and a handful of
.
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miRNAs (e.g., miR-9, -29, and -135b) under the control of

NRSF (Conaco et al., 2006; Mortazavi et al., 2006; Wu and

Xie, 2006). Notably, miR-29 and miR-135b have statisti-

cally significant CE scores (2.27 and 2.68, respectively)

in genes with NRSF binding sites and brain-

enriched expression patterns (data not shown), suggest-

ing that a larger-than-expected number of functional

targets of miR-29 and miR-135b are corepressed by

NRSF, and they may be coactivated as NRSF level goes

down during neuronal development. Interestingly, the

30UTR of NRSF has conserved putative binding sites for

both miR-29 and miR-135b, likely forming type II circuits

(Wu and Xie, 2006). Indeed, in principle a miRNA can be

involved in a large number of type I and/or II circuits be-

cause a miRNA can target multiple genes (Figure 6A)

and can be transcriptionally regulated via different cis reg-

ulatory modules (Figure 6B).

Potential Functions of Type I Circuits

Recurrent network motifs are likely a result of convergent

evolution at the network level, presumably because

certain circuit topologies are particularly versatile in carry-

ing out important functions in cells. A plausible function of

the miRNA-mediated negative feedback/feedforward

loop (MNFL) in type I circuits is to define and maintain

target protein steady states. The eukaryotic cell is a noisy

environment in which transcription often occurs in a burst-

ing manner (Blake et al., 2006; Golding et al., 2005; Raj

et al., 2006), causing the number of mRNAs per cell—

which can go as low as fractions of a copy when averaged

over a population—to fluctuate significantly. Since other

processes in gene expression, such as mRNA degrada-

tion and protein translation, are also stochastic in nature,

protein levels in turn may fluctuate considerably over time

(Kaern et al., 2005). Importantly, such fluctuations can

propagate through the network, e.g., fluctuations in the

level of an upstream transcription factor can contribute

significantly to expression fluctuations of downstream

genes (Pedraza and van Oudenaarden, 2005; Rosenfeld

et al., 2005).

In type I circuits (Figure 1), any deviation from the up-

stream factor (U)’s steady state would drive the target

(T) and miRNA (m) away from their steady states in the

same direction; thus, m could tune the production rate

of T opposite to the direction of U’s fluctuation. Such

noise buffering helps to maintain target protein homeosta-

sis and ensures more uniform expression of T within a cell

population. This may be desirable for cells that are ultra-

sensitive to the level of T, where any significant drift

from the desired steady state may lead to pathological

consequences. In addition, since the level of m defines

T’s translation rate, their coexpression may allow m to

fine-tune T’s steady state (Bartel and Chen, 2004). Com-

pared to transcriptional repressors, miRNAs may be es-

pecially effective in such circuits because they likely can

tune target protein levels more rapidly at the posttran-

scriptional level. Thus, miRNAs could significantly shorten

the response delay, leading to more effective noise buffer-
Mole
ing, as well as precise definition and maintenance of

steady states.

Noise buffering by type I circuits may be especially

common in circuits with positive feedback loops where

fluctuations in any component can be amplified, driving

the system to switch states (Figure 6C). Having MNFL in

such networks may dampen network component fluctua-

tions and avoid random switching events. The c-Myc/

E2F1/miR-17-92 network (O’Donnell et al., 2005; Syl-

vestre et al., 2006) is a good example of such a circuit

(Figure 6D), where the MNFLs may prevent noise-driven

Figure 6. Circuits with miRNA-Mediated Positive and Nega-

tive Feedback Loops

(A) The NRSF/miR-29 network. A miRNA can be embedded in both

type I and II circuits. In addition to potentially targeting NRSF,

miR-29 putatively targets a significant number of neuronal genes (T)

that are corepressed by NRSF.

(B) Illustrates how a miRNA can be embedded simultaneously in both

type I and II circuits in relation to a single target. U1 and U2 regulate the

miRNA and its target via different cis regulatory modules. Depending

on whether U1 or U2 is active, the expression of the miRNA will posi-

tively or negatively correlate with that of the target.

(C) A hypothetical toggle-switch network with two transcription factors

(T1 and T2) and two miRNAs (m1 and m2) with both type I (T1-m1/T2-m2)

and type II (T1-m1-T2 and T2-m2-T1) circuits. Such networks are typi-

cally characterized by two stable states where only one of T1 or T2 is

active. Each miRNA is involved in a positive and a negative feedback

loop. The former functions in conjunction with other positive feedbacks

to reinforce the active state (T1 or T2 active) and allow transient signals

to turn the circuit on or off. The latter could buffer fluctuations and pre-

vent random switching events. MiRNAs may be especially effective at

providing feedback with short delays.

(D) The c-Myc/E2F1/miR-17-20 network in human. c-Myc and E2F1

can activate each other’s transcription, and both can activate the tran-

scription of the miR-17 miRNA cluster. Two type I circuits are present:

the miR-17-mediated negative feedback to E2F1 and the c-Myc-

activated feedforward loop to E2F1. These negative loops mediated

by miRNAs could prevent random activation of c-Myc/E2F1 due to

fluctuations in their expression.
cular Cell 26, 753–767, June 8, 2007 ª2007 Elsevier Inc. 763
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transitions into proliferation. An example of such random

switching phenotypes was observed in the yeast galac-

tose network (GAL), which contains both positive and

negative feedbacks, although the negative feedback

loop is mediated by proteins instead of miRNAs. When

the negative feedback in the network was removed, the

GAL genes in the network would randomly switch on

and off over time regardless of whether the network is

induced (Acar et al., 2005). Given that positive feedback

circuits are abundant in genomes (Brandman et al.,

2005; Ferrell, 1999), we surmise that miRNAs are fre-

quently coupled to such networks to provide fast feed-

back response.

Another potential function of type I circuits is the regu-

lation of local translation in neurons. It has been proposed

that the translation of neuronal mRNAs is often repressed

in transport granules and at local synapses and that the

inhibition can be released in response to synaptic activity

(reviewed in Kiebler and Bassell [2006]). Neuronal miRNAs

may be transcriptionally coactivated with their targets and

constitutively lower their targets’ translation rate to facili-

tate activity-dependent local translation. Consistent with

this notion, a brain-specific miRNA, miR-134, has been

shown to function directly as a repressor of LimK1 trans-

lation under basal conditions. This inhibition can be re-

lieved by the BDNF signaling pathway, thereby allowing

for local translation and spine growth (Schratt et al.,

2006). Although the detailed molecular mechanisms

remain to be identified, the enrichment of type I bias in

the NCELL data set supports the idea that miRNAs have

important functions in local translation and synaptic

plasticity.

Potential Functions of Type II Circuits

In type II circuits, a miRNA regulates its targets coherently

with transcriptional control, thereby reinforcing transcrip-

tional logic at the posttranscriptional level. Under condi-

tions in which the target genes are transcriptionally

suppressed, such circuits can serve as a surveillance

mechanism to suppress ‘‘leaky’’ transcription of target

genes (Bartel and Chen, 2004; Hornstein and Shomron,

2006; Stark et al., 2005). While the basic function of

type II circuits is intuitive, it can have sophisticated

functions in networks. For instance, the miRNA-mediated

repression in type II circuits can be part of a positive feed-

back loop in which the target gene encodes a transcription

factor that can downregulate the miRNA’s expression.

Such an example can be found in Drosophila eye develop-

ment, where the reciprocal repression between miR-7

and Yan ensures their mutually exclusive expression

pattern: Yan is expressed in progenitor cells and miR-7

in photoreceptor cells (Li and Carthew, 2005). This circuit

can be switched by EGFR signaling, which transiently trig-

gers Yan degradation. A decrease in Yan levels relieves

miR-7 from transcriptional repression, subsequently lead-

ing to the depletion of Yan in photoreceptor cells (Li and

Carthew, 2005). Positive feedback loops are often

employed in such toggle-switch circuits where a transient
764 Molecular Cell 26, 753–767, June 8, 2007 ª2007 Elsevier Inc
signal can be converted into a long-lasting cellular

response (Ferrell, 2002). Since most putative targets

have only one binding site for a miRNA, it is likely that

miRNAs would act in concert with other miRNAs and/or

regulatory processes to increase the feedback strength.

We speculate that miRNAs may be involved in a large

number of similar positive feedback loops to enhance

the robustness of irreversible cellular differentiation.

Conclusion

Our results provide strong evidence that coordinated tran-

scriptional and posttranscriptional regulation via miRNAs

is a recurrent motif to enhance the robustness of gene

regulation in mammalian genomes. If, as suggested by

our findings, miRNA-mediated repression tends to play

modulatory and/or reinforcing roles in networks, miRNA

loss-of-function phenotypes may be subtle, and quantita-

tive experimentation at the single-cell level (Acar et al.,

2005), for instance, may be necessary to reveal their func-

tions. Further exploration of miRNA-mediated repression

in the context of GRNs will provide a comprehensive

view on how gene expression is regulated at the systems

level.

EXPERIMENTAL PROCEDURES

Embedded miRNAs

Human and mouse RefSeq (Wheeler et al., 2006) genes and miRNA

genomic coordinates were extracted from the UCSC 2004/May

human and 2005/March mouse databases, respectively (http://

genome.ucsc.edu/). We picked embedded miRNAs that reside on

the same strand as the host, either in introns or UTRs of RefSeq genes.

Gene Expression Data Processing and Host Transcript Mapping

The prenormalized Novartis human/mouse atlas data, along with the

probe annotations, were downloaded from Novartis (http://wombat.

gnf.org/index.html). The prenormalized MDEV and NCELL data were

downloaded from the NCBI GEO database (http://www.ncbi.nlm.nih.

gov/projects/geo/). We assigned an integer ID to probes on each

microarray for ease of reference (Tables S7–S9). Probes for individual

miRNA host genes were mapped, and erroneous probes were

removed before further analysis (see the Supplemental Data). To

obtain relative expression levels, log-transformed expression of indi-

vidual probes on an array is further normalized by subtracting the

probe median across conditions and dividing by the corresponding

standard deviation.

Hierarchical Clustering and Gene Groups

The hierarchical clustering module in GenePattern (Reich et al., 2006)

was used. The parameters used were: average linkage, row centered

with median, and distance using Pearson correlation. Spearman-

ranked correlation was also tested as the distance measure, but the

results were essentially the same.

Target Predictions

We implemented the TargetScanS (Lewis et al., 2005) algorithm,

where we searched for 7-mer seed matches in the 30UTRs of RefSeq

genes. 30UTRs were downloaded from the UCSC human/mouse data-

base (see above), along with their multiz alignments. Given the multi-

ple alignment of each UTR, we searched for 7-mer (no gaps) human

miRNA seed matches (m1-m7 and m2-m8) that are perfectly con-

served across the human, mouse, rat, and dog genomes.
.

http://genome.ucsc.edu/
http://genome.ucsc.edu/
http://wombat.gnf.org/index.html
http://wombat.gnf.org/index.html
http://www.ncbi.nlm.nih.gov/projects/geo/
http://www.ncbi.nlm.nih.gov/projects/geo/
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Targeting Bias Calculations

For each embedded miRNA host probe, we compiled a ranked list of

genes based on their expression correlation to the probe. We then

counted the number of genes (Kx) in a miRNA’s predicted target set

(T) that overlap with each of the X percentiles (where X can be top

ten, middle ten, or bottom ten) of the ranked list. If miRNA target pre-

diction is random, on average we expect 10% of the predicted target

set to overlap each of these sets. Since target prediction corresponds

to sampling without replacement, the sampling distribution is hyper-

geometric with parameters (N, 0.1 N, jTj), where N is the total number

of genes; the sampling variance (s) can be computed exactly as:

s = 0:09,jT j,ðN� jT jÞ
N� 1

:

We then computed the z score for each of the X percentile sets to

indicate the degree of enrichment:

Z =
Kx � 0:1,jT j

ffiffiffi

s
p :

The exact p value for enrichment (or depletion) can be obtained by

computing the cumulative distribution of the above hypergeometric

distribution.

Conservation Enrichment Analysis

For each miRNA host probe, we generated a ranked list of genes

based on their expression correlation to the host probe. Since some

genes can be represented by multiple probes on the microarray, we

removed such redundancies so that each entry in the ranked list is

unique. The rest of the procedure is as described in the main text (Fig-

ure 3). For the background distribution estimation, we randomly sam-

pled 1000 times K genes from all unique genes on the microarray,

where K equals 10% of the total number of unique genes on the array.

For each random sample, we computed the CE score for miRNA

seeds of interest. The empirical CE score distributions of miRNA

seeds are sufficiently normal so that less than 5% of the random sam-

ples have CE > 1.65 for all seeds, so we report the CE score only. To

generate the DCE heatmaps (e.g., Figure 4A), the maximum DCE

scores of the two seed matches (m1-7 or m2-8) are displayed for

each miRNA/probe combination.

Predicting Autofeedback Loops

Conserved loops came directly from TargetScanS predictions. For

nonconserved loops, the 30UTRs of host genes were scanned for

7-mer seed matches of the respective embedded miRNA. We used

Miranda (Enright et al., 2003; John et al., 2004) to scan for energeti-

cally favorable binding sites. The parameters used were the following:

score cutoff, 50; free energy cutoff, �20; scale, 4 (to bias 50 matches

with a factor of 4); gap extension penalty, �4 (to allow loops toward

the 30 end).

Identifying Brain-Enriched miRNAs

Standard k-means (k = 40) clustering was applied to the Novartis

mouse atlas using the Cluster tool (Eisen et al., 1998). We computed

the CE scores of all known miRNA seeds for one of the resulting clus-

ters that contains 1012 RefSeq genes that are expressed in the brain

tissues profiled.

Supplemental Data

Supplemental Data include 11 tables, 6 figures, supplemental text,

and Supplemental References and can be found with this article online

at http://www.molecule.org/cgi/content/full/26/5/753/DC1/.
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