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SUMMARY
Hypertrophic cardiomyopathy (HCM) is a genetic heart disease that is characterized by unexplained
segmental hypertrophy that is usually most pronounced in the septum. While sarcomeric gene mutations
are often the genetic basis for HCM, themechanistic origin for the heterogeneous remodeling remains largely
unknown. A better understanding of the gene networks driving the cardiomyocyte (CM) hypertrophy is
required to improve therapeutic strategies. Patients suffering fromHCMoften receive a septalmyectomy sur-
gery to relieve outflow tract obstruction due to hypertrophy. Using single-cell RNA sequencing (scRNA-seq)
on septal myectomy samples from patients with HCM, we identify functional links between genes, transcrip-
tion factors, and cell size relevant for HCM. The data show the utility of using scRNA-seq on the human hy-
pertrophic heart, highlight CM heterogeneity, and provide a wealth of insights into molecular events involved
in HCM that can eventually contribute to the development of enhanced therapies.
INTRODUCTION

Hypertrophic cardiomyopathy (HCM) is a genetic cardiac disor-

der with an incidence of 1 in 200 to 500 individuals (Maron et al.,

2014; Semsarian et al., 2015). The phenotype can vary from

essentially asymptomatic to end-stage heart failure or cause

life-threatening arrhythmias (Maron and Maron, 2013). Typically,

patients carry a pathologic DNA variant in genes encoding

sarcomere proteins. b-myosin heavy chain (MYH7) and myosin

binding protein C (MYBPC3) are the genes most commonly

involved; however, the causal genes in approximately 40% of

patients with HCM remain to be identified (Marian, 2010). Clini-

cally, HCM is characterized by unexplained segmental hypertro-

phy that is usually most pronounced in the basal interventricular

septum (Marian and Braunwald, 2017). Myocyte disarray, a

pathological hallmark of HCM, involves 5% to 40% of the

myocardium, and is usually mainly present in areas of more se-

vere hypertrophy. Other key histological features include intersti-

tial fibrosis and vascular abnormalities (Marian and Braunwald,

2017).

To date, the molecular mechanisms that underlie the remodel-

ing processes in HCM remain largely unclear. While it has been

suggested that myocyte disarray and hypertrophy are a direct
This is an open access article under the CC BY-N
result from changes in sarcomere function induced by the

HCM-related mutations (Di Domenico et al., 2012), recent work

suggests that the HCM phenotype might also be triggered by a

functional imbalance among individual cardiomyocytes (CMs).

Unequal force generation between adjacent CMs can initiate

CM and myofibrillar disarray and trigger stretch-induced

signaling leading to development of interstitial fibrosis and hy-

pertrophy (Montag et al., 2018; Parbhudayal et al., 2018).

Single-cell RNA sequencing (scRNA-seq) provides a detailed

view on gene expression differences between cell types or tran-

scriptome heterogeneity across cells of the same type (Grun

et al., 2014; Kolodziejczyk et al., 2015),. Recently, we developed

an approach that allows us to obtain single-cell transcriptomic

data from all main cardiac cell types of the adult murine heart un-

der both healthy and diseased conditions (Gladka et al., 2018).

While several studies by now have used scRNA-seq to study

adult cardiac biology in an in-depth manner (Farbehi et al.,

2019; Gladka et al., 2018; Hu et al., 2018; Kretzschmar

et al., 2018; Larson and Chin, 2021; Nomura et al., 2018; Ren

et al., 2020; Sereti et al., 2018; Skelly et al., 2018), even on adult

human CMs (Cui et al., 2019; Nomura et al., 2018; Wang et al.,

2020), so far this has not been done on cells from human HCM

myectomy samples.
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Here we used scRNA-seq to study cellular transcriptional dif-

ferences between healthy and hypertrophic CMs and employed

this expressional heterogeneity to link gene expression profiles

to cellular characteristics related to HCM. In-depth analysis of

the scRNA-seq data from HCM CMs indicated the presence of

subpopulations of CMs to which each patient contributed. In

addition, we were able to identify HCM-related gene correla-

tions. Using these data, we could identify groups of genes that

are co-expressed (regulons [Aibar et al., 2017]) and we were

able to link these to transcription factors (TFs) that are potentially

responsible for their activation. In addition, index-sorting data

enabled us to correlate gene expression profiles to CM hypertro-

phy and confirmed myosin light chain (MYL2/MLC-2) expression

in larger CMs. Together these data indicate CM heterogeneity in

the human heart and show that scRNA-seq provides insights into

cellular and molecular mechanisms that are potentially relevant

for HCM.

RESULTS

Single-cell gene expression analysis of septal
myectomy samples from patients with HCM
Patients with HCM show a heterogeneous remodeling response

that is characterized by localized CM hypertrophy, disarray, and

fibrosis (Marian and Braunwald, 2017). To explore the molecular

mechanisms underlying the cellular heterogeneity observed in

HCM, we aimed to examine differential gene expression be-

tween individual CMs. To this end, we collected cardiac tissue

from patients with HCM who underwent a septal myectomy for

outflow tract obstruction and processed the tissue for scRNA-

seq (Figure 1A). Histological analysis of the myectomy samples

confirmed key hallmarks of HCM (Figure 1B). To achieve this,

we used our previously optimized digestion and sorting strategy

(Gladka et al., 2018). We enzymatically dispersed cardiac tissue

into a single-cell suspension and sorted cells into 384-well

plates, where we gated for larger, single cells to enrich for CMs

(Figures S1A and S1B). This gating strategy resulted in intact

and nucleated cells, as resorting of this population indicated

82% of the cells to be DRAQ5 positive and DAPI negative

(Figures S1C andS1D). DRAQ5 is able to enter live cells and stain

nuclear DNA (Smith et al., 2004), whereas DAPI selectively stains
Figure 1. Single-cell analysis of septal myectomy samples from patien

(A) Schematic representation of the human heart highlighting the septal myectom

(B) Masson’s trichrome staining of myectomy tissue from a patient with HCM sh

(C) UMAP showing transcriptome similarities between HCMcells acquired in this s

(Ctrl1 and Ctrl2, respectively light gray and dark gray dots).

(D) Violin plots of the normalized unique molecular identifier (UMI) counts for N

HCM CMs.

(E) UMAP showing transcriptome similarities between HCM cells only. The color

(F) Bar graph showing the contribution of each of the five patients (P1–P5) to eac

(G) Top 10 most enriched genes in each cluster and their FC enrichment in the

expression for each cluster (HOMER and Lisa) and cluster-enriched genes (p < 0.0

cells in the cluster over all cells outside the cluster.

(H) UMAPs depicting the expression of the top 4 enriched genes for each cluste

coded linear scale.

(I) Composite expression of HCMcluster enriched genes (see E–G), projected on U

sion is determined by cell-averaged Z scores of enriched gene sets (FC > 1.1, p <

left ventricle. See also Figures S1 and S2, and Tables S1 and S2.
nuclei of compromised cells. Events that are DRAQ5+ and

DAPI� must therefore contain uncompromised cells with a nu-

cleus. With each sort, we additionally collected cells for micro-

scopy and RNA quality control. Imaging the cells after sorting

visually indicated that we were sorting intact cells (Figure S1D).

RNA quality from the dispersed and sorted cells was retained,

as indicated by RNA Integrity Number (RIN) (Schroeder et al.,

2006) (Figure S1E). Together these data showed that our proto-

col allowed for the isolation of good-quality RNA from individual,

intact cells collected from human septal myectomy samples. To

obtain single-cell transcriptomes of individual cardiac cells

from myectomy samples, we used the SORT-seq protocol, as

described previously (Gladka et al., 2018; Grun et al., 2015).

Transcript abundance per gene was quantified by using a

custom mapping pipeline using STAR and featureCounts (see

STAR Methods for additional details); 33% ± 12% of transcripts

mapped to the mitochondrial genome (Figure S1F), which is

consistent with results from previous studies (Kannan et al.,

2019). Reads mapping to the mitochondrial genome were

excluded from data, since they interfere with the downstream

analysis. After filtering cells for a minimum of 1,000 transcripts

mapping to the nuclear genome, a total of 2,292 cells from

five different septal myectomy samples with an average number

of 2,201 unique non-mitochondrial reads per cell were included

for downstream in silico analysis (Figure S1G). A Uniform Mani-

fold Approximation and Projection (UMAP) map for MYH7, a

well-known CM marker, confirmed the far majority of the re-

maining cells to be CMs (Figure S1H). Together these data

show we were able to collect reliable scRNA-seq data from

HCM CMs to start exploring potential disease underlying

mechanisms.

scRNA-seq identified HCM-related gene expression
changes
To identify HCM-related gene expression changes, we next

combined our scRNA-seq data with gene expression data

from healthy adult human CMs. To do so we included scRNA-

seq data from healthy left ventricular (LV) CMs from Wang

et al. (Ctrl1, n = 1400) (Wang et al., 2020) and from septal CMs

from Litvi�nuková et al. (Ctrl2, n = 27604) (Litvi�nuková et al.,

2020) (Tables S1 and S2). To prevent batch effects stemming
ts with HCM reveals different subpopulations of CMs

y sample used for this study.

owing fibrosis, myocardial disarray, and CM hypertrophy.

tudy (red dots), and cells from healthy donors frompreviously published studies

PPA, NPPB, ACTA1, and MYH7 indicating an induction of stress markers in

s represent the clusters identified by Seurat.

h of the Seurat clusters.

respective cluster. The bottom three rows show TFs potentially driving gene

1) with the largest regulatory potential (TRIAGE). Enrichment was calculated for

r. Expression in UMAPs is shown as normalized transcript counts on a color-

MAPswith pooled cells fromHCM, Ctrl1, and Ctrl2 (see C). Composite expres-

0.05) per cluster (Cl.1–5). RA, right atrium; RV, right ventricle; LA, left atrium; LV,
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from bio-informatic analyses as much as possible, we down-

loaded raw FASTQ files and re-mapped Ctrl1 using our own

pipeline. For Ctrl2, we downloaded available mapped data, as

the Ctrl2 mapping pipeline closely matched our pipeline (see

STAR Methods for additional details).

Next, the Seurat algorithm was applied for identification and

clustering of cells (Figures S2A-S2C) (Stuart et al., 2018). Cells

appeared to separate from each other based on origin, with

the majority of HCM cells clustering away from cells coming

from control hearts (Figure 1C). Clustering analysis identified

five different CM clusters (Figure S2A), with cluster 4 mainly rep-

resenting CMs from HCM hearts (Figure S2B). This HCM cluster

was enriched for well-known cardiac stress marker genes, such

asMYH7, NPPA, and XIRP2 (Figure S2C and Table S3), which is

in line with these cells being diseased compared with the control

cells. Also, when plotting the individual expression levels of these

cardiac disease-related genes, we could show a clear induction

in the HCM CMs compared with both sets of control cells (Fig-

ure 1D). Functionally, the HCM cluster and cluster 5, which

mainly contains Ctrl1 cells, show similar enrichment of gene

ontology (GO) terms related to energy metabolism, which might

be explained by the fact that HCM and Ctrl1 processed whole

cells for sequencing, as opposed to Ctrl2, which mainly consists

of sequenced CM nuclei (Figure S2D). Nevertheless, these data

indicate the HCM CMs to express disease-related gene expres-

sion profiles that might provide insights into mechanisms rele-

vant for cardiac remodeling during HCM.

scRNA-seq reveals different subpopulations of HCM
CMs
To start exploring the gene expression profiles underlying the

cellular heterogeneity in HCM, we next focused in on the CMs

coming from HCM hearts. Clustering analysis on the 2,292

included cells revealed six clusters to which every patient

contributed (Figures 1E–1G, S2E, and Table S4). Even though

we were unable to detect a clear separation between clusters

1 to 4, we could confirm gene enrichment by UMAP (Figure 1H).

This suggests gene expression differences in the clusters to be

gradual instead of bimodal with heterogeneous cell-to-cell differ-

ences in gene expression. These clusters might represent differ-

ential gene regulation between different groups of single CMs,

which could be related to functionally different pathogeny and/

or disease progression at the single-cell level. To identify poten-

tial drivers of this regulation, we then applied HOMER, Lisa, and

TRIAGE, which are software packages that can be used to iden-

tify regulatory factors based on gene subsets, to the lists of clus-

ter-enriched genes (Figure 1G).

To explore the functional relevance of the different clusters, we

performed GO analysis on the genes that showed significant

enrichment per cluster (adjusted p < 0.05 and fold-change

(FC) > 1.1) (Figure S2F). Clusters 1–2 showed GO term enrich-

ment for terms related to the sarcomere, suggesting this sub-

population has more pronounced sarcomeric remodeling (or re-

tainment) compared with other cells. Clusters 3 and 4 on the

other hand showed GO terms related to signaling and metabolic

processes, respectively. UMAPs containing both control and

HCM CMs showed that genes enriched in HCM clusters 1 to 4

are HCM specific (Figure 1I).
4 Cell Reports 39, 110809, May 10, 2022
In summary, scRNA-seq on human myectomy samples re-

vealed the presence of functionally different subpopulations of

CMs in the human HCM heart, which could be relevant for the

disease.

NPPA expression is specific for a subset of CMs in
patients with HCM
Classically, cardiac expression levels of Natriuretic Peptide A

and B (NPPA/ANP and NPPB/NBP) have served as a hallmark

for CM hypertrophy, stress or failure (Man et al., 2018).

Though almost all HCM cells are expressing higher levels of

NPPA compared with Ctrl samples (Figure 1D), our clustering

analysis indicated the presence of a subpopulation of HCM

CMs that is even more enriched for NPPA (cluster 3) (Figure 1G).

The heterogeneity in NPPA expression was visualized by a

UMAP indicating the NPPA expression per cell (Figure 1H). We

next used our scRNA-seq data to determine which genes

show a correlation with NPPA. By taking a cutoff of 0.01 for

the adjusted p value, we identified 83 positively correlated genes

and 48 negatively correlated genes (Figure 2A and Table S5). By

far the strongest positive correlation was found for NPPB, which

is in line with expectations (Kretzschmar et al., 2018). UMAP

confirmed the overlap for positively correlated genes (Figure 2B)

and the negatively correlated genes (Figure 2C). Interesting to

note is that genes related to muscle contraction (TTN and

RYR2) and heart disease (XIRP2 and CRYAB) showed a lower

abundance in the cells with higher levels of NPPA.

Immunohistochemistry for ANP on myectomy samples indi-

cated the ANP-positive cells to predominantly border fibrotic

areas in the HCM samples (Figure 2D), while no positive cells

could be detected in a control heart (Figure 2E). The HCM-spec-

ificity was further confirmed by comparing NPPA expression in

HCM versus Ctrl cells, which showed very few Ctrl cells express

NPPA (Figures 1D and 2F). The positive correlations for the top

correlated genes were consistently found in multiple patients

with HCM, indicating the correlation represents biology rather

than it being by chance or dominated by data from a single pa-

tient (Figure 2G). The near absence of NPPA expression in the

majority of CMs from control hearts made a comparable correla-

tion analysis not applicable in those. In general, the NPPA posi-

tively correlated genes appeared more abundant in HCM CMs

than cells coming from control hearts (Figure 2H).

These data indicate that while overall NPPA expression is

higher in HCM CMs, there is a subpopulation of CMs that is en-

riched for NPPA and NPPB that are located in stressed, fibrotic

regions in HCMhearts that is absent in control human heart sam-

ples. The gene expression profile of these cells could help us

identify genes involved in the CM stress response.

XIRP2 correlations are more pronounced in HCM CMs
Xin Actin Binding Repeat Containing 2 (XIRP2) is expressed in

cardiac and skeletal muscle where it interacts with actin and

a-actinin. It localizes to the costamere and intercalated disks,

two critical structures for cardiac function (Farrell et al., 2018).

While relatively little is known about XIRP2 function, mutations

in XIRP2 have been linked to dilated cardiomyopathy (DCM)

(Long et al., 2015) and an increase in expression was observed

in cardiac tissue from mice with a loss of cMyBP-C (Farrell
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Figure 2. A subpopulation of HCM cardiomyocytes shows increased NPPA expression

(A–C) (A) Volcano plot depicting genes positively (red dots) and negatively (blue dots) correlated to NPPA with an adjusted p value < 0.01. B-C, UMAPs showing

the expression level of genes positively (B) and negatively (C) correlated to NPPA. Expression in UMAPs is shown as normalized transcript counts on a color-

coded linear scale.

(D) Representative Masson’s trichrome staining (above) and ANP staining (below) on human HCMmyectomy tissue showing ANP to be most expressed in CMs

bordering areas of fibrosis.

(E) Immunohistochemical staining showing ANP-expression in an explanted control and HCM heart.

(F) UMAP of NPPA expression in all datasets showing HCM CMs to have more NPPA positive cells compared to healthy adult CMs.

(G) Heatmap depictingNPPA correlation coefficients with listed genes determined from the respective patients with HCM separately. A t test was performed with

Benjamin & Hochberg correction, black dots indicate that the correlation is considered significant (p < 0.05).

(H) Comparison of expression ofNPPA andNPPA-correlated genes between the HCMandCtrl cells. Expression of each genewas first normalized (Z score), after

which average expression was determined per donor (black dots). Bars indicate averages per condition. Error bars show SEM. Outliers were removed by using

the ROUT test with Q = 1% and a one-way ANOVA test was performed. *p % 0.05; **p % 0.01, ***p % 0.001; ****p % 0.0001.
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et al., 2018). Based on our clustering, we found XIRP2 to be the

most enriched gene for cluster 2 (Figure 1G) and negatively

correlated with NPPA expression (Figures 2A and Table S5).

Correlation analysis for XIRP2 showed the strongest positive

correlation with CMYA5, ZNF106, and MAP4 expression, while
genes like ACTC1 and MYBPC3 showed a negative correlation

(Figure 3A, S3A and Table S6). To assert whether the XIRP2-

gradient gene expression (Figure 1H) was based on biology

and not by chance or dominated by the data from a single pa-

tient, we looked into XIRP2 expression for each individual
Cell Reports 39, 110809, May 10, 2022 5
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Figure 3. A subpopulation of HCM CMs shows increased XIRP2 expression

(A) Volcano plot depicting genes positively (red dots) and negatively (blue dots) correlated to XIRP2 in patients with HCM with an adjusted p value < 0.01.

(B) Heatmap depicting correlation coefficients between XIRP2 and listed genes, determined in the listed donors. The top 25 genes most correlated to XIRP2 in

HCMare shown (based on average correlation coefficient in patients with HCM). A t test was performedwith Benjamin & Hochberg correction, black dots indicate

that the correlation is considered significant (p < 0.05).

(C) Comparison of expression of XIRP2 and XIRP2-correlated genes between the HCMandCtrl cells. Expression of each genewas first normalized (Z score), after

which average expression was determined per donor (black dots). Bars indicate averages per condition. Error bars show SEM. Outliers were removed by using

the ROUT test with Q = 1% and a one-way ANOVA test was performed. *p % 0.05; **p % 0.01, ***p % 0.001; ****p % 0.0001. See also Figure S3.
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patient. Patient-specific UMAPs confirmed the presence of a

XIRP2-gradient in each patient (Figure S3B), and a comparable

expression profile for the correlated genes CMYA5 and TTN

(Figures S3C and S3D). Histology confirmed the heterogeneity

in TTN expression at the protein level (Figure S3E). However,

this heterogeneity was also observed in control tissue, indicating

that healthy cells also show some degree of heterogeneity.

These findings are in line with previous research showing that

TTN is one of a set of proteins that have a mosaic expression

pattern in the heart (Wang et al., 2018).

To determine whether these co-expression patterns are spe-

cific for HCM, we next assessed these correlations in control

CMs. This indicated the co-expression of these genes to be

more pronounced in cells from HCM hearts compared with con-

trol CMs (Figures 3B and S3A), making them potentially disease

relevant. Based on expression levels, the majority of the XIRP2

correlated genes also appeared to be more abundantly present

in HCM CMs than in CMs from control hearts (Figure 3C).
6 Cell Reports 39, 110809, May 10, 2022
Taken together, these data underline the validity of our

observed gene expression profiles, and indicate the XIRP2

gene correlations to be more pronounced in CMs from HCM

hearts, which could be relevant for the disease.

Regulon analysis reveals potential gene modules and
TFs driving HCM
Clustering of cells offers a way to determine cellular subpopula-

tions, which can be used to identify relevant gene expression

patterns. However, many gene expression programs are likely

to be active in the diseased heart, and they do not necessarily

all need to coincide with subpopulations identified by clustering.

Thus, to further identify gene expression patterns that might

be relevant to HCM, we used SCENIC (Aibar et al., 2017) to

look for patterns in our heterogeneous HCM single-cell expres-

sion data. The aim of this software is to identify potential regu-

lons: groups of co-expressed genes driven by a specific TF. To

achieve this, it uses machine learning methods to fit expression
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Figure 4. SCENIC analysis of gene expression heterogeneity reveals potential regulatory interactions

(A) Regulons determined in each patient with HCM using SCENIC. Regulons are named according to the TF suggested to regulate them. Color coding indicates

the normalized area under the curve score (NES), which relates to the confidence in the link between the TF and its associated genes (yellow to red). Blue indicates

a regulon was not detected in respective patient. Only regulons identified in >1 patient are listed.

(B) Graph showing the fraction of identical genes between patients.

(C) Table depicting the five top genes within each regulon based on median gene importance scores.

(D) Projection of the composite expression of indicated regulons on the HCM dataset UMAP. Composite expression is calculated by first normalizing gene

expression (Z score), and then calculating the mean of regulon member genes expression per cell. Expression is shown by a color-coded linear scale. See also

Figures S4 and S5.
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patterns of genes to expression patterns of TFs. These fits are

used to determine potential regulons, which are further refined

through TF motif analysis. We ran SCENIC separately on data

of each of the five patients. To narrow down regulons of general
importance to HCM, we first selected regulons identified in three

or more (of five) patients (Figure 4A), and then selected regulons

most consistently linked to the same group of genes (Figure 4B).

This identified 22 regulons (Figure 4C and Table S7) that showed
Cell Reports 39, 110809, May 10, 2022 7
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Figure 5. Gene expression heterogeneity reveals patterns of gene coregulation

(A) Patient-specific heatmaps of the Pearson correlationmatrix of a subset of detected genes that are expressed in >20%of cells and have a significant (p < 0.001)

correlation with at least 10 other genes. Hierarchical clustering was used to identify regulons in each of the patients.

(B) Top 10 genes found in each module (based on average correlation to other module member genes). The bottom row indicates TFs potentially regulating

respective modules, as determined by HOMER analysis.

(C) UMAPs showing the composite module expression in the HCM dataset. Composite expression is mean Z score of the member gene expression levels, rep-

resented by a linear color-coded scale. See also Figures S4 and S5.
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heterogeneous expression over our single cells, as determined

by the average expression Z score of member genes (Figure 4D).

GO analysis of these regulons showed functional differences be-

tween the regulons that might be related to processes relevant

for hypertrophy and cell-signaling in HCM; for example, some

regulons could be linked to energetic or metabolic processes,

while some others were linked to sarcomere or cytoskeleton or-

ganization, and again others to membrane targeting of proteins

(Figure S4A).

Gene expression is often determined by posttranscriptional

activation of TFs, rather than by differential expression of TFs.

As SCENIC is based on TF differential expression data (Aibar

et al., 2017), we next searched for groups of co-expressed genes

(modules) independently of TF expression patterns. To do so, we

selected genes that were detected in all patients and expressed

in at least 5% of all cells (1871 genes) and generated gene-gene

correlation matrices for each patient. We then selected all genes

that had a significant correlation with at least 10 other genes

(respectively 356, 334, 382, 120, 389 genes per patient). Hierar-

chical clustering analysis on the correlation matrix for these

genes resulted in patient-specific modules (Figure 5A). Strik-

ingly, patient-to-patient comparison of the identified modules

gave rise to five sharedmodules that were consistently identified

in each of the patients (Figures 5B, S4B, and S4C and Table S8),

indicating the modules to be of biological significance. The
8 Cell Reports 39, 110809, May 10, 2022
expression of these shared modules marks different cell popula-

tions, as can be seen when visualized on a UMAP (Figure 5C).

Based on gene content, we again see functional differences be-

tween the modules, where terms related to mitochondrial and

ATP (module 2), sarcomere organization (module 4), and calcium

signaling and conduction (module 5) are consistent with HCM-

related processes (Figure S4D). To identify TFs that could poten-

tially be involved in the coregulation of the genes per module, we

screened the promotor regions of these genes for binding site

enrichment using HOMER. This yielded several potential tran-

scriptional regulators (Figure 5B). Shared module 2 for example

showed an enrichment for myogenic enhancer factor 2 (MEF2)

binding sites, a well-known regulator of muscle genes (Black

and Olson, 1998), SRF and SOX9, which have all been shown

to regulate CM hypertrophy (Schauer et al., 2019; Zhang et al.,

2001). This suggest that module 2 genes might be involved in

CM hypertrophy.

Having identified regulons and modules from differential gene

expression within the HCM population of cells, we next aimed to

determine which of these regulons and modules show upregula-

tion in HCM hearts compared with healthy hearts. We first

applied the SCENIC algorithm to all donors from the Ctrl sam-

ples, and found all of the selected 22 regulons are also identified

in healthy donor CM populations (Figures S4E and S4F).

This suggests that regulatory interactions underlying this
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Figure 6. Index sorting provides a gene expression profile for enlarged CMs

(A and B) Correlations between FSC-A and gene expression determined from patient 4 (x axis) versus those correlations determined from patient 5 (y axis). Each

gray dot corresponds to a gene. In (A), genes that occur in the top 10%FSC-A correlated genes of both patient 4 and 5 are highlighted in red, and in (B) genes that

occur in module 2 are highlighted in red.

(legend continued on next page)
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co-expression are also active in healthy CM populations. We

additionally tested whether the co-expression groups are unique

in terms of member genes, and found that there is limited overlap

between the individual regulons and/ormodules (Figure S4G). To

more directly determine HCM-specificity of the regulons and

modules, we assessed their expression in each of the patients

and donors. Strikingly, this shows that the majority of the

SCENIC regulons show enrichment in HCM, with the regulons

ZEB1, FOXN3, NFE2L1, andMAFK showing the largest contrast

between HCM and Ctrl (Figure S5A). In addition, we observe that

co-expression modules 4 and 5 show a clear HCM-enrichment

(Figure S5B).

Integration of cell size with scRNA-seq reveals
hypertrophy-associated genes
As one of the hallmarks of HCM is CM hypertrophy, it is of great

interest to integrate cell size with the transcriptomic data ob-

tained from scRNA-seq. Previously, index-sorting data have

been used to integrate morphological parameters obtained

from flow cytometry with gene expression data obtained from

scRNA-seq from bone marrow stem cells (Tan et al., 2017). To

determine the enriched genes in hypertrophic CMs, we gathered

FSC-A data in patients 4 and 5 as a proxy for cell size, which we

subsequently linked to the gene expression profile of single CMs.

To first test the validity of this approach, we correlated FSC-A

with total single-cell mRNA read count, since bigger cells are ex-

pected to contain more mRNA. This showed a positive correla-

tion between mRNA read count and FSC-A values for both pa-

tients (Figures S6A and S6B). Further correlation analysis

revealed genes that were both positively and negatively corre-

lated with cell size (Figure 6A and Table S9). While some of these

genes have previously been linked to hypertrophy (Lim et al.,

2001), we here show the correlation of these genes to CM size

on a single-cell level rather than on the organ-wide level. Interest-

ingly, the genes constituting shared module 2 showmuch higher

correlations to cell size than other genes (p = 2 3 10�12 and

p = 5 3 10�8 for patients 4 and 5, respectively) (Figures 6B,

S6C, and S6D).

In conjunction with our earlier observation that hypertrophy-

related TFs are linked to this module, this suggests module 2

might be of extra importance to hypertrophy. We therefore

aimed to validate the correlations between genes in this module

in 97 additional septal myectomy samples from patients with

HCM and nine left ventricle RNA samples from non-failing donor

hearts as controls (Control). Out of the 97 patients with HCM, 42

(43%) had a known pathogenic HCMmutation (MYBPC3, n = 26;
(C) RT-PCR showing an increase in NPPA and NPPB expression levels in patients

were performed. For NPPA, there are n = 9 Ctrl and n = 49 HCM samples, for NPP

(D) RT-PCR validation of correlation between genes identified in module 2. Pear

were performed based on HCM samples. Samples were normalized to RPL32. Pe

CRYAB, 71;CSRP3, 64;GAPDH, 62;HSPB1, 61;MB, 66;MYL3, 59;MYL9, 74; SL

values are shown in each plot.

(E) Representative immunofluorescent images from a control heart and an expla

(F) Histogram showing the different distributions in CM cross-sectional area betw

(G) Representative images of WGA (green) and MLC-2 (red) co-staining on 6 HC

(H) Quantification of CM cross-sectional area and MLC-2 fluorescence intensity (A

Q = 1%. Differences were tested by using a one-way ANOVA followed by a Tukey

trary units; *p % 0.05; **p % 0.01; ***p % 0.001; ****p % 0.0001. See also Figure
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MYH7, n = 7; multiple, n = 3; other, n = 6), while the causal mu-

tation was unknown for the rest of the patients with HCM

(Table S1).

RT-PCR analysis for NPPA and NPPB validated the disease

phenotype in the HCM samples compared with control (Fig-

ure 6C). RT-PCR confirmed that the majority of pairwise correla-

tions between the top-ranked gene inmodule 2,MYL2, and other

module 2 genes are positive (Figure 6D). In addition, pairwise

comparison of all genes in module 2 showed 81%of correlations

to be positive (Figure S6E, Table S10). These data independently

confirmed the validity of the correlations in gene expression that

were identified by scRNA-seq.

To visualize the distribution in cell size we performed Wheat

Germ Agglutin (WGA) staining on control and HCM tissue and

were able to show that CMs in HCM samples were on average

larger than in control samples and showed a wider range in

CM size (Figures 6E and 6F). In the sarcomere, myosin is formed

by two heavy chains (encoded by MYH6 and MYH7) and two

myosin light chains (encoded by MYL2 and MYL3). MYL2 en-

codes the regulatory light chain (MLC-2) whereasMYL3 encodes

the essential myosin light chain (Sheikh et al., 2015). In both pa-

tients 4 and 5, MYL3 and MYL2 were present among the genes

positively correlated to cell size (Figure 6A). To further examine

the correlation between MYL2 expression and cell size, we per-

formed MLC-2 immunostainings on six septal myectomy sam-

ples (Figure 6G) and quantified both MLC-2 intensity and cell

size. In three out of six samples we could confirm an increase

in MLC-2 protein in the larger cells (Figure 6H).

Together these data indicate that index sorting allows us to link

cell morphological parameters to gene expression profiles and

enables us to identify genes linked to CM hypertrophy.
DISCUSSION

In this study, we used scRNA-seq to define gene expression pat-

terns that are relevant for HCM. By comparing gene expression

profiles from healthy and diseased subjects we were able to

show an enrichment for known and markers of CM stress

induced in HCM hearts. In-depth analysis of genetic profiles

and gene correlations in diseased CMs revealed intercellular

gene expression differences. Based on this heterogeneity, we

bioinformatically clustered transcriptionally related cells or

genes, each of which are likely related to different cellular func-

tions. In addition, based on scatter properties of HCM CMs we

were able to correlate gene expression to cell size, which
with HCM. Outliers were removed by using the ROUT test with Q = 1%, t tests

B, there are n = 9 Ctrl and n = 36 HCM samples, mean and SEM are indicated.

son’s correlation coefficients (indicated with an R) were calculated and t tests

r gene, n values are as follows: ACTA1, 33; ACTC1, 65; CKM, 62; COX6A2, 68;

C25A3, 59; SLC25A4, 66; TNNC1, 66; TPM1, 69;UBC, 52. In addition n = 9 Ctrl

nted HCM heart stained for WGA.

een a control heart and an explanted HCM heart.

M myectomy samples.

U) in the samples from (G). Outliers were removed by using the ROUT test with

’s multiple comparisons test. FSC-A indicates Forward scatter area; AU, Arbi-

S6 and Table S1.
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contributes to a better understanding of disease-driving mecha-

nisms in HCM.

In comparing healthy versus HCMCMs, we could detect clear

transcriptional differences between the two. This included an

HCM-related enrichment of well-known marker genes for car-

diac stress, but additionally revealed genes that previously had

not been functionally linked to HCM, such as myoglobin (en-

coded by MB). Myoglobin serves as an oxygen storage unit in

muscle cells and is known as a circulating biomarker for muscle

injury (Berenbrink, 2021). Our data show a strong transcriptional

induction of MB in HCM CMs compared with healthy cells. This

might be becauseMB is induced under hypoxic conditions (Kan-

atous et al., 2009), which is a key feature of cardiac hypertrophy

(Mirtschink and Krek, 2016). Whether this actively contributes to

HCMpathogenesis or whether circulating levels ofMB can serve

to track HCMdisease progression is currently unknown andwar-

rants further investigation.

CM heterogeneity has been shown to occur at many levels

(Montag et al., 2018; Parbhudayal et al., 2018; Remme et al.,

2009; van der Velden et al., 2011). This heterogeneity in adult

CMs has more recently been confirmed by single-cell studies

(Gladka et al., 2018; Nomura et al., 2018; Wang et al., 2020),

including the one described here. As the primary genetic origin

of HCM lies within the sarcomere, and CM heterogeneity is a

key hallmark in HCM, we focused on the analysis of CMs only.

Based on the inter-myocyte transcriptomic heterogeneity, our al-

gorithm clustered the CMs into six distinct subpopulations, with

one cluster being highly enriched for NPPA. Correlation analysis

revealed a positive correlation between NPPA and known stress

marker genes, such as NPPB, ACTC1, and XIRP1, but also

showed a positive correlation with genes with relatively unknown

cardiac functions, like reticulon 4 (RTN4). This suggests these

lesser-known genes could also play an active part in the CM

stress response.

For example, RTN4 is related to a variety of functions, it is

known as a neurite outgrowth inhibitor, might play a role in the

endoplasmic reticulum stress response in human DCM and car-

diac ischemia (Ortega et al., 2014). In addition, it affects lipid ho-

meostasis, AKT signaling, and cytoskeleton modulation in can-

cer (Pathak et al., 2018). Moreover, it is induced in mouse

HCM models (Sasagawa et al., 2016) and it was recently shown

that a knockdown of RTN4might be cardioprotective (Fan et al.,

2021). However, a clear functional role in the CM stress response

still remains to be defined. Nevertheless, given these previous

observations, and our observation that RTN4 expression corre-

lates with NPPA, suggests that RTN4 might play a role in HCM

pathogenesis.

In addition, we noticed a positive correlation between NPPA

expression andGAPDH, implying thatGAPDHmight not be suit-

able as A housekeeping gene when studying stressed CMs.

Interesting to note is the negative correlation with key genes

related to CM contractility, such as TTN and RYR2, suggesting

different contractile properties in cells expressing high levels of

NPPA.

To investigate the gene regulatory network and TFs that drive

HCM, we used SCENIC. Twenty-two regulons were consistently

identified in patients with HCM, of which most were also ex-

pressed at higher levels in HCM CMs. Some, like MEF2 and
SRF, are well-known regulators of HCM (Chai and Tarnawski,

2002; Kolodziejczyk et al., 1999; Passier et al., 2000; Zhang

et al., 2001), validating our approach. However, not all of the

most HCM-enriched factors, i.e., ZEB1, FOXN3, NFE2L1, and

MAFK, are currently known to play a role in heart disease. To

our knowledge, ZEB1 and FOXN3 have not yet been shown to

have a clear function in HCM.NFE2L1 has been shown to be car-

dioprotective (Cui et al., 2021), and we have previously identified

MAFK to be induced in failing CMs (Vigil-Garcia et al., 2021). The

role of MAFK might thus not be restricted to genetic forms of

heart failure. UMAPs indicated a clear overlap between the cells

enriched for the regulons related to NFE2L1 and MAFK. This is

interesting, as these TFs heterodimerize for DNA binding

(Kannan et al., 2012) and have both been shown to provide

cellular protection against oxidative stress through the induction

of antioxidant genes (Itoh et al., 1999; Numazawa et al., 2003).

Our data imply that NFE2L1 and MAFK are cooperatively

induced in a set of HCM CMs to drive a gene program involved

in sarcomere organization and muscle contraction. While the

regulons for FOXN3 and ZEB1 also appear enriched in the

same set of cells, there is currently no known functional relation-

ship among these four factors. However, based on the SCENIC

analysis and the fact that the majority of the XIRP2 correlated

genes defined in Figure 3 are predicted to be regulated by one

or more of these factors, these TFs together might drive at least

part of the XIRP2 correlated gene program.

Based on index-sorting data, we were able to show that

several genes in shared module 2 were positively correlated to

CM size at the single-cell level. Motif analysis of module 2 mem-

ber genes indicated an enrichment forMEF2 binding sites, which

would be in line with the well-known function of MEF2 in hyper-

trophic remodeling (Dirkx et al., 2013). Recently, Nomura et al.

(2018) used scRNA-seq to identify modules of co-expressed

genes that correlated with CM size in mice 1 week after trans-

verse aortic constriction. The genes in our hypertrophy-associ-

ated regulon 2 match surprisingly well (57%) with the hypertro-

phy-associated modules (M1, M2, M5, M11, and M16) in the

paper by Nomura et al. This reinforces our observations to orig-

inate from biological regulation, and confirms the validity of using

index sorting to link gene expression to cell size.

It is evident that a lot of experimental choices regarding cell

collection and obtaining sequencing data can influence the

outcome when using scRNA-seq. This might be an explanation

for the observed separation between the two sets of control

CMs that we included in our analyses.

scRNA-seq of CMs is challenging simply due to the size of the

cells. Several strategies are currently used to separate single

cells into individual wells or droplets, some of which allow for

the high-throughput processing of thousands of transcriptomes

in a cost-effective manner. However, all these high-throughput

strategies have physical constraints regarding the size of the

cells. Commercially available single-cell sorting platforms like

Fluidigm C1 and Chromium can currently only sort cells that

are up to 25 to 50 mM in diameter. This is considerably smaller

than adult mammalian CMs, which can be approximately

125 mM along the longitudinal axis (Sorenson et al., 1985). This

challenge has been circumvented by performing single-nucleus

RNA sequencing on cardiac tissue, but with the drawback that
Cell Reports 39, 110809, May 10, 2022 11
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there will be enrichment for RNAs residing predominantly in the

nucleus (Selewa et al., 2020).

The percentage of mitochondrial reads is regarded as an addi-

tional indicator of CM scRNA-seq library quality, as cytoplasmic

transcripts leak out of damaged cells, whereas mitochondrial

transcripts do not. Mitochondrial reads are expected to fall

within 30% to 50% of total reads (Kannan et al., 2019). If tech-

niques are used that damage CMs, this can increase to even

70% (Fluidigm C1 [DeLaughter et al., 2016] or handpicking my-

ocytes [Nomura et al., 2018]) or 90% (conventional fluores-

cence-activated cell sorting [FACS] [Gladka et al., 2018]). Thus,

the 33% mitochondrial reads in the CMs that we sequence

corroborate that we sequenced intact myocytes.

The pathogenic processes and gene programs that occur in

HCM are a complex interplay between many genes and gene

programs, with cross-talk between different physiological path-

ways. Our study identifies many correlations, co-expression pat-

terns, regulatory factors, and relations to cell size that offer an

insight in this complex world. Our study provides a valuable

data source to identify and further study molecular mechanisms

that might be relevant for many HCM processes. This detail in

insight will lead to discoveries related to HCM and other areas

of heart disease.

Limitations of the study
In our study, we collected single cardiomyocytes from patients

with HCM to analyze gene expression patterns and heterogene-

ity. Both enzymatic digestion of patient material and FACSmight

introduce bias in cell recovery. For example, fibrotic tissue might

be harder to digest, and certain cells might be more susceptible

to FACS-induced damage. In addition, we focused on CMs in

this study, disregarding other cell types in the heart. To compare

diseased cardiomyocytes with healthy cells, we have included

reference data from healthy cells from two other studies. While

we tried to minimize batch effects by closely matching bio-infor-

matic pipelines, variation from different experimental protocols

might still introduce batch effects, as also discussed above. In

addition, since the five patients analyzed in our study have either

an MYBPC3 mutation or unknown genotype, we are unable to

investigate the effects of specific HCM genotypes. To analyze

our single-cell data, we have used established bio-informatic an-

alyses, and focused on effects that are observed in multiple pa-

tients and depend as little as possible on analysis settings.

Nevertheless, analysis choices can potentially affect identified

features and analysis outcomes, such as cluster assignments

of cells. While many observations we make based on single-

cell data are consistent with literature and additional experi-

ments, further follow-up studies will be required to validate and

investigate functional implications of many of our findings.
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scRNA-seq data (Wang et al., 2020) GSE121893 and GSE109816

scRNA-seq data (Litvi�nuková et al., 2020) ERP123138

Oligonucleotides

Primers for RT-PCR, please see Table S11 Integrated DNA Technologies N/A

Taqman specific probes for MYH6 ThermoFischer Scientific Hs01101442_g1

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Graph pad PRISM v9 Graphpad Prism Inc https://www.graphpad.com/

scientific-software/prism/

ImageJ v1.51 NIH https://imagej.nih.gov/ij/

Adobe inDesign CC 2019 Adobe Systems

Incorporated

https://www.adobe.com/

R Studio v. 4.1.0 RStudio https://cran.r-project.org/

Cutadapt (v. 3.4) (Martin, 2011) https://anaconda.org/

bioconda/cutadapt

Trim Galore (v. 0.6.6) N/A https://github.com/FelixKrueger/

TrimGalore

Burrows-Wheeler Alignment

Tool (v. 0.7.17-r1188)

(Li and Durbin, 2009) http://bio-bwa.sourceforge.net/

STAR (v. 2.7.8a) (Dobin et al., 2013) https://github.com/alexdobin/STAR

featureCounts (v. 2.0.1) (Liao et al., 2014) http://subread.sourceforge.net/

UMI-tools (v. 1.1.1) (Smith et al., 2017) https://github.com/

CGATOxford/UMI-tools

Seurat (v. 4.0.3) (Stuart et al., 2018) https://www.satijalab.org/seurat

Homer suite (v 4.1156) (Heinz et al., 2010) http://homer.ucsd.edu/homer/

Lisa (v. 2.2.5) (Qin et al., 2020) http://lisa.cistrome.org/

Triage (Shim et al., 2020) https://github.com/woojunshim/TRIAGE

GSEABase (v. 1.54.0) (Morgan et al., 2021) https://bioconductor.org/packages/

release/bioc/html/GSEABase.html

SCENIC (Aibar et al., 2017) http://scenic.aertslab.org

Custom scripts This paper https://doi.org/10.5281/zenodo.6282659

Other

Artisan Link Pro Agilent N/A

Axiovert 40C Zeiss N/A

Bioanalyzer 2100 Agilent N/A

FACS Aria III Bioscience N/A

HM 355S Automatic Microtome Thermo Scientific #905200

Nanodrop 1000 spectrophotometer ThermoFisher Scientific N/A

SPE Confocal Microscope Leica N/A
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Eva van

Rooij (e.vanrooij@hubrecht.eu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d RNA-sequencing data have been deposited at Gene Expression Omnibus and are publicly available as of the date of publica-

tion. Accession numbers are listed in the key resources table. This paper also analyzes existing, publicly available data. The

accession numbers for these datasets are listed in the key resources table. Microscopy data reported in this paper will be

shared by the lead contact upon request.

d Analysis scripts have been deposited at GitHub and are publicly available as of the date of publication. DOIs are listed in the key

resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human heart samples
Cardiac tissue from the interventricular septum was obtained from myectomy surgery in patients with HCM to relieve left ventricular

outflow tract obstruction (n = 5 for scRNA-seq, of which n = 2 where used for additional index sorting analysis and n = 97 for real-time

PCR (RT-PCR) analysis), see Table S1 for detailed information about the patients including their sex/age. Written informed consent

was obtained from each patient before surgery, and approval for the use of human tissue samples was obtained from the Medical

Research Ethics Committee of the ErasmusMedical Center Rotterdam (freshmyectomy samples, and bulkmyectomyRNA samples)

or the scientific advisory board of the biobank of the University Medical Center Utrecht (explanted heart tissue for histology). Cardiac

tissue samples from non-failing donor hearts were used as control (n = 9). Four of these were obtained from BioChain (Lots B607033,

B711068, B711065 and A504241), the other five were obtained from the Sydney Heart Bank (identifiers: 4062, 4104, 6008, 7054,

8004) (dos Remedios et al., 2017), see Table S1 for additional details.

METHOD DETAILS

Histology and immunohistochemistry
Myectomy samples were fixed in PFA (4%) and incubated for 48 h rotating at room temperature. Next, the tissues were washed 33

for 10min in PBS and stored in 70% ethanol (EtOH) at 4�C. For tissue embedding, 3 consecutive incubations were performed. Firstly,

96% EtOH for 2 h at 4�C, followed by 100% EtOH for 2 h at 4�C and lastly Xylene for 2 h at 4�C. Finally, the tissue was incubated

overnight in liquid paraffin at 60�C and embedded in paraffin blocks. Then, 5 mm sections were cut on the HM 355S Automatic Micro-

tome (#905200, Thermo Scientific) and placed on glass coverslips for further staining procedures. Explanted heart tissue was cut into

3 mm sections. For staining, sections were deparaffinized and rehydrated using xylene and ethanol graded series. Antigen retrieval

was done by boiling the slides in EDTA buffer (pH 9.0) for 20 min and subsequently cooling them down to 37�C. Masson trichrome

staining was performed by using the Artisan Link Pro (Agilent) stainer according to manufacturer’s protocol. For the immunostaining,

sections were incubated overnight at 4�Cwith primary antibodies against titin (TTN, 9D10, Developmental Studies Hybridoma Bank,

1:400), ANP (CBL66, Millipore, 1:800) andMLC-2 (MLC-2V, 310-003, Synaptic Systems, 1:500). For immunochemistry, after 13 PBS

wash, slides were incubated with BrightVision poly-AP anti-rabbit IgG antibody (VWRKDPVR110AP, Immunologic) for 30min at room

temperature and with liquid permanent red (K0640, Agilent Dako) for 10 min at room temperature. Slides were counterstained with

hematoxylin andmounted using Clearvue Mountant Xyl (ThermoFisher Scientific). Slides were digitalized using Nanozoomer XR (Ha-

mamatsu). For immunofluorescence, slides were incubated overnight with primary antibody against MLC-2. After 33 PBS wash,

slides were incubated with Alexa 647-labeled secondary antibody (A-21443, ThermoFisher Scientific, 1:500). Additionally, DAPI

(#D3571, Invitrogen, 1:1000) and Wheat Germ Agglutin (WGA, W11261, ThermoFisher Scientific, 100 mg/mL) were added. Slides

were incubated for 1 h in the dark at room temperature. Slides were subsequently washed 33 in PBS and mounted with prolong

gold antifade (P36934, Life Technologies). Immunofluorescent imaging was done with the SPE Confocal Microscope (Leica).

Tissue digestion
The tissue was digested into a single-cell suspension as described before (Gladka et al., 2018). In short, tissue was minced into fine

pieces using a scalpel and transferred into a glass vial with 1.5mL of cold digestion buffer. Tissues were digested bywheeling the vial

for 15 min in a 37�C water bath. Subsequently, the solution was pipetted up and down 10 times and transferred onto a 100 mm cell

strainer (EASYstrainer, #542000, Greiner Bio-One) placed on top of a 50 mL Falcon tube. The tissue was gently rubbed through the

strainer using the plunger of a 1 mL syringe (#303172, BD Plastipak), after which the strainer was rinsed with 8.5 mL of DMEM (Dul-

becco’s Modified Eagle Medium, high glucose, GlutaMAX Supplement, pyruvate (Gibco, #31966021)) to obtain a total volume of

10 mL. This suspension was centrifuged for 6 min at 4�C at 300 g. The supernatant was discarded and cells were resuspended in

1 mL fresh DMEM and kept on ice for immediate single-cell sorting.

Flow cytometry to sort single cells
Flow cytometry gating was performed according to our previously optimized protocol (Gladka et al., 2018). Briefly, cytometry was

performed on a FACS Aria III (BD Biosciences) using a 130 mmnozzle. Debris was excluded based on forward (FSC-A) and side scat-

ter (SSC-A). area. Cells were selected for autofluorescence between 530 nm and 600 nm. Using FSC-W, the larger cells were

selected in order to sort CMs rather than other cell types. Cells were single-cell sorted into 384-well plates, immediately centrifuged,

and frozen at�80�C until further processing. Additionally, 1000 cells were sorted into TRIzol reagent (Invitrogen, #15596026) for RNA

quality control and 5000 cells were sorted into DMEM for imaging. Index sorting datawere collected to correlate FSC-A (as a proxy for

cell size) to gene expression on an individual cell basis.

To show our sorted cells were viable, we gated for DAPI-negative cells (DAPI #D3571, Invitrogen, 1:1000). To ensure our DAPI-

negative events were nucleated, we next counterstained our sorted DAPI-negative cells with DRAQ5 (65-0880-92, eBioscience,

1:1000) and re-analyzed the cells by FACS (Smith et al., 2004).
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Imaging of single cells
After digesting the tissue into a single-cell suspension, cells were imaged before and after sorting using Axiovert 40C (Zeiss) to visu-

alize the morphology of the cells.

RNA isolation and quality control
Total RNAwas isolated from 1000 cells bulk-sorted into 100 mL TRIzol reagent. RNA quality, measured as RNA integrity number, was

determined using a Bioanalyzer 2100 (Agilent) and RNA 6000 Pico chips (Agilent, #5067-1513). Single-cell RNA sequencing was only

performed when the RIN was above 7.5.

Library preparation and sequencing of single cells
The SORT-seq procedure was performed by Single Cell Discoveries, Utrecht as described previously (Gladka et al., 2018; Grun and

van Oudenaarden, 2015; Muraro et al., 2016) with minor adaptations. In short: cells were sorted into 384 well plates containing 10 mL

of mineral oil and an aqueous solution of 50 nL containing primers derived from the CEL-seq2 protocol. CEL-seq2 primers consisted

of a 24 bp polyT sequence followed by a 6 bp unique molecular identifier (UMI), a cell-specific barcode, the 50 Illumina TruSeq2

adapter and a T7 promotor sequence. Cells were lysed by 5 min incubation at 65�C, after which cDNA libraries were generated

by dispersion of the RT enzyme and second strand mixes with the Nanodrop II liquid handling platform (GC biotech). cDNA libraries

from all wells were pooled, followed by separation of the aqueous phase from the oil phase and subsequent in vitro transcription for

linear amplification as performed by overnight incubation at 37�C. Next, Illumina sequencing libraries were prepared using the

TruSeq small RNA primers (Illumina), followed by PCR amplification for 12–15 rounds depending on the amount of RNA after

in vitro transcription. Afterwards, libraries were sequenced paired-end at 75 bp read length with Illumina NextSeq500. 5% of the

sequencing run (15,106 reads) were allotted to each 384-well plate. Four 384-well plates were sequenced per patient, two for the

patient where index-sorting was applied.

Mapping of HCM sequencing data
After sequencing, each of the HCM samples were mapped. Read 1 (R1) contains respectively the UMI (positions 1–6) and barcode

(positions 7–14) followed by the poly-T sequence (theoretically 24 nt) and sample mRNA sequence, read 2 (R2) contains the mRNA

transcript sequence only. UMI and cell barcode (BC) information was attached to R2metadata, and only R2was used for mapping. In

addition, we discarded reads that did not showR10 thymine nucleotides after the BC in R1. Readswere then trimmed for sequencing

primers and repeating single nucleotides using the Cutadapt (Martin, 2011) wrapper Trim Galore (default settings). We then filtered

out ribosomal RNA reads by discarding reads that mapped to the human rRNA genes using Burrows-Wheeler Alignment Tool (bwa

merge of bwa aln and bwa mem -h 15) (Li and Durbin, 2009). These pre-processed reads were then mapped using Spliced Tran-

scripts Alignment to a Reference (STAR –outFilterMultimapNmax 20) (Dobin et al., 2013), assigned to genes using featureCounts

(-R BAM) (Liao et al., 2014), where multi-mappers were ignored (featureCounts default behavior), and processed into UMI count ta-

bles using UMI-tools (umi_tools count; default settings) (Smith et al., 2017). As reference genome, we used the human genome

(GRCh38.93) and gene annotation (gtf file) acquired from ensembl.org. The gtf file was filtered to only contain genes with a

gene_biotype annotation of protein_coding, lincRNA or antisense. After mapping, HCGN symbols were linked to Ensembl IDs using

the R biomaRt package.

Obtaining Ctrl1 and Ctrl2 count tables
We included cells from healthy donor hearts from two different studies, Wang et al. (Wang et al., 2020) (referred to as Ctrl1) and Lit-

vi�nuková et al. (Litvi�nuková et al., 2020) (Ctrl2). From Wang et al., we used samples N1, N2, N3, N4, N5, N13 and N14, as they came

from healthy donors and included LV cells. We obtained raw FASTQ files from Gene Expression Omnibus (GEO, accession numbers

GSE121893 and GSE109816) using the NCBI SRA Toolkit (fasterq-dump command) and SRR identifiers obtained from the provided

metadata files. We collected FASTQ data for cells annotated as LV cells (clusters LV1-9) into files per donor and plate (we note that

these selected cells were filtered for quality already by Wang et al.). These data were collected with the iCell8 platform from Takara

Bio, R2 again contained the biological information that was mapped, and R1 contained only the BC (11 nt) followed by the UMI

(ranging from 10-14 nt), of which we used only the first 10 nucleotides to deal with the variable length. (A reference BC file was ob-

tained from the Cogent NGS Analysis Pipeline, v. 1.0, Takara Bio.) We mapped the obtained FASTQ files using the same pipeline as

the HCM samples. For Litvi�nuková et al. (who used 103 Genomics) we downloaded count tables for CMs for all available samples

(D1-7, D11, H2-7) from https://www.heartcellatlas.org/ (h5ad files) and selected only cells taken from the septum. These tables were

generated by the Cell Ranger pipeline (v. 3.0.2, 103Genomics), which, identical to our pipeline, uses the STAR aligner in combination

with human genome GRCh38.93 and gene annotation (ensembl.org), and only considers uniquely mapped reads (103 Genomics

documentation). The downloaded Litvi�nuková et al. raw count tables were converted to h5seurat format and used directly for analysis

in Seurat.

Analysis of single cell transcriptomics data using seurat
We used Seurat to analyze our data (Seurat v. 4.0.3, SeuratDisk v. 0.0.0.9019, SeuratObject v. 4.0.2, loomR v. 0.2.1.9000, hdf5r v.

1.3.3) (Stuart et al., 2018). Raw count tables were loaded into Seurat for all three datasets (HCM, Ctrl1, Ctrl2), and the Seurat ‘‘merge’’
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function was applied to perform pooled analysis. Separate Seurat objects based on this data were also created for separate donors.

Similar Seurat analyses were then performed for the pooled data, the HCM, Ctrl1, Ctrl2 sets, and donors separately. Mitochondrial

read counts were determined, after which mitochondrial genes were removed from the count table. Cells were then filtered based on

total read count, cells with total UMI count >1000 were taken along (we note that for Ctrl1 and Ctrl2 data, cell quality filtering was

already performed by respective authors). Genes detected in <5 cells were discarded. Total UMI counts were 1780041, 1614560,

2028833, 396894 and 1418990 for patients 1–5 respectively (excluding mitochondrial counts), corresponding to mean UMI counts

per well of 3779, 2660, 3241, 2795 and 3182. Then, to perform the analysis, the following Seurat functions were applied with default

parameters unless explicitly stated: NormalizeData (with normalization.method = ’RC’, and median total cell transcript count as sca-

le.factor), FindVariableFeatures, ScaleData (with do.scale = F, do.center = F, scale.max = Inf), RunPCA (npcs = 30, using the top 2000

variable features), RunUMAP, FindNeighbors, FindClusters (resolution = 0.1 or 0.4 for pooled and HCM datasets, respectively). We

use the FindMarkers function (min.pct = 0.05) to identify differentially expressed genes for the clusters. For gene expression plots, the

scale was set from 0 to the 97th or 98th percentile for UMAPs and violin plots respectively, to exclude outliers from the scale. To deter-

mine patient-level gene expression values for genes, gene expression valueswere first normalized to Z-scores and then averaged per

patient. To determine composite gene expression values for groups of genes (such as regulons or modules, see below), we also first

normalized expression to Z-scores, and then averaged over the genes belonging to the group of interest. To determine patient-aver-

aged composite expression for groups of genes, these two strategies were combined.

Gene ontology analysis
For gene ontology (GO) analysis, gene names were mapped to Entrez Gene IDs. Mappings between Entrez Gene IDs and GO terms

were then obtained fromR-package org.Hs.eg.db57. A background set of genes was constructed by selecting all genes expressed in

>5% of cells. A set of genes of interest was then determined based on genes that were significantly enriched (FC > 0, adjusted

p < 0.05) between cluster and non-cluster, or by their presence in a gene module (see below). Enrichment of GO terms was then

analyzed using the tools from the GSEABase R-package (v. 1.54.0) (Morgan et al., 2021). The pvalueCutoff parameter of the hyper-

GTest function was set to 0.05.

Correlation analyses
For correlation analyses, the Pearson correlation between the parameter of interest (either expression of a gene of interest or FSC-A)

and every (other) gene was calculated, provided that the gene was expressed in at least 10% (gene-gene correlations) or 33% (gene-

FSC-A correlations) of cells. This was done using the cor.test function from the R stats package, which also produces a p value es-

timate based on the assumption that correlation coefficients of uncorrelated data follow a student-t distribution (using the Fisher

z-transformation). A p value correction was applied using the p.adjust function (Benjamini & Hochberg method).

Transcription and regulatory factor analyses
To identify transcription or regulatory factors that drive expression of groups of genes (such as cluster-enriched genes or modules),

we ran Homer, Lisa and/or TRIAGE. HOMER (Homer suite v4.11; human-o v6.3 and human-p v5.5) (Heinz et al., 2010) performs TF

motif enrichment analysis in proximal promoters. We used the findMotifs.pl function using all expressed genes (expressed in at least

5% of all included cells) as background and promoter location set to�300 to +50 bp (default options). We then show top 5 significant

results (p < .05 and q< 0.9; if available) from the ‘‘known results’’. Lisa (v. 2.2.5) (Qin et al., 2020) leverages existing H3K27acChIP-seq

data from transcription regulators to identify regulators that potentially drive gene sets of interest. We ran the ‘‘oneshot’’ Lisa proced-

ure (genome hg38) on gene sets of interest with the ‘‘–rp_map enhanced_10K’’ setting and provided a background list of genes (all

genes that are expressed in 5% of cells). We then select significant hits (p < 0.01) and show a list that consists of both top-5 hits (by

p value only) and top-5 of hits that are observed >1 cell type or CM-specific; hits occurring in both top-fives are indicated with an

asterisk. TRIAGE (Shim et al., 2020) leverages H3K27me3 CHIP-seq data to calculate repressive tendency scores (RTS) and discor-

dance scores for genes, with the aim of identifying regulatory genes that control differentiation in a set of genes. To identify potential

regulators for each cell cluster, we took differentially expressed genes (FC > 0 and adjusted p < 0.01) with an RTS >0.03 (deemed

priority genes by Shim et al.), and listed the 5 (if available) regulators with the highest RTS score.

SCENIC analysis
To identify regulons, we converted raw count tables into loom files for all of the separate patients and donors from the HCM, Ctrl1 and

Ctrl2 datasets, and ran a command line interface (CLI) SCENIC pipeline using ‘‘pyscenic’’ (Aibar et al., 2017). First, we executed the

GRN step, using the ‘‘pyscenic grn -o adj.csv’’ command, supplying the hs_hgnc_curated_tfs.txt TF list from the pyscenic resource

directory. We then executed the ‘‘pyscenic ctx’’ command, where we supplied the hg19-tss-centered-10kb-7species.mc9nr.feather

and hg19-500bp-upstream-7species.mc9nr.feather databases (obtained via https://resources.aertslab.org/cistarget/) and the mo-

tifs-v9-nr.hgnc-m0.001-o0.0.tbl motif file (obtained via https://resources.aertslab.org/cistarget/motif2tf/). Finally, the ‘‘pyscenic au-

cell’’ step was executed. We processed output files further in R. We extracted Normalized Enrichment Scores (NES) from the reg.csv

output file, from which we determined the median NES score for each respective regulon; the NES score reflects confidence in the

link between the TF and gene set. To merge regulons frommultiple patients with HCM, we selected those genes that are present in 3

ormore patients. Per regulon, we also extracted importance scores for each of the linked genes from the adj.csv output file, which we
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use to rank the genes within the (merged) regulons (here also the median was used to determine importance scores from multiple

patients/donors).

Custom gene module analysis
Clusters of genes that show significant correlations with each other were determined using a custom R script, which was applied to

the gene expression data of each patient separately. We first selected genes that are expressed in at least 20% of cells pooled for all

Patients with HCM. Then, for each patient, we selected genes expressed in 5% of that patient’s cells, and calculated Pearson’s cor-

relations coefficients between all remaining gene pairs, resulting in a large gene-gene correlation matrix. Subsequently, we calcu-

lated p values for respective correlation coefficients based on the student-t distribution, and applied the Benjamini-Hochberg correc-

tion to correct for multiple testing. We then selected genes that had a significant (p < 0.001) correlation with at least 10 other genes,

resulting in the correlationmatrix that was used for the regulon analysis. We applied the hclust function (using the ward.D2method) to

sort rows and columns of the correlation matrix by similarity, and generate a hierarchical tree. Using this tree, we calculated the gap

statistic for a range of number of clusters (k), and determined the optimal numbers of clusters (K). (We used the clusGap and maxSE

function from the R cluster package, applying the Tibs2001SEmax method.) Genes were assigned to K co-expression modules

based on the cutree function, resulting 6, 5, 11, 5 and 6 modules for patients 1–5 respectively. Within each module, we ranked genes

according to the average correlation to other genes in each module.

To determine final modules presented in the paper, we systematically compared the patient-specific modules for overlap in mem-

ber genes.We defined gene identity overlap for a pair ofmodules simply as the number of overlapping genes divided by the size of the

smallest regulon in the pair. We used the hclust function again to generate a dendrogram, which by eye very clearly showed 5 clus-

ters, as also confirmed by amedian gene overlap of 68%, 86%, 62%, 89%and 82%between patients for each of themodule groups.

We determined our final five modules by joining patient-specific modules based on this clustering, and included genes into each of

the final modules if they were identified in at least 3 patient-specific modules of that cluster.

RT-PCR analysis
Total RNA was isolated from 97 myectomy and 9 control samples using TRIzol reagent according to manufacturer’s protocol. RNA

concentration was determined using Nanodrop 1000 spectrophotometer (ThermoFisher Scientific). Complementary DNA (cDNA)

was synthesized from a total of 250 ng of RNA using the iScript cDNA Synthesis Kit (Bio-Rad, #1708891), according to manufac-

turer’s protocol. RT-PCR was performed using gene specific primers (listed below) according to the instructions described by the

IQTM SYBR Green Supermix (Bio-Rad, #170-8885). The RT-PCR protocol was as follows: 95�C for 15 min, followed by 40 cycles

at 95�C for 15 s, 60�C for 30 s and 72�C for 30 s. Ribosomal protein L32 (RPL32) was used as a housekeeping gene, to which all

genes were normalized. Expression of NPPA and NPPB in HCM samples and control samples was calculated (-DCt). The results

are shown as mean ± standard error of the mean (SEM). Significance was tested using Student’s t test. Plotting was done using

PRISM (GraphPad Software Inc.). Also for the correlation analyses, expression values normalized against RPL32 were calculated

(-DCt). All the PCR primers that were used are listed in Table S11. R and ggplot2 were used to plot and perform correlation analyses.

Specifically, based on DCt-values of HCM-samples, the Pearson correlation coefficients were determined for gene pairs, and cor-

responding p values were calculated by using a t test (using the stats:cor.test function). The number of samples (n) used in each RT-

PCR experiment is indicated in the legend or shown in the figures.

Cell size analysis
Cell size was manually measured on sections stained for MLC-2 and labelled with WGA by using ImageJ 1.49v software. Circular

events were selected in the WGA channel, to quantify only cells whose cross-section is perpendicular to their long axis. ImageJ

was used to measure the area of each identified cell, and fluorescence intensity in the MLC-2 channel within that area. Total

MLC-2 fluorescence was normalized to cell area. Cell size and MLC-2 were quantified in 3–5 images each for 6 myectomy samples

(326–669 cells per samples, 2931 cells in total).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical and quantitative analysis of single cell RNA-sequencing data
scRNA-seq was performed on n = 5 patients with HCM, and publicly available scRNA-seq data from healthy donors were included

from two sources (Ctrl1, n = 7; Ctrl2, n = 14) as described in the Method details. Correlation coefficients for gene expression corre-

lations and their significance were determined using the cor.test function in R, which calculates Pearson’s correlation coefficient and

a p value estimate based on a student-t distribution using a Fisher z-transformation as also described in the Method details. The sig-

nifance values were adjusted by the Benjamini & Hochberg method using the p.adjust function. To test the validity of statistical as-

sumptions, we randomly drew series of expression values from our data, and determined correlation coefficients based on the

random series; those coefficients showed a distribution consistent with the assumption that uncorrelated data follow a student-t dis-

tribution. As described in the Method details, to determine patient-level gene expression values for genes, gene expression values

were first normalized to Z-scores and then averaged per patient. By average, we refer to the arithmetic average. To determine com-

posite gene expression values for groups of genes, we also first normalized expression to Z-scores, and then averaged over the
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genes belonging to the group of interest. To determine patient-averaged composite expression for groups of genes, these two stra-

tegies were combined. Patient-averages of (composite) gene expression were plotted and statistically analyzed using PRISM

(GraphPad Software). To test for statistical significance of differences between average gene expression values in different condi-

tions, outliers were first removed by using the ROUT test with Q = 1%, and subsequently a one-way ANOVA test was performed

(*, p % 0.05; **, p % 0.01, ***, p % 0.001; ****, p % 0.0001). Error bars in plots show the SEM. Assumptions about the sample distri-

bution were not tested. For the GO term analyses, the hyperGTest function from theGSEABaseR-packagewas applied as described

in the Method details.

Statistical and quantitative analysis of scRNA-seq and cell size data
To determine correlation coefficients between gene expression and FSC-A values, determined in n = 2 patients, we also used the

cor.test and p.adjust function in R (again performing a t test, using a Fisher z-transformation, and a Benjamini & Hochberg correction

for multiple testing). To determine correlation coefficients and their significance between total reads per cell and FSC-A values,

values produced by the cor.test function were used without multiple sample adjustment.

Statistical and quantitative analysis of RT-PCR data
RT-PCRwas applied to n = 9 control samples and n = 97 samples from patients with HCM. Not all samples gave a signal for all genes,

samples that gave a signal were included in the analysis. For NPPA and NPPB, these data were plotted and statistically analyzed

using PRISM (GraphPad Software). Outliers were removed by using the ROUT test with Q = 1%, and t-tests were performed

(*, p % 0.05; **, p % 0.01, ***, p % 0.001; ****, p % 0.0001). For NPPA, n = 9 Ctrl and n = 49 HCM samples were analyzed, for

NPPB, n = 9 Ctrl and n = 36 HCM samples were analyzed. Mean values and SEM are indicated in the plots. Correlation coefficients

between pairs of genes and their significance were again determined by a t test using the cor.test and p.adjust function in R (which

performed a t test, using a Fisher z-transformation, and a Benjamini & Hochberg correction for multiple testing). Assumptions about

the sample distribution were not tested. For the correlation analyses between gene pairs consisting of MYL2 and another gene,

n-values for the respective pairs of MYL2 and the listed gene were: ACTA1, 33; ACTC1, 65; CKM, 62; COX6A2, 68; CRYAB, 71;

CSRP3, 64; GAPDH, 62; HSPB1, 61; MB, 66; MYL3, 59; MYL9, 74; SLC25A3, 59; SLC25A4, 66; TNNC1, 66; TPM1, 69; UBC, 52.

In addition n = 9 Ctrl samples were analyzed for each pair.

Statistical and quantitative analysis of staining and microscopy images
Expression of MLC-2 was determined as described in the Method details for n = 6 patients, and plotted and statistically analyzed

using PRISM. Outliers were removed by using the ROUT test with Q = 1%. Differences were tested by using a one-way ANOVA fol-

lowed by a Tukey’s multiple comparisons test (*, p% 0.05; **, p% 0.01, ***, p% 0.001; ****, p% 0.0001). Average values are indicated

in the plots (arithmetic average).
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