
Developmental Cell

Article
The Golgi Comprises a Paired Stack that
Is Separated at G2 by Modulation of the
Actin Cytoskeleton through Abi and Scar/WAVE
Vangelis Kondylis,1 Hezder E. van Nispen tot Pannerden,1,2 Bram Herpers,1 Florence Friggi-Grelin,3

and Catherine Rabouille1,*
1 The Cell Microscopy Centre, Department of Cell Biology, Institute of Biomembranes, University Medical Centre Utrecht,

Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
2 Department of Molecular Cell Biology, Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
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SUMMARY

During the cell cycle, the Golgi, like other organ-
elles, has to be duplicated in mass and number
to ensure its correct segregation between the
two daughter cells. It remains unclear, however,
when and how this occurs. Here we show that in
Drosophila S2 cells, the Golgi likely duplicates
in mass to form a paired structure during G1/S
phase and remains so until G2 when the two
stacks separate, ready for entry into mitosis.
We show that pairing requires an intact actin cy-
toskeleton which in turn depends on Abi/Scar
but not WASP. This actin-dependent pairing is
not limited to flies but also occurs in mammalian
cells. We further show that preventing the Golgi
stack separation at G2 blocks entry into mito-
sis, suggesting that this paired organization is
part of the mitotic checkpoint, similar to what
has been proposed in mammalian cells.

INTRODUCTION

During the cell cycle, the Golgi, like other organelles, has

to duplicate in mass and/or number to ensure its correct

segregation between the two daughter cells. It remains

unclear, however, when and how this occurs.

The process of Golgi duplication and inheritance in

mammalian cells is still debated, as different modes of

Golgi biogenesis have been proposed (Shorter and War-

ren, 2002; Bevis et al., 2002; Pecot and Malhotra, 2004;

Altan-Bonnet et al., 2006). One reason why this issue is

not yet settled could be due to the elaborate organization

of the Golgi stacks, which are interconnected to form a sin-

gle-copy organelle capping the nucleus, thus impeding

clear visualization of organelle duplication and segrega-

tion. Therefore, we have exploited the relatively small

number of Golgi stacks in Drosophila tissue-cultured S2

cells to revisit this issue.
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In S2 cells, the Golgi stacks are found in close proximity

to transitional endoplasmic reticulum (tER) sites, forming

tER-Golgi units (Kondylis and Rabouille, 2003; Herpers

and Rabouille, 2004). We observed that their number nearly

doubles at G2 phase (see Results). In an effort to identify

factors mediating this process, we focused on cytoskeletal

elements that have been involved in the organization of the

mammalian Golgi apparatus. Microtubules are involved in

mammalian Golgi ribbon maintenance, as their depoly-

merization leads to its reorganization into individual Golgi

stacks in close proximity to ER exit sites (Thyberg and

Moskalewski, 1999; Hammond and Glick, 2000).

F-actin has also been implicated in the organization of

the mammalian Golgi apparatus, as its depolymerization

leads to a compact appearance of this organelle without

disruption of cisternal stacking (De Matteis and Morrow,

2000; Egea et al., 2006; and references therein). A key reg-

ulator of actin polymerization is the Arp2/3 complex. Its

F-actin nucleation activity is triggered both by Wiskott-

Aldrich syndrome protein (WASP) and WASP family

verprolin-homologous (WAVE/Scar) proteins (Stradal et al.,

2004), which are in turn regulated by Rho small GTPases.

WASP exists in an autoinhibited state that is released by

the cooperative action of Cdc42, PI(4,5)P, and other

SH3-containing proteins (Stradal et al., 2004; and refer-

ences therein). On the other hand, WAVE/Scar proteins,

together with Sra-1, Kette (Nap1), Abi, and HSPC300,

form a stable complex, which is itself regulated by Rac

(Stradal et al., 2004; and references therein).

Rho GTPases have recently been implicated in main-

taining Golgi architecture. Cdc42 has been localized on

the Golgi membrane (Matas et al., 2004) and shown to

recruit the Arp2/3 complex around this organelle via

ARHGAP10 (Dubois et al., 2005). Furthermore, suppres-

sion of the brain-specific Rho-binding protein Citron-N in

neurons was shown to lead to fragmentation of the Golgi

apparatus, and Rho1 was proposed to exert its local effect

on F-actin by regulating ROCK and profilin activity (Camera

et al., 2003).

Here we show that drug-induced F-actin depolymer-

ization in S2 cells leads to doubling of the number of
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Figure 1. In Drosophila S2 Cells, tER-Golgi Units Separate at G2 Phase

(A and B) Immunofluorescence (IF) visualization of the Golgi (dGMAP, [A]) and tER sites (dSec23p, [B]) in S2 cells in G1 phase (one centrosome marked

by g-tubulin) and S/G2 phase (two centrosomes in close proximity).

(C–F) ImageJ quantification of the number of fluorescent Golgi spots per cell at G1 and S/G2 (C), the total fluorescence per cell (D), and the average

fluorescence intensity per spot (E). Histogram showing the spread of the number of fluorescent spots per cell at G1 and S/G2 (F). Note that the number

of spots increases at S/G2.

(G) IF visualization of the Golgi and the centrosome(s) in S2 cells where BrdU has been incorporated to mark cells in S phase (two centrosomes). Cells

in G1 and G2 have no BrdU and one and two centrosomes, respectively.
902 Developmental Cell 12, 901–915, June 2007 ª2007 Elsevier Inc.
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tER-Golgi units independent of anterograde transport.

Using live cell imaging, electron microscopy, and three-

dimensional (3D) electron tomography, we show that each

Golgi is organized as a pair of stacks held together by

an actin-based mechanism, both in Drosophila and in hu-

man cells. In S2 cells, this is mediated by Abi and Scar,

suggesting a novel role for the Rac signaling cascade in

Golgi architecture. Last, we show that the Golgi stacks

undergo separation at G2 through modulation of Abi and

Scar, and that blocking this separation prevents cells

from entering mitosis, supporting the existence of a G2/

M checkpoint related to Golgi structural organization.

RESULTS

The Number of tER-Golgi Units Doubles at G2

In a nonsynchronized population of Drosophila S2 cells,

the average number of tER-Golgi units per cell is relatively

constant (Kondylis and Rabouille, 2003; Kondylis et al.,

2005). However, it is apparent that larger cells, presum-

ably at G2 phase, exhibit more. Using g-tubulin (Savvidou

et al., 2005) and centrin (Sanders and Salisbury, 1994) to

mark the centrosome(s), we found that cells at S/G2

(two centrosomes in close proximity) exhibit �25 tER-

Golgi units, a 1.45-fold increase when compared to G1

cells (�17; Figures 1A–1C and 1F; see Table S1 in the Sup-

plemental Data available with this article online).

To mark cells in S phase and distinguish them from G2,

we performed a short bromodeoxyuridine (BrdU) incorpo-

ration (Figure 1G). Although the procedure for BrdU label-

ing leads to a reduction in the number of Golgi spots, the

G2 cells (two centrosomes, BrdU-negative) exhibited on

average 1.7-fold more Golgi spots than G1 cells (one

centrosome, BrdU-negative), whereas the number of

spots between G1 and S phase only increased marginally

(Figures 1H and 1K; Table S1), indicating that a tER-Golgi

near-doubling takes place at G2.

To confirm these results, we used RNAi to deplete

String/Cdc25, which is known to result in a G2/M arrest

in S2 cells (Moshkin et al., 2007). Indeed, upon 3 day de-

pletion, the mitotic index dropped sharply (Figure 1M),

and 90% of the cells were larger and exhibited two centro-

somes (Figure 1L) due to their arrest in G2. Cdc25/String-

depleted cells exhibited a 1.95-fold increase in the num-

ber of ter-Golgi units when compared to the G1 in

mock-depleted cells (Figure 1N; Table S1).

In principle, the near-doubling in Golgi number at G2

could originate from the splitting of old Golgi or from their

de novo formation (Munro, 2002). The latter scenario

would predict an increase both in the total fluorescence
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per cell and the number of Golgi spots. However, although

the total fluorescence increases reproducibly by 40%

between G1 and S cells (Figure 1I), it is not accompanied

by an equivalent increase in the number of Golgi spots

(Figure 1H). It is only during the S-to-G2 transition that

the number of spots nearly doubles, together with a

33% decrease in the fluorescence intensity per spot

(Figure 1J). This suggests that the Golgi grows/duplicates

in mass during G1 and S phases, followed by its separa-

tion/scission at G2 (see below).

Upon entry of S2 cells into mitosis, tER sites

(Figure S1A, prophase-metaphase) and Golgi stacks

(Stanley et al., 1997; Figure S1B) disassemble. In late

anaphase, tER-Golgi units are gradually rebuilt and the

daughter cells inherit about half of them (Figure S1, ana-

phase-cytokinesis), in a fashion similar to mammalian ER

exit sites (Stephens, 2003) and Golgi (Shima et al., 1997).

These results show that S2 cells double the number of

their tER-Golgi units at G2 before their fragmentation

and partitioning during mitosis.

F-Actin Depolymerization Also Leads to the Doubling

of tER-Golgi Units

To investigate the molecular mechanism involved in the

increase in the number of tER-Golgi units observed at

G2, we tested drugs that affect microtubule and F-actin

dynamics. In S2 cells, microtubule depolymerizing drugs

do not alter tER-Golgi unit organization (Figure S2) or an-

terograde transport from the ER to the plasma membrane

(PM; data not shown). In contrast, F-actin depolymeriza-

tion by cytochalasin D (CytoD) or latrunculin B (LatB)

(Figure S3A) led to a 1.7-fold increase in the number of

fluorescent tER-Golgi spots (Figures 2A and 2B). The ef-

fect was complete after �30 min (data not shown). All

Golgi and tER markers examined exhibited the same be-

havior (Figure S3B). This effect was reversible upon LatB

washout (data not shown).

F-actin depolymerization also led to similar doubling of

the tER-Golgi units in S2R+ cells, a variant of S2 cells that

are flatter and more adherent, and other Drosophila tis-

sues (Figures S3C and S3D). Furthermore, the treatment

did not lead to Golgi stack vesiculation (see below).

Using a previously established assay that measures

the transport efficiency of the transmembrane protein

Delta from the ER to PM (Kondylis and Rabouille, 2003;

Kondylis et al., 2005), we found that after F-actin depoly-

merization, S2 cells were still anterograde transport com-

petent (Figure 2E), similar to mammalian cells (Valderrama

et al., 2001). However, Delta endocytosis was largely in-

hibited (Figure 2E), in line with the proposed role of
(H–K) ImageJ quantification of the same parameters as in (C)–(F) for S2 cells in G1, S, and G2 phase. Note that these numbers are smaller than in non-

BrdU-incorporated cells, probably because the BrdU staining procedure compromised the immunofluorescence. However, the number of spots

increases between G1 and G2 cells by 1.6-fold (see Table S1). In (J), the change in fluorescence intensity per spot in G2 cells is compared to that

in both G1 and S cells. The p value for this latter comparison is significant.

(L–N) IF visualization of the Golgi and the centrosome(s) in S2 cells depleted of Cdc25/String by RNAi that accumulate at G2 (L) and display a doubling

in their number of Golgi spots (quantified by ImageJ) (N). The mitotic index is reduced by 95% (M).

Arrowheads point to centrosome(s). Error bars represent standard deviation (SD), and asterisks indicate conditions under which a statistical signif-

icant change (p % 0.001) is calculated. This is always in reference to G1 mock-treated or mock-depleted cells, except Figure 1J (see above).

The scale bars represent 5 mm.
pmental Cell 12, 901–915, June 2007 ª2007 Elsevier Inc. 903
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Figure 2. F-Actin Depolymerization in Drosophila S2 Cells Leads to a Doubling in the Number of tER-Golgi Units

(A) IF visualization of the Golgi (d120kD, red) and tER sites (dSec23p, green) in S2 cells treated with F-actin depolymerizing drugs. Note the increased

number of fluorescent spots corresponding to tER-Golgi units.

(B–D) ImageJ quantification of the number of fluorescent objects per cell (B), the total fluorescence per cell (C), and the average fluorescence intensity

per spot (D). Color coding as in (A). Error bars represent standard deviation (SD), and asterisks indicate conditions under which a statistical significant

change (p % 0.001) is calculated.

(E) IF localization of Delta to estimate the efficiency of its anterograde transport to the plasma membrane in mock- and CytoD-treated Delta S2 cells.

The scale bars represent 5 mm.
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Figure 3. The New Golgi Originates

from a Preexisting Golgi Membrane in

an Anterograde Transport-Independent

Fashion

(A and B) Localization by immunoelectron mi-

croscopy (IEM) of Fringe-GFP in transiently

transfected S2 cells. Note the exclusive locali-

zation of Fringe-GFP on Golgi stacks (between

brackets) and its clear segregation from the

closely associated tER sites in (B). ER, endo-

plasmic reticulum; PM, plasma membrane.

(C–E) Visualization of Fringe-GFP and tER sites

(dSec23p) upon F-actin depolymerization.

(F and G) Visualization of Fringe-GFP in S2 cells

incubated with BFA to inhibit ER-Golgi trans-

port followed by F-actin depolymerizing drugs.

(H) Manual quantification of F-actin depoly-

merization effects upon inhibition of ER-Golgi

transport and Fringe-GFP synthesis. Error

bars represent standard deviation (SD), and

asterisks indicate conditions under which a

statistical significant change (p % 0.001) is

calculated.

The scale bars in (A) and (B) represent 200 nm

and in (C)–(G), 5 mm.
the actin cytoskeleton in several endocytic pathways

(Engqvist-Goldstein and Drubin, 2003).

The Golgi Is Split into Two upon F-Actin

Depolymerization

As in G2 cells, the near-doubling in the number of tER-

Golgi units upon F-actin depolymerization could be ex-

plained by the scission of the tER-Golgi units present

before drug treatment, or could rely on their de novo for-

mation (Munro, 2002). ImageJ quantification showed

that the total fluorescence remains constant under all

conditions (Figure 2C), whereas the average fluorescence

intensity per Golgi or tER spot decreased by 40% (Fig-

ure 2D), suggesting that tER-Golgi units are split into two.

To test this hypothesis further, we followed the Golgi

fate upon F-actin depolymerization using S2 cells ex-

pressing the green fluorescent protein (GFP)-tagged

transmembrane Golgi O-linked N-acetyl-glucosaminyl-

transferase Fringe (Munro and Freeman, 2000). Fringe-

GFP was expressed in such a way that it marked exclu-
Develo
sively the Golgi stack membrane and is not present as

a newly synthesized pool in the ER (see Experimental

Procedures; Figures 3A and 3B). Our reasoning was that

if the preexisting Golgi split, they would supply the mem-

brane for the newly formed ones. Conversely, if new Golgi

are formed de novo, the contribution of the old Golgi

membrane would be marginal. Treatment with CytoD or

LatB resulted in a near-doubling of Fringe-positive spots

that remained closely associated with dSec23p that also

doubled (Figures 3C–3E and 3H). This indicates that

the newly formed Golgi derive from scission of the pre-

existing ones.

As anterograde transport is not inhibited by F-actin de-

polymerization (Figure 2E), it could also contribute to Golgi

doubling. To test this, we analyzed the tER-Golgi number

in Fringe-GFP-expressing cells treated with brefeldin A

(BFA), which blocks ER-Golgi transport very efficiently

(Kondylis and Rabouille, 2003). However, contrary to

mammalian cells, where BFA induces redistribution of

the Golgi membrane to the ER (Lippincott-Schwartz
pmental Cell 12, 901–915, June 2007 ª2007 Elsevier Inc. 905
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Figure 4. Golgi Stacks Undergo Scission

upon F-Actin Depolymerization

(A and B) Selected images from time-lapse

movies of Fringe-GFP-expressing S2 cells

treated with DMSO (A) or CytoD (B). Each im-

age represents a projection of five and seven

confocal sections spanning a 1.7 mm and

3.2 mm part of the cell, respectively. The arrows

in (A) point to transient Fringe-GFP-positive

membrane connections between neighboring

Golgi during the 30 min imaging. The arrows

and arrowheads in (B) point to fluorescent

spots that split during the 10 min imaging and

the asterisks indicate the first appearance of

a bilobed Golgi structure.

(C) Selected images from a movie of a Gal-

NAcT2-GFP expressing HeLa cell treated

with nocodazole and LatB. Each image repre-

sents a projection of five confocal sections

spanning 1.7 mm of two different areas of

a cell. Arrows indicate three spots undergoing

fission. All fission profiles in (B) and (C) were

verified by tracking the spots on single confo-

cal sections. The complete movies are pre-

sented in Supplemental Data.

The scale bars represent 5 mm.
et al., 1989), in S2 cells, the Golgi stacks remain largely

intact (Figure S4A), although they often tend to cluster on

one side of the nucleus (Figure 3F; Figure S4B; Kondylis

et al., 2005).

F-actin depolymerization of BFA-treated S2 cells led to

tER-Golgi near-doubling in a manner indistinguishable

from untreated cells, irrespective of whether Fringe-GFP

or endogenous Golgi and tER site markers were examined

(Figures 3F–3H; Figures S4C and S4D). This indicates that

tER-Golgi scission upon F-actin depolymerization is inde-

pendent of ER-Golgi transport.

Live Cell Imaging of Golgi Scission

Our results suggest that upon F-actin depolymerization,

each Golgi splits in two. To test this, we followed Golgi

stacks using time-lapse confocal microscopy on Fringe-

GFP S2 cells. In nontreated cells, the Golgi stacks exhibit

only restricted movement (Figure 4A; Movie S1), as has

been reported in other animal cells with equivalent

tER-Golgi organization (Storrie et al., 1998; Bevis et al.,

2002; Stephens, 2003). Occasionally, neighboring Golgi

stacks were observed to associate transiently or ex-
906 Developmental Cell 12, 901–915, June 2007 ª2007 Elsevie
change Fringe-GFP-positive membrane (arrows in Fig-

ure 4A; Movie S1).

When cells were filmed after 10 min incubation with

CytoD or LatB, we observed Fringe-GFP-labeled Golgi

spots undergoing scission generating two spots of roughly

half the size of the original one. The scission events were

not synchronous for all the spots in the same cell. It takes,

on average, 105 ± 52 s (n = 35) to generate two distinct

Golgi spots from a single one, starting with the formation

of a bilobed profile (Figure 4B, asterisks). We never

observed more than one Golgi scission event per Golgi

spot, at least within the time frame of each movie.

The two fluorescent spots could either remain sepa-

rated (arrows in Figure 4B and Movie S2) or appear to

reunify and separate again (arrowheads in Figure 4B and

Movie S2). This seems likely to reflect the movement of

the two recently separated fluorescent spots toward

each other reaching a distance below the resolution of

light microscopy. This could explain why in fixed treated

cells the number of tER-Golgi spots is increased by a fac-

tor lower than 2. Although not tested by live cell imaging,

the results obtained with fixed cells suggest that the tER

sites also undergo similar scission.
r Inc.
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Mammalian Golgi Also Undergoes Scission

So far, the depolymerization of F-actin in mammalian cells

has not permitted the visualization of Golgi scission similar

to that we observed in S2 cells. This may be due to the

structural complexity of the mammalian Golgi apparatus

or additional functions of the actin cytoskeleton in these

cells, such as the maintenance of intra-Golgi pH (Lazaro-

Dieguez et al., 2006).

Our previous studies have pointed out that the exocytic

pathway of Drosophila cells resembles in many respects

that of mammalian cells, in which microtubules are depo-

lymerized (Kondylis and Rabouille, 2003; Kondylis et al.,

2005). To induce an ‘‘S2 cell-like’’ tER-Golgi organization

and assess Golgi scission upon F-actin depolymerization,

GalNAcT2-GFP HeLa cells (stably expressing the Golgi

resident enzyme N-acetyl-galactosaminyltransferase2

tagged with GFP; Storrie et al., 1998) were pretreated

with nocodazole followed by addition of LatB, and filmed

by time-lapse confocal microscopy. Analysis of such

movies showed that several Golgi stacks per cell under-

went scission during the 10 min of filming (arrows in

Figure 4C and Movie S3) with similar characteristics but

slower kinetics than in S2 cells (189 ± 100 s versus

105 ± 52) (n = 33). Golgi scission was not observed in cells

treated only with nocodazole.

In agreement with an earlier study that reported an in-

crease in the number of mammalian Golgi stacks parallel

to a decrease in their size (Polishchuk et al., 1999), our

results show that Golgi stacks in mammalian cells, as in

S2 cells and other Drosophila tissues, also undergo scis-

sion upon F-actin depolymerization. This suggests that

the Golgi consists of a duplicated structural unit.

The Golgi Comprises a Paired Stack

This duplicated structural unit could correspond to two

structural preexisting entities that are maintained very

close together, or to one morphologically uniform struc-

ture with an underlying yet unknown molecular discontinu-

ity/asymmetry. Upon examination of electron microscopy

(EM) sections of S2 cells, we identified many Golgi profiles

showing two stacks close together forming a pair (Fig-

ure 5D). A pair is defined by the rim of one cisterna in

one stack being less than 70 nm away from the rim of

the closest cisterna in the second stack (Figures 5A and

5B; Figures S5A and S5B).

To test whether the typical organization of the Golgi is

paired stacks, we performed 3D electron tomography on

250–500 nm thick sections and subsequent organelle

modeling. These 3D reconstructions beautifully illustrate

the proposed paired Golgi stack organization (Figures

5H–5K; Movies S4 and S5). Thus far, no clear tubular

connections between equivalent cisternae of the paired

stacks have been observed, but interestingly, in one

tomogram, a pair of stacks shares a tubular network at

its cis side (Figure 5I; Movie S5).

Upon F-actin depolymerization, although the total num-

ber of stacks is not significantly changed compared to

mock-treated cells (Figure 5E), the occurrence of paired

stacks is reduced by 60% (Figure 5D). Instead, individual
Develo
stacks are observed (Figure 5C; Figure S5C) whose aver-

age cross-sectional cisternal diameter is comparable

to that of nontreated cells (320 ± 46 nm for LatB- and

305 ± 53 nm for CytoD-treated cells versus 308 ± 37 nm

in DMSO-treated cells). Furthermore, mirroring our immu-

nofluorescence data analysis, the total surface density of

the tER-Golgi units is similar under all conditions (Fig-

ure 5F), but the surface density of individual units is re-

duced by �50% (Figure 5G). These results indicate that

the paired tER-Golgi units undergo separation into individ-

ual units upon F-actin depolymerization, suggesting that

their pairing is F-actin mediated.

Abi and Scar/WAVE Maintain the Integrity of Paired

Golgi Stacks

The dynamics of the actin cytoskeleton at the plasma

membrane, but also around the mammalian Golgi appara-

tus, is regulated by Rho GTPases (Jaffe and Hall, 2005;

Camera et al., 2003; Dubois et al., 2005; see Introduction).

To investigate whether any of these GTPases are involved

in the actin-based mechanism joining the paired Golgi

stacks, we first overexpressed known dominant-negative

forms of Cdc42, Rac1, and Rho1 (Feig, 1999). Expression

of Cdc42T17N and RacT17N led to tER-Golgi near-doubling

(Figures S6B and S6C) compared to nonexpressing cells

(Figure S6A). In contrast, Rho1T19N overexpression did

not alter the number of Golgi stacks (Figure S6D). These

results indicated that Rac1 and/or Cdc42, but not Rho1,

could regulate the pairing of the two Golgi stacks.

To test this further, we depleted specific downstream

effectors of these GTPases. Cdc42 and Rac1 are known

to promote microfilament branching by activating the

actin-nucleating Arp2/3 complex, through WASP and

Scar/WAVE, respectively. The latter forms a pentameric

complex comprising Abi, among other proteins (see Intro-

duction). Therefore, Scar, Abi, and WASP were depleted

by RNAi (Figure 6). As previously reported, depletion of

Abi leads to Scar degradation (data not shown; Kunda

et al., 2003). We also found that Scar depletion leads to

Abi depletion (Figure 6A), suggesting that Scar itself regu-

lates the integrity of the pentameric complex. In contrast,

WASP remains unaffected upon Abi or Scar RNAi, and the

converse is also true (Figure 6A).

Similar to the F-actin depolymerization phenotype, Scar

and Abi depletion led to a near-doubling (�1.7-fold

increase) in the number of Golgi (Figures 6C, 6D, and 6F;

Table S1) and tER sites (data not shown) in 90% of cells,

concomitant with a �35% decrease in fluorescent object

size (Figure 6H). Accordingly, the majority of depleted cells

exhibited a significant F-actin disruption (compare phalloi-

din staining in Figure 6B and Figures 6C and 6D). Con-

versely, WASP-depleted cells did not exhibit significant

changes in the number or apparent morphology of their

tER-Golgi units (Figures 6E–6H).

Taken together, these results suggest that the F-actin-

dependent maintenance of paired Golgi stack organiza-

tion is mediated by the Scar/Abi complex, possibly

through Rac, but not Cdc42/WASP. Strengthening this

result, actin (Figure S5D), endogenous Scar (Figure 7A),
pmental Cell 12, 901–915, June 2007 ª2007 Elsevier Inc. 907
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Figure 5. The Golgi Comprises a Paired

Stack

(A and B) EM profiles of paired Golgi stacks (ar-

rows) in cryosections of DMSO-treated S2

cells.

(C) EM profiles of individual Golgi stacks in sec-

tions of LatB-treated S2 cells (500 nM, 30 min).

See more examples in Figures S5A–S5C.

(D–G) Stereological analysis of tER-Golgi unit

ultrastructural organization upon F-actin depo-

lymerization. Frequency of paired Golgi stacks

among all Golgi profiles in mock-, CytoD-, and

LatB-treated cells (D). Number of tER-Golgi

units per cell section; a paired one was

counted as two (E). Total surface density of

tER-Golgi units (F). Surface density per individ-

ual tER-Golgi unit (G). Error bars represent

standard deviation (SD), and asterisks indicate

conditions under which a statistical significant

change (p % 0.001) is calculated.

(H–I00) Three-dimensional reconstructions by

electron tomography of two Golgi paired

stacks. In both models, one stack of the pair

is drawn in a warm color (yellow, orange, red,

and pink), and the second stack in a cold color

(purple, and light and dark blue). The ER is

modeled in broken white and surrounds the

paired stacks.

The models without the ER are presented in

(H0), (H00) and (I0), (I00) at different angles. For

more details, see Movies S4 and S5. The white

arrow in (H00) points to the middle cisterna (light

blue) that is very close to the adjacent stack,

perhaps connected. The double arrow in (I0)

points to a cisterna (purple) that is shared by

both stacks in the pair. The distance between

the two stacks is less than 70 nm.

The scale bars represent 200 nm.
and Abi-V5/GFP (Figures 7B and 7C) were found to par-

tially localize at the periphery and between the paired

Golgi stacks.

F-Actin Depolymerization and Abi/Scar Depletion

Mimic G2 Golgi Separation

To assess whether the Golgi doubling that we observed at

G2 involves rearrangements in the F-actin cytoskeleton

around the Golgi, we first compared the number of Golgi

stacks in G1 and S/G2 cells treated with F-actin depoly-

merizing drugs. Our prediction is that if a change in F-actin

dynamics underlies Golgi separation at G2, the actin-

based mechanism that maintains the two Golgi stacks
908 Developmental Cell 12, 901–915, June 2007 ª2007 Elsevier
together should be severed/modified in a G2-specific

manner, and therefore become insensitive to CytoD and

LatB treatment, preventing further Golgi splitting. In con-

trast, the paired Golgi in G1 cells should separate.

We used the number of centrosomes to distinguish G1

from S/G2 cells in a nonsynchronized (Figures 1A–1F) or

a G2 enriched cell population (using the topoisomerase

II inhibitor doxorubicin, which induces a strong delay in

exiting G2; van Vugt et al., 2004). LatB-treated S/G2 cells

exhibited a similar number of Golgi spots as DMSO-

treated S/G2 cells (Figure 7D; Table S1), whereas G1 cells

exhibited a significant increase in their Golgi stack num-

ber, as reported for nonstaged cells (Table S1).
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Figure 6. RNAi Depletion of Scar and Abi,

but Not WASP, Leads to a Doubling in the

Number of tER-Golgi Units

(A) Western blotting of S2 cell extract after 96

hr incubation with dsRNAs to EGFP (lanes 1

and 4), Abi (lane 2), Scar (lane 3), and WASP

(lane 5) using anti-Abi, anti-WASP, and anti-ac-

tin antibodies. The percentage indicates the

amount of protein left after depletion when

compared to EGFP and normalized to actin.

(B–E) IF visualization of the Golgi (dGMAP) and

the actin network (phalloidin) in S2 cells that are

mock- (EGFP, [B]), Scar- (C), Abi- (D), and

WASP- (E) depleted.

(F–H) ImageJ quantification of the number of

fluorescent Golgi spots per cell (F), total fluo-

rescence per cell (G), and the average fluores-

cence intensity per spot (H). Error bars repre-

sent standard deviation (SD), and asterisks

indicate conditions under which a statistical

significant change (p % 0.001) is calculated.

The scale bars represent 5 mm.
Next, we examined whether the G2 separation of paired

Golgi stacks is regulated by Abi and Scar. Again, the pre-

diction was that if this takes place specifically at G2 by

modulation of their activity, then Abi/Scar-depleted cells

(in which the Golgi has already been separated) should

exhibit a similar number of tER-Golgi units at G1 and

S/G2. This was exactly what we observed. Abi/Scar-

depleted G1 cells had a comparable number of Golgi

spots as their S/G2 counterparts (Figures 7E and 7F; Table

S1). As a control, WASP-depleted cells exhibited an S/G2

increase in their Golgi number in a similar fashion as

mock-depleted cells (Figures 7E and 7F).
Develo
Last, we reasoned that the separation of the paired

tER-Golgi units at G2, prior to their mitotic dispersion,

might be essential for mitotic entry. To test this, we over-

expressed Abi, which prevented the splitting of the Golgi

stacks at G2 (the number of Golgi spots was 15.9 ± 4.4,

matching this in G1 cells; Figure 7G). Strikingly, the

mitotic index of the transfected cells dropped to 0.4%,

an 82% decrease when compared to 2.5% in nontrans-

fected cells (Figure 7H).

Overall, these results show that during G1/S, the Golgi

complex is made up of two stacks maintained in a pair

by Abi/Scar-mediated F-actin polymerization at this
pmental Cell 12, 901–915, June 2007 ª2007 Elsevier Inc. 909
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Figure 7. The Golgi Is Separated at G2 through Changes in F-Actin Dynamics by Modulation of Abi and Scar

(A and B) Localization of endogenous Scar and Abi-V5 (3 hr expression) by IEM on and around paired Golgi stacks. G, Golgi stacks.

(C) Single confocal section of Abi-V5 and Abi-GFP immunolocalization in double labeling with the Golgi marker dGMAP. Note in the enlarged inset that

Abi (small arrows) often localizes in the middle and at the periphery of the Golgi spots.

(D) ImageJ quantification of the number of fluorescent Golgi spots in G1 and S/G2 S2 cells after mock and LatB treatment and labeling for the Golgi

and the centrosomes (as in Figure 1A).
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location. This mechanism is severed at G2 to lead to the

Golgi stack separation that is required for cell entry and

progression in mitosis.

DISCUSSION

Golgi: A Paired Organelle Held by F-Actin

We show here that the Golgi is a preduplicated organelle

throughout a large part of the cell cycle, and that each

Golgi comprises not one, but a pair of stacks held together

through an F-actin-based mechanism. We show that

a near-doubling in the Golgi number occurs through the

separation of the two stacks both at G2 (see below) and

upon F-actin depolymerization. Such a paired organelle

has been proposed to exist in Toxoplasma (Pelletier

et al., 2002), and this arrangement is reminiscent of the

centriole, another paired organelle that plays a crucial

role during the cell cycle.

The two stacks could be physically linked without dis-

playing membrane continuity or being interconnected,

for instance through intercisternal tubular connections, ei-

ther permanent or transient. Tubules connecting cisternae

of adjacent stacks are involved in the formation of the

Golgi ribbon in mammalian cells (Ladinsky et al., 1999)

and, recently, GM130 and GRASP65 have been proposed

to be required for their integrity (Puthenveedu et al., 2006).

However, the putative tubules connecting the two stacks

in the pair would have different molecular requirements,

at least in Drosophila, as depletion of dGM130 or dGRASP

does not lead to their separation (Kondylis and Rabouille,

2003; Kondylis et al., 2005).

F-actin could provide a physical link holding the

paired Golgi stacks together, or it could help in the forma-

tion/maintenance of intercisternal tubules. In addition,

short actin filaments have been proposed to link spectrin

mosaics leading to the formation of a skeleton that sur-

rounds the Golgi complex (De Matteis and Morrow,

2000). One of its functions could be to hold the two Golgi

stacks close enough to allow the formation and fusion of

the tubules. It could also surround the tubules themselves,

thus providing membrane stability. The localization of Abi

and Scar at the periphery of the tER-Golgi units and be-

tween the two stacks in a pair is consistent with both pro-

posed functions. Our tomography studies so far have not

revealed clear membrane continuities between Golgi cis-

ternae, though we have found examples of a tubular net-

work which is shared by the paired stacks.

tER sites behave similarly to the Golgi, as they also sep-

arate at G2 and upon F-actin depolymerization. Because

little is known about the mechanism regulating the biogen-
Deve
esis of tER sites, it is difficult here to envisage how the two

parts could be held together. The spectrin-actin mesh de-

scribed above could be common to Golgi and tER sites,

and Golgi and tER site scission could be achieved in a syn-

chronized fashion. Alternatively, either of these organelles

could split first and lead to the scission of the other, per-

haps by providing positional information. Recently, the

centrosome component centrin 2 that is also localized to

tER sites in Trypanosoma has been shown to give such

positioning information (He et al., 2005). A more in-depth

study combining immunogold labeling and 3D tomogra-

phy would be required to elucidate such fine details of

tER-Golgi structural organization.

Molecular Regulation of Golgi Stack Pairing:

Scar and Abi

Drosophila Rho1 is unlikely to have a role in holding the

two Golgi stacks together. The overexpression of the

Rho1 constitutively inactive mutant or treatment of S2

cells with ROCK or myosin light chain inhibitors (Y27632

and blebbistatin; data not shown) did not affect the Golgi

number. Cdc42 is also unlikely to participate as the deple-

tion of its downstream effector WASP did not lead to Golgi

separation, although the overexpression of the Cdc42T17N

dominant negative did. However, this effect could be due

to nonspecific sequestration of the guanine nucleotide

exchange factor involved in maintaining the paired Golgi

stacks and may be shared with other small GTPases.

Interestingly, our results are consistent with a role for

Rac GTPases in Drosophila Golgi architecture. Expression

of the constitutively inactive form of Rac1 led to a near-

doubling in the Golgi number, and depletion of Scar/

WAVE or Abi, which are regulated by Rac GTPases, led

to a similar phenotype. The identical results we obtained

in Scar and Abi RNAi suggest that this well-established

Scar/WAVE pentameric complex is involved in holding

the paired Golgi stacks together by promoting F-actin po-

lymerization. These data indicate that the Rac signaling

pathway is involved. However, the Scar/Abi complex has

recently been shown to also stimulate Arp2/3 and F-actin

polymerization independently of Rac (Innocenti et al.,

2004). This would need to be investigated further.

The Paired Golgi Stack Is Separated at G2

by Modulation of Abi and Scar

We show here that the separation of the paired Golgi

stacks occurs at G2, prior to mitosis. A similar phenome-

non has already been reported during cell division in Toxo-

plasma gondii (Pelletier et al., 2002), where a single Golgi

stack grows as a duplicated organelle and is separated as
(E and F) Representative examples and ImageJ quantitation of the number of fluorescent Golgi spots in G1 and S/G2 cells after mock, Abi, Scar, and

WASP depletion (F) and labeling for the Golgi and the centrosomes (E).

(G and G0) Visualization of the Golgi (dGMAP) in S/G2 cells (two centrosomes marked by g-tubulin) in which Abi-GFP is overexpressed for 24 hr. Note

that the number of Golgi spots (15.9 ± 4.4) is lower than in mock-transfected S/G2 cells (G0).

(H) The mitotic index of Abi-GFP-transfected cells drops by 82% compared to mock-transfected cells.

Arrowheads point to centrosomes. Error bars represent standard deviation (SD), and asterisks indicate conditions under which a statistical significant

change (p % 0.001) is calculated. The scale bars represent 5 mm.
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the cell divides. However, the mechanism underlying this

separation is not known.

The Golgi doubling in number at G2 phase resembles

many aspects of this observed upon F-actin depolymer-

ization. In both cases, a similar increase in Golgi number

and decrease in their size are observed. Furthermore,

we have shown that it is the modulation of the F-actin cy-

toskeleton and the activity of Abi/Scar at G2 that lead to

Golgi stack separation. First, we found that both Scar

and Abi localized to the Golgi, strongly arguing for having

a role in actin remodeling around this organelle. Second,

the Golgi stacks in G2 cells remain insensitive to F-actin

depolymerization. Third, cells depleted of Abi and Scar

that exhibit separated Golgi stacks do not split them fur-

ther at G2. Fourth, the overexpression of Abi prevents

Golgi separation at G2. This strongly suggests that the

F-actin/Abi/Scar-mediated link of the two stacks has

been severed in a G2-specific manner, perhaps by

kinases such as Polo (Barr et al., 2004).

Because tER sites and the Golgi apparatus ultimately

disperse later in mitosis, both in mammalian (Shorter

and Warren, 2002; Stephens, 2003) and Drosophila S2

cells (Stanley et al., 1997; Figure S1), the Golgi stack sep-

aration prior to dispersion might be part of the proposed

Golgi G2/M checkpoint. Indeed, reagents that interfere

with the GRASP65/55 phosphorylation by Polo and

ERK/MEK, respectively, arrest or delay the cell cycle at

the G2/M transition (Sutterlin et al., 2002; Preisinger

et al., 2005; Feinstein and Linstedt, 2007). Here we show

that blocking Golgi separation at G2 by overexpressing

Abi also prevents S2 cells from entering mitosis. This

strengthens the relationship between Golgi organization

and mitotic entry, although we cannot formally exclude

that the mitotic block we observe is partly due to addi-

tional effects of Abi overexpression, for instance at the

plasma membrane.

We propose that at G2, the paired stacks are separated

along with the adjacent tER sites. As the cell enters mitosis,

the Golgi membrane and the tER sites disperse, and are

segregated into the two daughter cells, where the tER-

Golgi units are rebuilt. The Golgi could be rebuilt as a very

small paired stack in close association with Scar, Abi, and

F-actin, or as a single stack that will duplicate by a mecha-

nism that still needs to be unraveled. As G1 cells are all sen-

sitive to F-actin depolymerization, this suggests that the

formation of the paired Golgi stack starts just after the exit

from mitosis and persists until S phase, when the Golgi

seems to grow significantly (Figure S7). A more detailed un-

derstanding will come from EM study of S and G2 cells.

One of the remaining questions regards the impact of

the Abi/Scar role on Golgi organization during develop-

ment. Using Scar/WAVE, Abi, Kette, and Sra-1 mutants,

as well as transgenic flies carrying inducible RNAi con-

structs (Bogdan et al., 2005), it will be possible to assess

whether any of the observed phenotypes (defects in

oogenesis, cell and organ morphology, neuroanatomical

malformations, and failure in cell migration; for a review,

see Stradal et al., 2004) is in part due to defects in Golgi

organization.
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EXPERIMENTAL PROCEDURES

Cells

Wild-type and Delta S2 cells, as well as flat S2R+ cells (gift from Sean

Munro, Cambridge, UK), were grown as described (Kondylis and

Rabouille, 2003). HeLa cells stably expressing GalNAcT2-GFP (gift

from Tommy Nilsson, Göteborg, Sweden) were cultured as previously

described (Storrie et al., 1998) in the presence of 400 mg/ml G-418

sulfate to maintain the selection.

Identification of Cell-Cycle Phases in S2 Cells

Cells in G1 phase were characterized by their small size (<10 mm in

diameter) and exhibited a single centrosome. S/G2 phase cells were

larger (R10 mm in diameter) and contained two centrosomes found

in close proximity. The distinguishing feature between S and G2 cells

was the BrdU-positive staining of the former. The different mitotic

stages were identified by looking at a-tubulin, DAPI, and phospho-

histone H3 staining. The mitotic index was estimated as the per-

centage of PH3-positive cells or cells with condensed chromosomes

(visualized by DAPI staining) over the total cells counted. In all quanti-

tative analyses, multinucleated cells or cells with abnormally bright,

large, or fragmented DAPI staining were not taken into account.

BrdU Incorporation and Labeling

Cells were incubated for 1 hr with 20 mM BrdU (Sigma) and fixed with 4%

paraformaldehyde in PBS. Fixed cells were treated with 1% periodic

acid at 60�C for 30 min, rinsed with tap water and dH2O, and blocked

with 5% BSA in PBS for 10 min. Subsequently, the cells were processed

for immunofluorescence (Kondylis and Rabouille, 2003).

Cloning

The full-length Fringe and Abi coding sequences were amplified

by PCR from clone SADFgM1-Fringe (gift from Sean Munro) and

LD37010, respectively. Primers were used to introduce EcoRI/XhoI

(Fringe) and EcoRI/NotI (Abi) restriction sites. Fringe and Abi were

C-terminally tagged with EGFP or V5.

Transient Transfections

Transient transfections have been described in Kondylis et al. (2005).

The metallothionein promoter allowed a tight and short induction of

Fringe-GFP (3 hr with 1 mM CuSO4) followed by a chase of 2 hr in

the presence of 100 mg/ml cycloheximide to block protein synthesis

and allow the marker to specifically and exclusively localize to the

Golgi stacks (Figures 3A and 3B). Abi was induced for 3 or 24 hr.

Drug Treatments

F-actin depolymerization in S2 cells was performed by incubating the

cells with CytoD or LatB (final concentration 20 mM and 500 nM, re-

spectively) for up to 2 hr. Control cells were incubated with 0.5%–

1% DMSO. BFA treatment was performed at the final concentration

of 20 mM for at least 30 min. Doxorubicin (Sigma) was added to the

culture medium at a final concentration of 1 mM for 1 hr, washed

away thoroughly, and the cells were incubated for 16 hr to enrich the

population of G2 cells. All incubations were carried out at 27�C. Gal-

NAcT2-GFP-expressing HeLa cells were first treated with 10 mg/ml

nocodazole for 4 hr, followed by the addition of 500 nM LatB in the

continuous presence of nocodazole.

RNA Interference

Double-stranded RNA (dsRNA) for WASP, Scar, and Abi were synthe-

sized using specific PCR fragments cloned in the pLitmus28/38i vector

kindly provided by Christian Klämbt (Munster, Germany; Bogdan et al.,

2005). String/Cdc25 dsRNA was prepared from T7-flanked PCR frag-

ments corresponding to nucleotides 6–613 of its coding sequence.

The RNAi experiments were performed as in Kondylis and Rabouille

(2003).
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Antibodies

Antibodies raised against dSec23p, d120kd, dCOG3, p24d1 (p23),

GFP, and Delta (C594.9B) have been characterized before (Kondylis

and Rabouille, 2003; Kondylis et al., 2005). A polyclonal antibody

recognizing dGMAP was used to mark the Golgi membranes (Friggi-

Grelin et al., 2006). 20H5 is a monoclonal antibody raised in Chlamydo-

monas reinhardtii crossreacting with centrins from different species

(Sanders and Salisbury, 1994). Monoclonal antibodies to a-tubulin

(GTU-88), b-actin (AC15), and g-tubulin (B5-1-2) were from Sigma,

and anti-V5 was from Invitrogen. Rat anti-BrdU antibody (clone BU1/

75 [ICR1], Oxford Biotechnology) and rabbit polyclonal anti-phospho-

histone H3 (serine10; Upstate Biotechnology) were used to mark cells

in S phase and mitosis, respectively. Anti-Scar (gift from Jennifer

Zallen, New York) and anti-WASP (gift from Assel Biyasheva, Chicago)

antibodies have been characterized in Zallen et al. (2002) and Biya-

sheva et al. (2004). Anti-Abi antibody (gift from Christian Klämbt) is

described in Bogdan et al. (2005). Phalloidin-TRITC (Sigma) was

used to detect F-actin.

Immunofluorescence Imaging and Analysis

S2 cells were fixed and processed for immunofluorescence (Kondylis

and Rabouille, 2003). Images were acquired using a Leica TCS-NT or

Zeiss LSM-510 confocal microscope, keeping the same acquisition

settings for the different conditions within each experiment. Twenty-

five to thirty optical sections spaced at 0.4 mm were usually necessary

to span the whole cell and capture its entire volume. Except for

Figure 7C, the 2D projection is presented in the figures.

Manual Quantification

On a pilot quantification, the objects on 30 selected cells (DMSO- and

LatB-treated cells) were manually traced throughout the stack on indi-

vidual confocal sections and their number was recorded. The number

of fluorescent spots was also counted on 2D projections of the same

cells built from the individual confocal sections. Comparison between

the two methods showed that the 2D projection resulted in underesti-

mation of the number of fluorescent spots per cell by one to two spots,

mostly due to the optical merging of spots belonging to different sec-

tions. All subsequent quantifications were performed on 2D projected

images using this number as a correction factor.

ImageJ Quantification

Using ImageJ software (Version 1.34; http://rsb.info.nih.gov/ij/), the

number of fluorescent objects was counted after applying a fixed

threshold on projected pictures, excluding objects with size less

than 2–3 pixels. The total fluorescence per cell and the average

fluorescence per spot were estimated using the ‘‘analyze particles’’

function, and were normalized to control (set at 100%). Typically,

each calculated average derives from two or three independent exper-

iments per condition analyzing at least 30 cells per experiment (unless

otherwise stated). The statistical significance of all data obtained was

assessed by two-tailed unpaired Student’s t tests. p values equal or

lower than 0.001 were considered significant and are marked by an

asterisk, whereas p values higher than 0.001 are indicated.

Time-Lapse Confocal Microscopy

S2 cells transiently transfected with Fringe-GFP and GalNAcT2-GFP

HeLa cells were grown on 25 mm uncoated or concanavalin A-coated

(Sigma) coverslips. For live cell imaging, the cells were transferred to

a humidified culture chamber attached to a Zeiss LSM 510 confocal

microscope and adjusted at 27�C for S2 cells or 37�C/5% CO2 for

HeLa cells. Images were captured using a 633 1.4 NA Plan-Apo objec-

tive (Zeiss) starting 5–10 min after the addition of F-actin depolymeriz-

ing drugs to the medium and up to 30 min. For each time point, a stack

of four to ten optical sections spaced �0.4 mm apart was collected.

Scan times for a single optical section were approximately 1 s and

stacks of optical sections were collected every 10–30 s. Each stack

of optical sections was then average projected and the projected im-

ages were multiplied by an appropriate enhancement factor. Adobe

Photoshop 8.0 was used to crop the merged images, increase the

image size for easier viewing, and compress the images into a JPEG
Develop
format. The processed projections were converted to movies using

ImageJ. Golgi splitting events seen in projected images were verified

by tracking the fluorescent objects on individual confocal sections.

(Immuno)Electron Microscopy and Stereological Analysis

S2 cells were fixed and processed for electron microscopy (Kondylis

and Rabouille, 2003; Kondylis et al., 2005). Using micrographs depict-

ing entire cell profiles from ultrathin plastic sections of mock-, CytoD-,

and LatB-treated S2 cells (final magnification 14,000–20,000), the

boundaries of the tER-Golgi units were drawn. Their total surface (St)

and the surface of individual tER-Golgi units (Si) were estimated by

point hit using a grid of 2.5 mm, whereas the surface of the cytoplasm

(including all organelles except the nucleus) (Scyt) was estimated using

a grid of 1 cm. The total surface density of tER-Golgi units and the sur-

face density of individual tER-Golgi units were calculated as St/Scyt

and Si/Scyt, respectively. The surface density of the nucleus was

also calculated in cell profiles under all conditions and was found un-

changed. Twenty cell profiles per condition were used.

The percentage of paired tER-Golgi units and the number of tER-

Golgi units per cell section were estimated by examination under the

microscope of 100 cells per condition. A pair is defined by the rim of

one cisterna in one stack being less than 70 nm away from the rim of

the closest cisterna in the second stack. A paired organelle was

counted as two (Figure 5E). Student’s t tests were performed as

mentioned above.

Three-Dimensional Electron Tomography

The samples were processed for electron tomography as described by

Zeuschner et al. (2006). Briefly, three consecutive thick (250 nm) sec-

tions of chemically (Karnovsky) fixed, epon-embedded wild-type S2

cells were poststained and examined under a Tecnai 20 LaB6 trans-

mission electron microscope (FEI Company, The Netherlands). Golgi

areas of interest were captured in dual-axis tilt series from �60�

to +60� with 1� increments at a magnification of 5000. In the program

package IMOD (http://bio3d.colorado.edu), tilt series were aligned

and the three serial sections were joined to form a 750 nm thick stack.

Parts of this tomogram are displayed in Figure 5H (500 nm) and

Figure 5I (250 nm). Every virtual slice was viewed and analyzed, but

only every second one was drawn by tracing the membrane manually.

Similar tomograms were obtained with high-pressure-frozen cells, but

slight cell ice damage prevented complete modeling (data not shown).

Supplemental Data

Supplemental Data include seven figures, one table, and five movies

and are available at http://www.developmentalcell.com/cgi/content/

full/12/6/901/DC1/.
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