Integration of Kinase and Phosphatase Activities by BUBR1 Ensures Formation of Stable Kinetochore-Microtubule Attachments

Saskia J.E. Suijkerbuijk,1 Mathijs Vleugel,1 Antoinette Teixeira,1 and Geert J.P.L. Kops1,2,*
1Molecular Cancer Research and Cancer Genomics Centre
2Department of Medical Oncology
UMC Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
*Correspondence: g.j.p.l.kops@umcutrecht.nl
http://dx.doi.org/10.1016/j.devcel.2012.09.005

SUMMARY

Maintenance of chromosomal stability depends on error-free chromosome segregation. The pseudokinase BUBR1 is essential for this, because it is a core component of the mitotic checkpoint and is required for formation of stable kinetochore-microtubule attachments. We have identified a conserved and highly phosphorylated domain (KARD) in BUBR1 that is crucial for formation of kinetochore-microtubule attachments. Deletion of this domain or prevention of its phosphorylation abolishes formation of kinetochore microtubules, which can be reverted by inhibiting Aurora B activity. Phosphorylation of KARD by PLK1 promotes direct interaction of BUBR1 with the PP2A-B56α phosphatase that counters excessive Aurora B activity. As a result, removal of BUBR1 from mitotic cells or inhibition of PLK1 reduces PP2A-B56α kinetochore binding and elevates phosphorylation of Aurora B substrates on the outer kinetochore. We propose that PLK1 and BUBR1 cooperate to stabilize kinetochore-microtubule interactions by regulating PP2A-B56α-mediated dephosphorylation of Aurora B substrates at the kinetochore-microtubule interface.

INTRODUCTION

Formation and subsequent stabilization of kinetochore-microtubule interactions requires a balance of counteracting kinase and phosphatase activities. The principal kinase that destabilizes erroneous interactions is Aurora B. Phosphorylation of the microtubule-binding KNL1/MIS12/NDC80 complex (KMN) network by Aurora B decreases the affinity of the KMN network for microtubules (Cheeseman et al., 2006; DeLuca et al., 2006; Wei et al., 2007; Welburn et al., 2010), thus allowing error correction to occur. Chromosome biorientation spatially removes KMN network substrates from inner-centromere-localized Aurora B (Liu et al., 2009), while initiating dephosphorylation of these substrates by promoting kinetochore binding of PP1γ (Liu et al., 2010). Prior to biorientation, however, initial kinetochore-microtubule interactions are protected from premature destabilization by Aurora B, and a recent study showed that this is ensured by the binding of the PP2A-B56α phosphatase to prometaphase kinetochores (Foley et al., 2011). Formation of stable interactions between kinetochores and microtubules further depends on PLK1 (Foley et al., 2011; Lénárt et al., 2007; Sumara et al., 2004; van Vugt et al., 2004) and the pseudokinase BUBR1 (Ditchfield et al., 2003; Lampson and Kapoor, 2005; Suijkerbuijk et al., 2012) that impinge on the Aurora B network via unknown mechanisms. Here we show that PLK1 and BUBR1 cooperate to stabilize kinetochore-microtubule interactions. We have identified a small conserved domain in BUBR1 that is essential for kinetochore-microtubule attachment. This domain is phosphorylated by PLK1 and recruits the Aurora B counteracting phosphatase PP2A-B56α to regulate kinetochore-microtubule attachments.

RESULTS

Identification of a Motif in BUBR1 Required for Formation of Stable Kinetochore-Microtubule Attachments

We and others have previously shown that an amino-terminal fragment of BUBR1 encompassing the TPR domain, two KEN boxes, and the BUB3-binding GLEBS motif (1–483 of human BUBR1) is capable of sustaining a mitotic checkpoint but cannot support kinetochore-microtubule attachments and therefore does not allow chromosome alignment (Malureanu et al., 2009; Suijkerbuijk et al., 2010) (Figure 1A). Chromosome alignment was restored in BUBR1-depleted cells by expression of a truncated protein that lacks only the carboxy-terminal kinase domain (731X), which implies that the attachment function of BUBR1 is independent of the pseudokinase domain and resides in the sequence between 483 and 731 (Suijkerbuijk et al., 2010; Figures 1A and 1C). To further pinpoint the region within BUBR1 that supports attachments, a panel of truncation mutants was assessed in BUBR1-depleted cells expressing various shRNA-resistant mutants and treated with the proteasome inhibitor MG132 to prevent mitotic exit. BUBR1 sequences proximal to the pseudokinase domain (amino...
acid 665–715) therefore harbor a functional region that is essential for chromosome alignment (Figure 1C). Within this region, 665–682 displayed high sequence conservation in animal BUBR1 homologs (Figure 2A). Removal of this region, hereafter referred to as the Kinetochore Attachment Regulatory Domain (KARD), abolished chromosome alignment (Figure 2B, ΔKARD).

Multisite Phosphorylation Is Essential for Function of the KARD Motif

The KARD contains four serine/threonine residues, three of which are relatively well conserved (S670, S676, and T680; Figure 2A). Of these, S670 and S676 have been reported to be phosphorylated in mitosis, either in response to lack of attachment (pS670 [Elowe et al., 2010; Huang et al., 2008]) or lack of tension (pS676 [Elowe et al., 2007]). Although no function was assigned to pS676 (Elowe et al., 2007), inhibiting S670 phosphorylation slightly reduced the efficiency of chromosome biorientation (Huang et al., 2008). To examine potential contribution of these three conserved residues to KARD function, chromosome alignment was examined in BUBR1-depleted cells expressing BUBR1 proteins carrying alanine substitutions at positions 670, 676, or 680. Cells expressing either of the single substitution mutants exhibited a relatively minor defect in chromosome alignment (Figure 2B). In contrast, substituting all three residues simultaneously (BUBR1-3A) abolished chromosome alignment to the same extent as BUBR1 depletion (Figure 2B). Analysis of cold-stable microtubules showed that cells expressing BUBR1-ΔKARD or BUBR1-3A were unable to form stable kinetochore-microtubule attachments (Figure 2C), as previously reported for BUBR1 depletion (Lampson and Kapoor, 2005). This was not due to inability of these proteins to accumulate at unattached kinetochores (Figure 2D). Importantly, replacement of S670, S676, and T680 by phosphomimetic aspartic acid residues (BUBR1-3D) fully restored chromosome alignment and formation of stable kinetochore attachments in BUBR1-depleted cells (Figures 2B and 2C). This strongly supports the hypothesis that the attachment defects observed with expression of BUBR1-3A were due to lack of phosphorylation of these residues.

Phosphorylation of T680 by PLK1 Is Essential for KARD Function

Mutational analysis of the three residues showed that the most severe effect on chromosome alignment was caused by substitution of T680 (Figure 2B). To determine whether T680 was phosphorylated in vivo, we generated a phosphospecific antibody to detect pT680 in cells. pT680-positive kinetochores were evident in prometaphase cells, as well as in nocodazole treated cells (Figures 3A and 3D). The antibody specifically detected pT680-BUBR1, as it could neither detect kinetochores in BUBR1-depleted cells (see siBUBR1 images and quantification in Figures 4C–4E), nor recognize immunoprecipitated BUBR1-T680A or λ phosphatase-treated BUBR1-WT (Figure 3B). Interestingly, BUBR1-positive kinetochores in prophase cells exhibited low pT680-BUBR1 signal, indicating that phosphorylation of this epitope occurs after nuclear envelope breakdown (Figure 3A). Furthermore, all kinetochores in taxol- or S-trityl-L-cysteine (STLC)-treated cells were recognized by
the pT680 antibody (Figures 3D and 3E). Since in these cells only few kinetochores are expected to be unattached but all will have low tension between sisters (Kapoor et al., 2000; Waters et al., 1998), this indicates that phosphorylation of T680 is independent of attachment status and may correlate with lack of interkinetochore tension. This is further supported by our observation that immunopurified BUBR1 was found phosphorylated on T680 to equal extents in cells in which the amount of unattached kinetochore differed but in which all sister kinetochores were at low tension (nocodazole versus taxol and STLC) (Figure 3C). Nevertheless, a thorough interrogation of pT680 and BUBR1 levels in relation to the distance between individual sister kinetochores will be required to conclusively show that pT680 is tension sensitive.

Phosphorylation of T680 behaved similar to that of S676-BUBR1, which is phosphorylated by PLK1 on tension-less kinetochores (Elove et al., 2007). As T680 lies in a sequence that resembles the PLK1 consensus motif D/E-x-S/T-F-x-D/E (E-A-T-H-S-S; Alexander et al., 2011; Nakajima et al., 2003), where one or both of the serine residues may be phosphorylated), we next addressed whether this site is phosphorylated by PLK1. Recombinant active (WT) but not kinase-dead (K82R) PLK1 was able to phosphorylate LAP-BUBR1 on T680 in vitro (Figure 4A). This could be prevented by addition of the small molecule PLK1 inhibitor BI2536 (Lénárt et al., 2007) and was strongly reduced by mutation of T680 to alanine (T680A) (Figure 4A). Residual pT680 signal on in vitro phosphorylated T680A-BUBR1 was likely an in vitro artifact, since the pT680 antibody did not recognize T680A in cells (Figure 3B). Importantly, inhibition of PLK1 in cells by treatment with BI2536 greatly reduced staining of pT680 on unattached kinetochore as well.
as on immunoprecipitated BUBR1 (Figures 4B–4E). Together, these data show that pT680 is a functionally relevant, PLK1-dependent phosphorylation on BUBR1. Furthermore, pT680 is part of a cluster of three attachment- and tension-sensitive phosphorylation sites that together are responsible for the formation of kinetochore-microtubule attachments (Elowe et al., 2007, 2010; Huang et al., 2008).

BUBR1 via Its KARD Recruits PP2A-B56α to Kinetochores

We next asked how the KARD and phosphosites therein might promote kinetochore-microtubule attachments. A yeast-2-hybrid screen with the carboxy-terminal 511 amino acids of BUBR1 (aa 540–1050) was performed on a cDNA library of human breast tumor epithelial cells. High- or medium-confidence interactors included Anillin, UBR4, CAMGAP1, AKR1B1, and many clones of various isoforms of the B56 regulatory subunit of the phosphatase PP2A, most notably B56α and B56γ (Figure 5A). B56α and B56ε isoforms were also identified, albeit with lower confidence scores (Figure 5A). The PP2A holoenzyme is a trimeric complex consisting of a core of the catalytic C and scaffold A subunits, together with a variable regulatory B subunit that determines specificity (Janssens and Goris, 2001). The PP2A-B56α isoforms were recently reported as a kinetochore-bound, tension-sensitive phosphatase that is required for formation of stable kinetochore-microtubule interactions by balancing Aurora B activity in prometaphase (Foley et al., 2011). The interaction between BUBR1 and PP2A-B56α was confirmed by coprecipitation of HA-PP2A-B56α with LAP-BUBR1 from mitotic HeLa cells treated as indicated.

Figure 3. The KARD Is Phosphorylated on T680 in Cells

(A, D, and E) pT680 localization in unperturbed HeLa cells (A) or in HeLa cells treated with the indicated compounds for 1 hr (B) and immunostained for pT680, BUBR1 and centromeres (ACA). Graphs in (E) represent total kinetochore intensity of pT680 relative to BUBR1, ±SD.

(B) pT680 and GFP immunoblot of purified LAP-BUBR1 (WT or T680A) from mitotic HeLa cells, mock or λ phosphatase treated for 30 min after purification.

(C) pT680 and BUBR1 immunoblot of immunopurified BUBR1 from mitotic HeLa cells treated as indicated.
Regulation of Kinetochore PP2A by PLK1 and BUBR1

(Figure 5B). Binding of B56x to BUBR1 was dependent on the KARD, as the interaction was strongly reduced when the KARD was deleted (BUBR1-ΔKARD) (Figure 5B). Furthermore, mutation of the KARD (BUBR1-3A) as well as inhibition of PLK1 using BI2536 diminished the BUBR1-PP2A interaction, while phosphomimetic mutations of the three KARD residues (BUBR1-3D) rendered the interaction insensitive to PLK1 inhibition (Figure 5B). We thus conclude that PLK1-dependent phosphorylation of the three amino acid cluster in the KARD is essential for the interaction regulated stability of kinetochore-microtubule interactions by balancing Aurora B activity at kinetochores. Removal of PP2A-B56 from cells causes defects in kinetochore-microtubule attachment in mitosis similar to those seen after removal of BUBR1 (Foley et al., 2011). We therefore asked whether BUBR1 is required for PP2A-B56x function at kinetochores. Indeed, localization of the phosphatase to kinetochores of unattached chromosomes was reduced in cells depleted of BUBR1 as well as in cells treated with the PLK1 inhibitor BI2536 (Figures 6A and 6B). Residual PP2A-B56x at kinetochores may be due to incomplete depletion of BUBR1 or, alternatively, to BUBR1-independent pools of PP2A-B56x such as one that is associated with SGO1 and that protects sister-centromere cohesion (Kitajima et al., 2006; Riedel et al., 2006; Tang et al., 2006). Importantly, depletion of BUBR1 correlated with increased phosphorylation of S109 on DSN1, an Aurora B-dependent modification that negatively impacts affinity of the KMN network for microtubules (Welburn et al., 2010) (Figures 6C and 6D). This was similar to reductions in DSN1 phosphorylation upon depletion of PP2A-B56x (Foley et al., 2011). To examine whether the BUBR1-PP2A-B56x interaction regulated stability of kinetochore-microtubule interactions by balancing Aurora B activity at kinetochores, cells expressing various BUBR1 mutants were treated with the Aurora B inhibitor ZM447439 (Ditchfield et al., 2003). Inspection of the interactions between kinetochores and cold-stable microtubules revealed that the majority of kinetochores in cells expressing BUBR1-ΔKARD and BUBR1-3A and treated with...
DMSO and MG132 for 2 hr were unattached (Figure 6E). Strikingly, addition of ZM447439 during the final hour of treatment caused formation of stable attachments in both BUBR1-ΔKARD and BUBR1-3A-expressing cells. Thus, Aurora B activity was the principal cause of the weak kinetochore-microtubule interactions in these cells.

The data presented thus far favor the hypothesis that stabilization of kinetochore-microtubule attachments by BUBR1 is due to phospho-KARD-dependent recruitment of PP2A that balances excessive Aurora B activity toward the KMN network. If this is a major mechanism by which BUBR1 contributes to kinetochore-microtubule attachments, BUBR1 should become dispensable when PP2A is localized to outer kinetochores in a BUBR1-independent manner. To test this, the region of BUBR1 spanning the KARD domain (aa 647–697) was constitutively localized to kinetochores by fusion to the MIS12 protein (Jelluma et al., 2010; Maldonado and Kapoor, 2011) (Figure 7A). A wild-type version of the KARD could not restore chromosome alignment in BUBR1-depleted cells (Figures 7B and 7C), as it is likely unphosphorylated due to the absence of the priming T620 residue required for phosphorylation by PLK1 (Elowe et al., 2007). Strikingly, however, the KARD carrying phosphomimetic mutations (MIS12-KARD-3D) but not phospho-dead mutations (MIS12-KARD-3A) fully rescued chromosome alignment in the absence of BUBR1 (Figures 7B and 7C). We thus conclude that the phosphorylated KARD is the predominant mediator for stabilization of kinetochore-microtubule attachments by BUBR1.

DISCUSSION

The data presented here show that multisite phosphorylation of BUBR1 in the KARD regulates the balance of Aurora B activity at kinetochores by recruitment of PP2A-B56ε (Figure 7D). Two functionally important sites within the KARD are

<table>
<thead>
<tr>
<th>Gene</th>
<th># Clones</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP2A-B56ε</td>
<td>23</td>
<td>Very High</td>
</tr>
<tr>
<td>UBR4</td>
<td>22</td>
<td>Very High</td>
</tr>
<tr>
<td>Anillin</td>
<td>13</td>
<td>Very High</td>
</tr>
<tr>
<td>AKR1B1</td>
<td>10</td>
<td>Good</td>
</tr>
<tr>
<td>ARHGAP27</td>
<td>9</td>
<td>Good</td>
</tr>
<tr>
<td>PP2A-B56ε</td>
<td>2</td>
<td>Good</td>
</tr>
<tr>
<td>DDX11</td>
<td>4</td>
<td>Moderate</td>
</tr>
<tr>
<td>RNF103</td>
<td>4</td>
<td>Moderate</td>
</tr>
<tr>
<td>CENPE</td>
<td>1</td>
<td>Moderate</td>
</tr>
<tr>
<td>HYOU1</td>
<td>1</td>
<td>Moderate</td>
</tr>
<tr>
<td>MCM7</td>
<td>1</td>
<td>Moderate</td>
</tr>
<tr>
<td>NOTCH3</td>
<td>1</td>
<td>Moderate</td>
</tr>
<tr>
<td>PP2A-B56ε</td>
<td>1</td>
<td>Moderate</td>
</tr>
<tr>
<td>PPL</td>
<td>1</td>
<td>Moderate</td>
</tr>
<tr>
<td>PRP4</td>
<td>1</td>
<td>Moderate</td>
</tr>
<tr>
<td>RFXDC2</td>
<td>1</td>
<td>Moderate</td>
</tr>
<tr>
<td>RNF103</td>
<td>1</td>
<td>Moderate</td>
</tr>
<tr>
<td>SOX12</td>
<td>1</td>
<td>Moderate</td>
</tr>
<tr>
<td>UNK</td>
<td>1</td>
<td>Moderate</td>
</tr>
<tr>
<td>VPS13A</td>
<td>1</td>
<td>Moderate</td>
</tr>
<tr>
<td>PP2A-B56ε</td>
<td>13</td>
<td>Low</td>
</tr>
</tbody>
</table>
Regulation of Kinetochore PP2A by PLK1 and BUBR1

Phosphorylated by PLK1. PLK1-dependent regulation of PP2A kinetochore localization via BUBR1 phosphorylation may thus be an important mechanism by which PLK1 controls kinetochore-microtubule attachments (Foley et al., 2011; Lénárt et al., 2007; Sumara et al., 2004; van Vugt et al., 2004) and possibly also microtubule dynamics (Liu et al., 2012). BUBR1 thus couples signaling by PLK1 with regulation of outer-kinetochore phosphorylation by Aurora B. It is of interest to note that besides T620, an additional residue amino-terminal to the KARD was recently shown to be involved in chromosome alignment. Phosphorylation of this T608 partially mediated chromosome alignment by the kinetochore-localized kinesin CENP-E (Guo et al., 2012). T608 is close to the PLK1 binding site in BUBR1 (pT620, (Elowe et al., 2007)) and is within a consensus motif for phosphorylation by PLK1, although it was suggested to be an autophosphorylation site (Guo et al., 2012). Since BUBR1 is a pseudokinase (Suijkerbuijk et al., 2012; Vleugel et al., 2012), T608 might instead be a PLK1 phosphorylation site and it would of interest to examine whether pT608 contributes to PLK1-dependent KARD phosphorylation and PP2A

Figure 6. Phospho-KARD Recruits PP2A-B56α to Kinetochores to Counter Excessive Aurora B Activity

(A–D) PP2A-B56α, pS109-DSN1 (pDSN1), and BUBR1 immunolocalization in HeLa cells transfected with indicated siRNAs, treated with nocodazole, MG132, and DMSO or BI2536 for 30 min, and immunostained for PP2A-B56α (A and B) or pDSN1 (C and D), along with BUBR1 and centromeres (ACA). Representative images are shown and graphs represent total kinetochore intensity of PP2A-B56α (B) or pDSN1 (D) relative to centromeres (ACA), ±SD.

(E) Cold-stable microtubules in HeLa cells transfected and treated as indicated, and immunostained for tubulin and centromeres (ACA).
Developmental Cell

Regulation of Kinetochore PP2A by PLK1 and BUBR1

A

<table>
<thead>
<tr>
<th></th>
<th>WT</th>
<th>MIS12-KARD-WT</th>
<th>MIS12-KARD-3A</th>
<th>MIS12-KARD-3D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mock</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MG132</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAP-ACA/DNA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th></th>
<th>LAP-BUBR1</th>
<th></th>
<th>LAP-MIS12-KARD</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mock</td>
<td>shMock</td>
<td></td>
<td>Mock</td>
<td>shBUBR1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT</td>
<td>3A</td>
<td>3D</td>
<td>3A</td>
<td>3D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAP-MIS12-KARD</td>
<td></td>
<td></td>
<td>Tub/ACA/DNA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th></th>
<th>Mock</th>
<th>WT</th>
<th>3A</th>
<th>3D</th>
<th>LAP-BUBR1</th>
<th>MIS12-KARD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D

kinetochore binding, and whether this may explain its involvement in the regulation of chromosome alignment by CENP-E.

A recent structure of the PP2A AB'C holoenzyme in complex with parts of the SG1 homodimer revealed how SG1 directly interacts with the B and C subunits of PP2A (Xu et al., 2009). Critical residues in the interaction between B56 and SG1 are L83, K87, and Y90 that somewhat resemble the IEDSREATH sequence in the KARD of BUBR1. Although the recruitment of PP2A to BUBR1-decorated LacO foci is suggestive, it is unclear whether BUBR1 can directly interact with PP2A-B56 or how phosphorylation of the three residues in the KARD may contribute to the putative interaction. It will be of interest to investigate whether the KARD represents a similar PP2A interaction site as the one found in SG1. In vitro binding studies of the PP2A holoenzyme with the KARD-containing region of BUBR1 may provide conclusive insight into this important question.

Chromosome biorientation is a complex process, which likely requires multiple layers of feedback control to fine-tune the balance between stabilization and destabilization of kinetochore-microtubule attachments, in order to allow efficient and error-free segregation of chromosomes. The data presented here place BUBR1 as an integrator of such balancing signals, and imply extensive feedbacks in the PLK1-BUBR1-PP2A system. Moreover, localized activity of PLK1, the kinase responsible for phosphorylation of the KARD domain, is kept in balance by PP2A-B56 that regulates PLK1 kinetochore binding (Foley et al., 2011). Although paradoxical at first glance, these feedback likely fine-tune relative levels of kinase-phosphatase activities at kinetochores and may be interrupted by deformations of the centromere and kinetochore, such as those imposed by biorienting attachments (Ditchfield et al., 2003), it may, in turn, indirectly contribute to removal of these phosphatases. Moreover, localized activity of PLK1, the kinase responsible for phosphorylation of the KARD domain, is kept in balance by PP2A-B56 that regulates PLK1 kinetochore binding (Foley et al., 2011). Although paradoxical at first glance, these feedback likely fine-tune relative levels of kinase-phosphatase activities at kinetochores and may be interrupted by deformations of the centromere and kinetochore, such as those imposed by biorienting attachments (Ditchfield et al., 2003), it may, in turn, indirectly contribute to removal of these phosphatases.

EXPERIMENTAL PROCEDURES

Cell Culture, Plasmids, and Transfections

HeLa, HEK293T and U2OS cells were grown in DMEM supplemented with 8% fetal bovine serum and penicillin/streptomycin (50 μg/ml). The U2OS LacO cell line (a gift from S. Janicki) was grown in the presence of 100 μg/ml hygromycin B.

Figure 7. Phospho-KARD Is Sufficient for Formation of Kinetochore-Microtubule Interactions by BUBR1

(A) BUBR1 localization in HeLa cells transfected with LAP-BUBR1-WT or LAP-MIS12-KARD (WT or mutant), treated with nocodazole and MG132 for 1 hr, and immunostained for GFP and centromeres (ACA). (B and C) Chromosome alignment in HeLa cells transfected with indicated shRNAs in combination with RNAi-insensitive LAP-tagged BUBR1 and treated with MG132 for 1 hr and immunostained for tubulin and centromeres (ACA). Representative images are shown (B) and graph (C) represents the relative fraction of cells with full chromosome alignment (average of three experiments, ±SEM). (D) Model depicting the regulation of kinetochore-microtubule attachments by cooperation of PLK1 and BUBR1. Phosphorylation of BUBR1 by PLK1 at kinetochores regulates PP2A-B56-mediated dephosphorylation of Aurora B substrates.
phosphatase (NEB) at 30 min at 37 °C, followed by addition of sample buffer. Samples were separated by SDS-PAGE. Immunoblotting was done using standard protocols; the signal was visualized and analyzed on an Odyssey scanner (LI-COR Biosciences) using fluorescently labeled secondary antibodies (Figures 1B, 3B, 3C, 4B, and 5B) or was detected by using enhanced chemiluminescence (Figures 3B, 3C, 4A, and 5B).

PLK1 Kinase Assay

LAP-BUBR1 substrate was purified from thymidine treated HEK 293T cells, by lysis in lysis buffer (50 mM HEPES [pH 7.5], 150 mM NaCl, 5 mM EDTA, 0.5% NP-40, 1 mM NaVO₄, 1 mM β-glycerophosphate, 1 mM NaF, and complete protease inhibitor [Roche]). Followed by binding to S protein-agarose (Novagen) for 2 hr, washing four times in lysis buffer and two times in kinase buffer (20 mM HEPES [pH 7.5], 130 mM KCl, 10 mM MgCl₂, 1 mM EGTA, 1 mM Na₂VO₄, 1 mM β-glycerophosphate, 1 mM NaF, and 1 mM DTT); Dried beads were incubated 30 min at 37°C with recombinant PLK1 WT or K82R in 30 μl reactions containing: 100 μM ATP in kinase buffer supplemented with 100 nM BI2536 or DMSO. Reactions were stopped by addition of sample buffer and incubation at 95°C.

Yeast Two-Hybrid

For the ULTramate Y2H screen (performed by Hybrigenics), the bait, human BUBR1 fragment amino acid 540–1050 (with kinase dead mutation, K795A), was tested on a Human Breast Tumor Epithelial Cells RP1 cDNA prey library.

Antibodies

The pT680-BUBR1 antibody was raised in rabbits using the peptide REA-pT-HSSGFSGSSAKKC coupled to KLH as antigen and affinity purified using the described peptide (Covance). The antibody was used in the presence of nonphosphorylated peptide (1 ng/ml) in all experiments. The antibodies used in this study were α-Tubulin (Sigma, Cat# T5168), green fluorescent protein (GFP) (custom rabbit polyclonal), BUBR1 (Bethyl, Cat# A300-386A), pDSN1 pS109 (gift from I. Cheeseman [Weibum et al., 2010]), PP2A-B56x (BD Trans lab, Cat# 610615), HA-probe Y-11 (Santa Cruz, Cat# sc-805), and HA-probe (custom monoclonal 12CA5).

ACKNOWLEDGMENTS

We are grateful to R. van Heesbeen, N. Hubner, V. Groenewold, and L. Kleij for technical assistance; to I. Cheeseman, K. Gascoigne, and S. Janicki for critical reading of the manuscript; and to the Kops, Lens, and Medema laboratories for valuable discussions. This work was supported by the Dutch Cancer Society (KWF UU-2009-4516) and the European Research Council (ERC-STG KINSIGN).

Received: May 9, 2012
Revised: August 22, 2012
Accepted: September 11, 2012
Published online: October 15, 2012

REFERENCES

Regulation of Kinetochore PP2A by PLK1 and BUBR1

