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SUMMARY

Despite the enormous replication potential of the hu-
man liver, there are currently no culture systems
available that sustain hepatocyte replication and/or
function in vitro. We have shown previously that sin-
gle mouse Lgr5+ liver stem cells can be expanded as
epithelial organoids in vitro and can be differentiated
into functional hepatocytes in vitro and in vivo. We
now describe conditions allowing long-term expan-
sion of adult bile duct-derived bipotent progenitor
cells from human liver. The expanded cells are
highly stable at the chromosome and structural level,
while single base changes occur at very low rates.
The cells can readily be converted into functional
hepatocytes in vitro and upon transplantation in vivo.
Organoids from a1-antitrypsin deficiency and Ala-
gille syndrome patients mirror the in vivo pathology.
Clonal long-term expansion of primary adult liver
stem cells opens up experimental avenues for
disease modeling, toxicology studies, regenerative
medicine, and gene therapy.
INTRODUCTION

The liver is mainly composed of two epithelial cell types, hepa-

tocytes and ductal cells. Hepatocytes synthesize essential

serum proteins, control metabolism, and detoxify a wide

variety of endogenous and exogenous molecules (Duncan
et al., 2009). Despite their considerable replication capacity

in vivo (Michalopoulos, 2014), hepatocytes have resisted

long-term expansion in culture (Mitaka, 1998). Indeed, a recent

study describes a human liver hepatocyte culture system for a

period of �1 week with only 10-fold expansion (Shan et al.,

2013). As an alternative, human embryonic stem (hES) cells

and human induced pluripotent stem (hiPS) cells have been

differentiated toward hepatocyte-like cells. However, recent

reports imply that genetic and epigenetic aberrations occur

during the derivation and reprogramming processes (Liang

and Zhang, 2013; Pera, 2011; Lund et al., 2012). These range

from chromosomal abnormalities (Laurent et al., 2011),‘‘de

novo’’ copy number variations (CNVs) (Hussein et al., 2011),

and point mutations in protein-coding regions (Gore et al.,

2011). Such changes may complicate their use for regene-

rative medicine purposes (Bayart and Cohen-Haguenauer,

2013).

We have recently described a culture system that allows the

long-term expansion (>1 year) of single mouse adult intestine

(Sato et al., 2009), stomach (Barker et al., 2010), liver (Huch

et al., 2013b), and pancreas (Huch et al., 2013a) stem cells.

Lgr5, the receptor for the Wnt agonists R-spondins (Carmon

et al., 2011; de Lau et al., 2011), marks adult stem cells in

these mouse tissues (Barker et al., 2007, 2010; Huch et al.,

2013a, 2013b). These cultures remain committed to their tissue

of origin. We have recently adapted the technology to allow

culturing of human intestinal stem cells (Jung et al., 2011;

Sato et al., 2011) and have shown that patient-derived intestinal

organoids recapitulate the pathology of hereditary intestinal

diseases (Bigorgne et al., 2014; Dekkers et al., 2013; Wiegerinck

et al., 2014). Here, we pursue the establishment of an organoid

culture system for human liver.
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RESULTS

Optimization of Human Liver Stem Cell Culture
Our defined mouse liver medium (ERFHNic [Huch et al., 2013b])

supported the growth of human liver cells only for 2–3 weeks

(Figure 1A and 1B and Figure S1A, top, available online). Gene

expression profiles of human liver cultures that were maintained

for 2 weeks in ‘‘mouse liver medium’’ revealed highly active Tgf-b

signaling. Tgf-b target genes such as CTGF, PLAT, TIMP1, and

TIMP2 were highly expressed, whereas Tgf-b sequesters

(LTBP2 and LTBP3) and Smad4 inhibitors (SMURF1 and

SMURF2) (Massagué et al., 2005) were virtually absent (Fig-

ure S1B). Tgf-b signaling induces growth arrest and epithelial-

to-mesenchymal transition (Xu et al., 2009). Specific inhibition

of Tgf-b receptors Alk4/5/7 by the small molecule inhibitor

A8301 downregulated CTGF, TIMP2, and PLAT (Figure S1C),

extended the time in culture (�6–7 weeks, six to seven splits)

(Figure 1B), and enhanced colony-forming efficiency (Figure 1D).

Still, the cultures eventually deteriorated (Figures 1B and 1C,

left). Expression of the stem cell marker LGR5 decreased over

time, whereas differentiation markers such as Albumin (ALB)

or CYP3A4 were upregulated (data not shown), indicating that

our conditions were promoting differentiation.

We then tested additional compounds to induce proliferation

and/or LGR5 expression (Table S1). Proliferating bile-duct pro-

genitor cells occur both during homeostasis (Furuyama et al.,

2011) and after damage (Dorrell et al., 2011; Huch et al.,

2013b; Shin et al., 2011). As Forskolin (FSK), a cAMP pathway

agonist, induces proliferation of biliary duct cells in vivo (Francis

et al., 2004), we asked whether cAMP would support the human

liver cultures.

FSK addition upregulated LGR5 and the ductal markerKRT19,

whereas ALB and CYP3A4 decreased (Figure S1D). Colony-

forming efficiency was essentially unchanged (Figure 1D), yet

the cultures expanded as budding organoids for many months

in culture (>6 months) at a weekly split ratio of 1:4–1:6 (Figures

1B and 1C, right). Similar results were observed with other

cAMP agonists (8-BrcAMP, Cholera toxin or NKH477) (Fig-

ure S1E). Removal of cAMP agonists resulted in rapid deteriora-

tion (Figures S1F and S1G). Similarly, removal of the Wnt agonist

R-spo or blocking Wnt secretion by porcupine inhibition (IWP-2)

resulted in rapid loss of the cultures (Figures S1F–S1H). This
Figure 1. Growing Liver Organoids from Ductal Cells

3,000 or 10,000 human primary liver cells were seeded per well in a 48-well plat

(A) Scheme of the experimental protocol.

(B) Mouse liver culturemedium (ERFHNic) or medium supplemented with A8301 (A

a ratio of 1:4�1:6 dilution. Supplementing with A8301 and FSK significantly increa

every 7–10 days for >5 months. Experiments were performed in triplicate. Each

(C) DIC images of organoids treated with mouse liver medium with A8301 and w

(D) Percentage of colony formation efficiency in the presence or absence of A83

Results are expressed as mean ±SEM of five independent experiments.

(E–G) Expansion rates, in vitro growth curves, and EdU incorporation were analy

cells counted per well at each passage from P1–P4 (E) to P16–P18 (F). Results a

was calculated as described in the Extended Experimental Procedures. (G) EdU

(H) Human liver cell suspensions were separated into EpCAM+ ductal cells an

Identity of the populations was confirmed by staining for Albumin and KRT19. S

EpCAM+ ductal cells.

See also Figures S1 and S2.
effect was rescued by exogenous addition of Wnt (Figure S1H).

Twelve additional healthy human donor liver biopsies were

cultured in the improved medium, with a consistent doubling

time of �60 hr, independent of the age of the culture (Figures

1E and 1F and Table S2). EdU incorporation confirmed that the

cells maintained their proliferative state in vitro (Figure 1G) for

>3 months. Cultures could be readily frozen and thawed (data

not shown). Thus, Wnt signals, cAMP activation, and Tgf-b

inhibition were essential for long-term expansion.

Organoids Originate from Ductal cells
Collagenase perfusion of donor livers yields high numbers of

fresh, viable, and functional human hepatocytes (Gramignoli

et al., 2012) (Figure S2A). We employed EpCAM to differentially

sort hepatocytes (EpCAM�) from ductal EpCAM+ ductal cells

(Figures 1H, S2B, and S2C) (Schmelzer et al., 2007; Yoon

et al., 2011). Although hepatocytes formed no organoids, Ep-

CAM+ bile duct cells developed into organoids with a striking ef-

ficiency of 28.4% ± 3.2% (Figures 1H, S2D, and S2E). Crude liver

cell preparations grew into organoid structures with an efficiency

that equaled the number of EpCAM+ cells (Figures S2F and

S2G). In our culture system, ductal cells rather than hepatocytes

initiate organoids.

Clonal Organoids Are Genetically Stable
Organoids cultured for 3 months maintained normal chromo-

some numbers (Figures 3A and S4A). From two donors, we ob-

tained biopsy samples, which we dissociated and cultured in

bulk for 7 days. Subsequently, we isolated single cells and estab-

lished two independent clonal lines for each of the two livers

(cultures A and B). After 3 months of expanding these cultures,

a second cloning step was performed. We could thus determine

all genomic variation accumulated in a single cell during life,

derivation, and 3 months of culture (Figures 2A and 2B).

We observed 720–1,424 base substitutions per cultures, of

which 63–139 were introduced during the 3 months culture

(Figure 2C). Therefore, the majority of the base substitutions

identified had been incorporated in vivo (during life) or intro-

duced during organoid derivation, but not during culture. How

do these numbers compare to published data? iPS cells contain

1,058–1,808 de novo base substitutions (determined at passage

numbers between 15 and 25) compared to their parental somatic
e in different culture conditions, as indicated.

) or A8301 and Forskolin (FSK). The cultures were split every week 7–10 days at

sed the expansion efficiency to grow for >18 passages at a split ratio of 1:4–1:6

bar indicates a different donor.

ith (right) or without (left) FSK. Magnification, 43.

01 and/or FSK. Experiments were performed in triplicate and for five donors.

zed at early and late passages in EM. (E and F) Graphs illustrate the number of

re expressed as mean ±SEM of three independent cultures. The doubling time

incorporation was still detected at late passages.

d larger EpCAM� hepatocytes (for exact gating strategy, see Figure S2C).

orted cells were grown for 14 days. Organoids were exclusively derived from
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(A) Clonal cultures were obtained by seeding sorted cells at one cell per well. DIC images at magnifications: 403 (days 0–10), 43 (day 20 onward).

(B) Schematic overview of the experimental setup. Two independent donor liver biopsies were cultured for 1 week. Single cells were then clonally expanded to

obtain two independent organoid cultures per donor (cultures A and B). After long-term expansion, a second clonal expansion step was performed. The resulting

organoid cultures were subjected to WGS analysis. To obtain all somatic variation, variants were filtered for presence in the original biopsy. To determine the

effect of long-term culturing on genomic stability, somatic variation was filtered for presence in earlier passages.

(C) The pie chart indicates the percentage of the genome that was surveyed per donor. The right panels indicate the absolute numbers of base substitution

observed in the surveyed part of the genome. Indicated are the total number of somatic base substitutions per culture and the number induced by long-term

culturing.

(D) Left panels indicate the total number of somatic base substitutions per donor, and the right panel indicates those affecting protein-coding DNA.

See also Figure S3.
cells (Cheng et al., 2012). Of note, the numbers from these

studies do not include the variation acquired in vivo in the

parental somatic cells. Thus, 3 months of in vitro expansion of

liver organoids introduces 10-fold fewer base substitutions

than iPS cell reprogramming. Of the total number of base substi-
302 Cell 160, 299–312, January 15, 2015 ª2015 The Authors
tutions, only few were located in protein-coding DNA (seven

to nine base substitutions per culture; Figures 2D and S3). With

the exception of one synonymous mutation in culture A from

donor 2 (Table S3), all mutations were already present in the

early passage clonal cultures, indicating that they were not
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incorporated during the 3 months of expansion. None of the

mutated genes occurs in COSMIC databases (Table S3). In iPS

cells, an average of six base substitutions per line affect pro-

tein-coding DNA (Cheng et al., 2012; Gore et al., 2011).

Next, we searched for structural aberrations in the WGS data.

We did not observe any gross chromosomal aberrations (Fig-

ure 3B). We observed two copy number variants (CNVs), hetero-

zygous gains, in one of the liver organoid cultures (Figures 3C). In

the other cultures, we did not detect any CNV (Figures 3D and

S4B–S4D). Moreover, these two CNVs were already present in

the early passage cultures and therefore did not result from

long-term culturing. ES cell cultures routinely show abnormal

karyotypes (Baker et al., 2007), and iPS cells can harbor consid-

erable numbers of somatic CNVs (Hussein et al., 2011; Laurent

et al., 2011; Martins-Taylor et al., 2011; Mayshar et al., 2010;

Abyzov et al., 2012).

Differentiation into Functional Hepatocytes In Vitro
and upon Transplantation
The stem cell markers PROM1 and LGR5, as well as ductal

(SOX9, OC2) and hepatocyte markers (HNF4a) were readily ex-

pressed (Figures 4A, S5A, and S5B). Histologically, liver organo-

ids displayed a duct-like phenotype presenting either as: (1) a

single-layered epithelium, expressing the cytokeratin markers

KRT19 and KRT7, or (2) a pseudo-stratified epithelium with non-

polarized E-Cadherin+ HNF4a+ and some KRT7+ cells (Figures

4B–4D). SOX9 (Figure 4E) and EPHB2 (Figure 4F) were detect-

able in almost all cells, whereas LGR5 was detectable within

the EPHB2+ population (Figure 4F). The organoids failed to

express markers of mature hepatocytes, such as Albumin or

CYP3A4 (Figures 4A and 5C, EM bars). Therefore, we defined

a human differentiation medium (DM) (Table S1). Removal of

the growth stimuli R-spo and FSK resulted in upregulation of

Albumin and CYP3A4 (Figure S5C). To this medium, we then

added the Notch inhibitor DAPT (Huch et al., 2013b), FGF19

(Wu et al., 2011), and dexamethasone (Rashid et al., 2010) (Fig-

ure S5D). BMP7 reportedly accelerates hepatocyte proliferation

in vivo (Sugimoto et al., 2007). Addition of BMP7 slightly facili-

tated the expression of hepatocyte markers ALB and CYP3A4

even during expansion medium (data not shown). Therefore,

5–7 days prior to the start of differentiation, we added 25 ng/ml

BMP7 to the expansion medium (EM) (Figure 5A). When cultured

in this differentiation medium (DM), the cells acquired pro-

nounced hepatocyte morphologies, including polygonal cell

shapes (Figure 5B). Gene expression profiles revealed high
Figure 3. Structural Variation in Human Liver Organoids

(A) Representative karyotyping image of organoids cultured for 16 days (P1) an

chromosomal aberrations were observed in any of the samples analyzed (n = 15

(B) Read-depth analysis of whole-genome sequencing data over the different chro

from donor 2. Read depth was corrected for GC content and normalized for geno

deletion.

(C) Copy number analysis of a region at chromosome 3 found to harbor a heteroz

the indicated region in 5 kb bins, corrected for GC content and normalized for gen

show the variant allele frequencies of informative nonreference single-nucleotide

culture (bottom).

(D) Summary of copy number analysis of the different organoid cultures of the tw

donor 2 and were already present in the parental culture.

See also Figure S4.
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levels of hepatocyte markers such as ALB, cytochromes, Apoli-

poproteins (APOB), and complement factors (C3) (Figures 5C,

5D, and S5E). Cells with high levels of ALB and MRP4 were de-

tected by immunofluorescence (Figure 5B). Similar results were

obtained with cultures derived from EpCAM+-sorted ductal cells

(Figures S5F and S5G). Immunohistochemical analysis indicated

that the cells accumulate glycogen (Figure 6A) and take up LDL

(Figure 6B). Albumin was secreted into the medium (Figure 6C).

The cultures exhibited similar CYP3A4 activity as fresh isolated

hepatocytes (Figure 6D, compare to Figure S2A). Differentiated

organoids hydroxylated midazolam, another indication of func-

tional CYP3A3/4/5 activity (Wandel et al., 1994), and glucuroni-

dated hydroxy-midazolam, thereby showing evidence of both

phase I and II detoxifying reactions (Figure 6E). Bile acid salts

were readily secreted into the medium (Figure 6F). Finally, the

organoids detoxified ammonia at similar levels to HepaRG cells

(Figure 6G). In all cases, the expanded human liver organoids

showed stronger hepatocyte functions when compared to the

standard/reference cell line HepG2 cells (Figure 6).

To test the ability of the organoids to engraft as functional

hepatocytes in vivo, we treated Balb/c nude mice with CCl4-

retrorsine to induce acute liver damage. This treatment allows

engraftment of hepatocytes (Guo et al., 2002; Schmelzer et al.,

2007). Using human-specific antibodies (Figure S6A), we initially

detected KRT19-positive, ductal-like cells at 2 hr and 2 days

after transplantation, distributed throughout the liver paren-

chyma (Figure S6B). At later time points, we observed ALB+,

KRT19� human cells as singlets/doublets or, more rarely, in

larger hepatocyte foci (Figures 6H and S6C). Of note, our dam-

age model provides no stimulus for expansion of the transplant

after engraftment. Human Albumin and a-1-antitrypsin were

found in serum of recipient mice within 7–14 days (Figures 6I,

S6D, and S6E) at a level that remained stable for more than

60 days in five out of six mice and for more than 120 days in

two out of five animals. Although transplantation of primary

human hepatocytes initially yielded higher levels of human Albu-

min (Figure 6I), the levels approximated those of transplanted

organoids within a month.

Patient Organoids Model Disease Pathogenesis
a1-antitrypsin (A1AT) deficiency is an inherited disorder that pre-

disposes to chronic obstructive pulmonary disease and chronic

liver disease (Stoller and Aboussouan, 2005). A1AT is secreted

from the liver to protect the lung against proteolytic damage

from neutrophil elastase. The most frequent mutation is the
d 90 days (P14), illustrating a normal chromosomal count (n = 46). No major

). Detailed chromosomal counts for different donors are shown in Figure S4.

mosomes for the biopsy (top) and organoid culture A (bottom) that were derived

me coverage. Gray dotted lines indicate log2 values associated with a gain or

ygous gain in culture A of donor 2. Left panels indicate read-depth analysis of

ome coverage, of the biopsy (top) and organoid culture (bottom). Right panels

polymorphisms (SNPs) in the indicated region for the biopsy (top) and organoid

o donors. Somatic CNVs were exclusively observed in culture A derived from
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(A and B) Gene expression was analyzed by RT-PCR (A) and immunofluorescence (B) in human liver cultures grown in EM.

(A) Gene expression was analyzed at early (EP) and late (LP) passages. Human liver cultures expressed progenitor (LGR5, SOX9), ductal (KRT19, SOX9), and

hepatocyte (HNF4A) markers, but no albumin (ALB). Results are indicated as 2-dCt (2DDCT). Values represent mean ±SEM of three independent experiments in
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(B–F) Confocal images stained for ECAD and the hepatocyte marker HNF4 (B) and the ductal markers (KRT19 [C], KRT7 [D], and SOX9 [E]). Nuclei were

counterstainedwith Hoechst. (F) Confocal image stained for EPCAM (blue). The stem cell marker Lgr5 (green) was restricted to a subset of the cells staining for the

Wnt target gene EPHB2 (red). Scale bars, 50 mm (B–E and F, left); 25 mm (F, right).

See also Figure S5.
Z allele (Glu342Lys) of the SERPINA1 gene, which causes accu-

mulation of misfolded A1AT in hepatocytes. The ZZ mutant

phenotype is characterized by a �80% reduction of the protein

in plasma, which subsequently causes lung emphysema (Stoller

and Aboussouan, 2005). Biopsies from three patients diagnosed

with A1AT deficiency (Table S2 and Figure S7A) were subjected

to histological characterization, RNA, and DNA isolation and

expansion in culture. Organoids were grown for >4 months in

culture and behaved normally. Gene expression analysis

demonstrated that the cells differentiated normally in DM (Fig-

ure S7B). Functional tests revealed that the differentiated cells

from A1AT patients secreted high levels of Albumin and take

up LDL similar to that of healthy donor-derived organoid cultures

(Figures 7B–7D). In A1AT deficiency, themolecular pathogenesis

of the liver disease relates to the aggregation of the protein within

the endoplasmic reticulum of hepatocytes (Lawless et al., 2008).

A1AT protein aggregates were readily observed within the cells

of the differentiated organoids (Figure 7H), similar to what was
found in the original biopsy (Figure 7G). A1AT ELISA confirmed

reduced protein secretion (Figure 7I) (Table S2 indicates the

A1AT secretion per patient), and supernatants from differenti-

ated mutant organoids showed reduced ability to block elastase

activity (Figure 7J). Protein misfolding is one of the primary

causes that drive hepatocytes apoptosis in PiZZ individuals

(Lawless et al., 2008). Differentiated liver organoids from A1AT-

D patients mimicked the in vivo situation and showed signs of

ER stress, such as phosphorylation of eIF2a (Figure 7K) and

increased apoptosis in the differentiated state (Figures S7C

and S7D).

Using a biopsy from an Alagille syndrome (AGS) patient, we

tested whether structural defects of the biliary tree can also be

modeled. AGS is caused by mutations in the Notch-signaling

pathway, which results in partial to complete biliary atresia

(Kamath et al., 2013). Patient organoids resembled their healthy

counterparts in the undifferentiated state. However, upon

differentiation to the biliary fate by withdrawal of R-spondin,
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Figure 5. Differentiation of Organoids into Hepatocytes

Human liver cultures expanded for >1 month were transferred to DM.

(A) Experimental strategy.

(B and C) Expression of hepatocyte genes determined by immunofluorescence (B) or qPCR (C) after 11 days. (B) Immunofluorescence for albumin (ALB, red) and

ZO-1 (green). Scale bar: 25 mm, left; 30 mm, right. (C) qPCR analysis for albumin and cytochrome p450 3A4. Graphs indicate mean ±SEM of three independent

experiments for three independent donors. Tissue: whole lysate from human liver. **p < 0.01 when comparing EM versus DM.

(D) Whole-genome transcriptome analysis of human liver cultures grown in EM or after being cultured 11 days in DM. Heat map indicates cluster of genes highly

expressed in liver tissue and in differentiated organoids. Of note, this cluster contains genes essential for liver function, as indicated in red. Green, downregulated;

red, upregulated.

See also Figure S5.
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(A) Glycogen accumulation was determined by PAS (Periodic-Acid Schiff) staining in organoids grown in EM or DM for 11 days. PAS staining (pink) was

exclusively observed after differentiation (DM), indicating the capacity to accumulate glycogen. Magnification, 103.

(B) LDL uptake was analyzed using Dil-ac-LDL fluorescent substrate (red) after EM (left) or DM (right) culture for 11 days. Only cultures maintained in DM

incorporated the substrate (red). Nuclei were counterstained with DRAQ5. Scale bar, 25 mm.

(C) Albumin production during 24 hr was measured in supernatant. Results are expressed as mean ±SEM of two independent experiments in four independent

donor-derived cultures.

(D) CYP3A4 activity wasmeasured in cultures kept in DM for 11 days. Results are expressed as RLU per ml per million cells. HEK293T cells and HepG2 cells were

used as negative and positive controls, respectively. Note that DM organoids upon DM exhibit similar the CYP3A4 activity as freshly isolated hepatocytes (see

Figure S2A). Triplicates for each condition were analyzed. Results are shown as mean ±SEM of two independent experiments in four independent donor-derived

cultures.

(E) Midazolam metabolism is performed exclusively by functional CYP3A3/4/5 enzymes. Three different organoid cultures from two different donors and HepG2

cells were cultured for 11 days as described. Midazolam was added to the medium (5 mM), and after 24 hr, concentrations of 1-OH midazolam and 1-OH

(legend continued on next page)
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Nicotinamide, TGFbi, and FSK, AGS patient organoids failed

to upregulate biliary markers such as KRT19 and KRT7 (Fig-

ure S7E). Staining for KRT19 revealed that biliary cells were

scarce and unable to integrate into the epithelium. Rather, they

rounded up and underwent apoptosis in the organoid lumen

(Figure S7F). In AGS mouse models, JAGGED-1/NOTCH2 is

dispensable for biliary lineage specification but is required for

biliary morphogenesis (Geisler et al., 2008; McCright et al.,

2002). Thus, AGS liver organoids constitute the first human 3D

model system to study Alagille syndrome.

DISCUSSION

Liver diseases (ranging from genetic inherited disorders to viral

hepatitis, liver cancer, and obesity-related fatty liver disease)

account for the twelfth-leading cause of death in the United

States (Heron, 2012). Failure in themanagement of liver diseases

can be attributed to the shortage of donor livers (Vilarinho and

Lifton, 2012) as well as to our poor understanding of the mecha-

nisms behind liver pathology. The value of any cultured cell as a

disease model or as a source for cell therapy transplantation

depends on the fidelity and robustness of its expansion potential

as well as its ability to maintain a normal genetic and epigenetic

status (Pera, 2011). The possibility of differentiating hESC or

reprogrammed fibroblasts (iPS) into almost any differentiated

cell type, from neurons to hepatocytes, has allowed modeling

of many human genetic diseases, including A1AT-D (Rashid

et al., 2010). However, the genetic instability of cultured stem

cells raises concerns regarding their safe use in cell therapy

transplantation (Bayart and Cohen-Haguenauer, 2013).

Here, we show that primary human bile duct cells can readily

be expanded in vitro as bipotent stem cells into 3D organoids.

These cells differentiate into functional hepatocyte cells in vitro

and generate bona fide hepatocytes upon transplantation.

Extensive analysis of the genetic stability of cultured organoids

in vitro demonstrates that the expanded cells preserve their

genetic integrity over months in culture. These results agree

with our previous observations in the mouse (Huch et al.,

2013b) yet are in striking contrast to recent publications in which,

utilizing several lineage tracing approaches, ductal/resident

stem cells have been described as not contributing to mouse

liver regeneration (Schaub et al., 2014; Yanger et al., 2014;

Yanger et al., 2013). Our results resemble what has been

elegantly shown in zebrafish and rat models: in the event of an

almost complete hepatocyte loss or blockage of hepatocyte

proliferation, biliary epithelial cells convert into hepatocytes

(Choi et al., 2014) (Michalopoulos, 2014). Our data are further

corroborated in human fulminant hepatic failure, in which, upon
midazolam glucuronide were determined. Duplicates for each condition and d

experiments.

(F) Bile acid production shown as ±SEM of two independent experiments in two

were analyzed.

(G) Ammonia elimination, shown as ±SEM of n = 3 independent experiments in t

(H) Retrorsine/CCl4-treated Balbc/nude mice were transplanted with 1–2 3 106 h

foci of human Albumin+/ KRT19� hepatocytes demonstrates engraftment and di

(I) Serum levels of human Albumin after transplantation. Results are shown as ±S

and six human liver organoid transplanted animals.

**p < 0.01 and *p < 0.05 when comparing EM versus DM. See also Figures S5 a

308 Cell 160, 299–312, January 15, 2015 ª2015 The Authors
80% loss of hepatocyte compartment, huge numbers of pro-

liferating EpCAM+ biliary epithelial cells are observed (Hattoum

et al., 2013).

Organoids from A1AT-deficiency patients can be expanded

in vitro and mimic the in vivo pathology. Similarly, organoids

from an Alagille syndrome patient reproduce the structural

duct defects present in the biliary tree of these patients. Repair

by homologous recombination using CRISPR/Cas9 technology

is feasible in organoid cultures, as we recently demonstrated

in colon stem cells of cystic fibrosis patients (Schwank et al.,

2013). A variety of monogenic hereditary diseases affect the liver

specifically, and these should all be amenable to a comparable

in vitro approach of gene repair in clonal liver progenitor cells.

Overall, our results open up the avenue to start testing human

liver material expanded in vitro as an alternative cell source for

studies of human liver regeneration, human liver disease mech-

anism, cell therapy transplantation, toxicology studies, or drug

testing.
EXPERIMENTAL PROCEDURES

Human Liver Organoid Culture

Liver biopsies (0.5–1 cm3) were obtained from donor and explant livers during

liver transplantation performed at the Erasmus MC, Rotterdam. The Medical

Ethical Council of the Erasmus Medical Center approved the use of this

material for research purposes, and informed consent was provided from all

patients. For EpCAM sorting experiments and hepatocyte isolation, primary

human liver tissue was obtained with informed consent and approval by the

Regional Ethics Board, from the CLINTEC division of Karolinska institute

(Dnr: 2010/678-31/3) (Jorns et al., 2014). Liver cells were isolated from human

liver biopsies (0.5–1 cm3) by collagenase-accutase digestion, as described in

the Extended Experimental Procedures. The different fractions were mixed

and washed with cold Advanced DMEM/F12 and spun at 300–400 3 g for

5 min. The cell pellet was mixed with Matrigel (BD Biosciences) or reduced

growth factor BME 2 (Basement Membrane Extract, Type 2, Pathclear), and

3,000–10,000 cells were seeded per well in a 48-well/plate. Non-attaching

plates were used (Greiner). After Matrigel or BME had solidified, culture

medium was added. Culture media was based on AdDMEM/F12 (Invitrogen)

supplemented with 1% N2 and 1% B27 (both from GIBCO), 1.25 mM N-

Acetylcysteine (Sigma), 10 nM gastrin (Sigma), and the growth factors:

50 ng/ml EGF (Peprotech), 10% RSPO1 conditioned media (homemade),

100 ng/ml FGF10 (Peprotech), 25 ng/ml HGF (Peprotech), 10 mM Nicotin-

amide (Sigma), 5 uM A83.01 (Tocris), and 10 uM FSK (Tocris). For the

establishment of the culture, the first 3 days after isolation, the medium was

supplemented with 25 ng/ml Noggin (Peprotech), 30% Wnt CM (homemade

prepared as described in Barker et al. [2010]), and 10 uM (Y27632, Sigma

Aldrich) or hES cell cloning recovery solution (Stemgent). Then, the medium

was changed into a medium without Noggin, Wnt, Y27632, hES cell cloning

recovery solution. After 10–14 days, organoids were removed from the

Matrigel or BME, mechanically dissociated into small fragments, and trans-

ferred to fresh matrix. Passage was performed in a 1:4–1:8 split ratio once

every 7–10 days for at least 6 months. To prepare frozen stocks, organoid
onor were analyzed. Results are shown as mean ±SEM of two independent

independent donor-derived cultures. Duplicates for each condition and donor

wo independent donor-derived cultures, given as nM/h/million cells.

uman liver organoid cells and were sacrificed after 120 days. The presence of

fferentiation in mouse liver.

EM of two vehicle control animals, two primary hepatocyte transplanted mice,

nd S6.
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Figure 7. Human A1AT Deficiency Liver Cultures as an In Vitro Disease Model

(A) A1AT-deficieny patient-derived liver organoids at passage 2 and passage 11 (43 magnification).

(B) Albumin secretion in supernatant from donor and A1AT-deficient patient organoids in EM or after 11 days in DM. Results are expressed as mean ±SEM of

two independent experiments.

(C) A1AT-deficient organoids were differentiated for 11 days and incubated with DiI-Ac-LDL. Fluorescence microscopy shows robust LDL uptake in

patient organoids. Scale bar, 50 mm.

(D) Fold induction of Albumin and CYP3A4 mRNA levels after 11 days of differentiation of donor and A1AT-deficient organoids. Results are expressed as

mean ±SEM of two independent experiments.

(E–H) Immunohistochemistry for A1AT on liver tissue (E and G) and liver-derived organoids from a healthy donor (F) and a representative A1AT deficiency patient

(H) Arrows indicate A1AT protein aggregates in patient-derived liver tissue (G) and organoids (H). Scale bar, 20 mm.

(I) ELISAmeasurement of A1AT secretion in supernatants from donor and patient organoids after 11 days of differentiation. Results are expressed asmean ±SEM

of two independent experiments.

(J) Enzymatic measurement of elastase inhibition by supernatants of differentiated donor and patient-derived organoids. Results are expressed as mean ±SEM

of two independent experiments.

(K) Western blot of lysates from donor and A1AT deficiency patient organoids after 11 days of differentiation. Increased eIF2a phosphorylation at Ser51 was

detected in the three patients. Representative image is shown. Pat, patient.

See also Figure S7.
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cultures were dissociated and mixed with recovery cell culture freezing

medium (GIBCO) and frozen following standard procedures. When required,

the cultures were thawed using standard thawing procedures and cultured

as described above. For the first 3 days after thawing, the culture medium

was supplemented with Y-27632 (10 mM).

Growth curves and expansion ratios were performed and calculated as

described in the Extended Experimental Procedures.

Isolation of EpCAM+ Cells and Single-Cell Culture

Cell suspensions prepared as described in the Extended Experimental

Procedures were stained with anti-human CD326 (EpCAM), sorted on aMoFlo

(Dako Cytomation) sorter, and cultured as described above with medium

supplemented with Y-27632 (10 mM, Sigma Aldrich) for the first 4 days.

Passage was performed in split ratios of 1:4–1:8 once per week.

For clonogenic assays, single-cell suspensions were sorted using FSC and

pulse width to discriminate single cells. Propidium iodide staining was used to

label dead cells and FSC: pulse-width gating to exclude cell doublets (MoFlow,

Dako). Sorted cells were embedded in Matrigel and seeded in 96-well plates

at a ratio of 1 cell/well. Cells were cultured as described above.

Hepatocyte Differentiation and In Vitro Functional Studies

Liver organoids were seeded and kept 7–10 days under the liver medium ex-

plained above (EM, expansion medium) supplemented with BMP7 (25 ng/ml).

Then, the cultures were split and seeded accordingly in this EM supplemented

with BMP7 for at least 2–4 days. Then, medium was changed to the dif-

ferentiation medium (DM): AdDMEM/F12 medium supplemented with 1% N2

and 1% B27 and containing EGF (50 ng/ml), gastrin (10 nM, Sigma), HGF

(25 ng/ml), FGF19 (100 ng/ml), A8301 (500 nM), DAPT (10 uM), BMP7

(25 ng/ml), and dexamethasone (30 uM). Differentiation medium was changed

every 2–3 for a period of 11–13 days.

To assess hepatocyte function, culture medium was collected 24 hr after

the last medium change. Functional studies were performed in the collected

supernatant or in whole organoids, as described in the Extended Experimental

Procedures.

Transplantation

We used a modified version of the protocol used by Guo et al. (Guo et al.,

2002). In short, female BALB/c nude mice (around 7 weeks of age) were pre-

treated with two injections of 70 mg/kg Retrorsine (Sigma) at 30 and 14 days

before transplantation. One day prior to transplantation, mice received

0.5 ml/kg CCl4 and 50 mg/animal anti-asialo GM1 (Wako Pure Chemical In-

dustries) via IP injection. Furthermore, animals received 7.5 ug/ml FK506 in

drinking water until the end of the experiment due to the reported positive ef-

fects on liver regeneration (He et al., 2010). On the day of transplantation, mice

were anaesthetized, and suspensions of 1–23 106 human liver organoid cells

derived from four independent donors (p6–p10) or fresh isolated hepatocytes

(two donors) were injected intrasplenically. Transplantedmice receivedweekly

injections of 50mg/animal anti-asialo GM1 (Wako Pure Chemical Industries) to

deplete NK cells. To monitor the transplantation state, blood samples were

taken in regular intervals from the tail vein and were analyzed for the presence

of human albumin and human a1-antitrypsin using respective human specific

ELISAs (Assaypro).

Karyotyping and Genetic Stability Analysis

Organoid cultures in exponential growing phase were incubated for 16 hr with

0.05 mg/ml colcemid (GIBCO). Then, cultures were dissociated into single cells

using TrypLE express (GIBCO) and processed using standard karyotyping

protocols.

DNA libraries for WGS analysis were generated from 1 mg of genomic DNA

using standard protocols (Illumina). The libraries were sequenced with paired-

end (2 3 100 bp) runs using Illumina HiSeq 2500 sequencers to a minimal

depth of 303 base coverage (average depth of �36.93 base coverage). As

a reference sample, liver biopsies was sequenced to equal depth for the

different donors. Analysis of the sequence reads, calling of CNVs, and base

substitutions are described in detail in the Extended Experimental Procedures.

The data for the whole-genome sequencing were deposited to the EMBL

European Nucleotide Archive with accession number ERP005929.
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Immunohistochemistry, Immunofluorescence, and Image Analysis

Tissues and organoids were fixed o/n with formalin or 4% PFA, respectively,

and stained and imaged as described in the Extended Experimental

Procedures.

A1AT-D Functional Experiments

Elastase inhibition assay and detection of phosphorylated eIF2a were

performed as described in the Extended Experimental Procedures.

Microarray

For the expression analysis of human liver cultures, total RNA was isolated

from liver biopsies or from organoid cultures grown in our defined medium,

using QIAGEN RNAase kit following the manufacturer’s instructions. Five hun-

dred ng of total RNA were labeled with low RNA Input Linear Amp kit (Agilent

Technologies). Universal human reference RNA (Agilent) was differentially

labeled and hybridized to the tissue or cultured samples. A 4X 44 K Agilent

whole human genome dual color microarray (G4122F) was used. Labeling,

hybridization, and washing were performed according to Agilent guidelines.

Microarray signal and background information were retrieved using Feature

Extraction software (V.9.5.3, Agilent Technologies). Hierarchical clustering

analysis was performed in whole-liver tissue or organoid arrays. A cut-off of

3-fold differentially expressed was used for the clustering analysis.

Data Analysis

All values are represented as mean ± SEM. Man-Whitney nonparametric test

was used. p < 0.05 was considered statistically significant. In all cases, data

from at least three independent experiments was used. All calculations were

performed using SPSS package.

ACCESSION NUMBERS

The data for the whole-genome sequencing of clonal organoid cultures has

been deposited to the EMBL European Nucleotide Archive under accession

number ERP005929. The gene expression data reported in this paper has

been deposited at the GEO repository with accession number GSE63859.
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Massagué, J., Seoane, J., and Wotton, D. (2005). Smad transcription factors.

Genes Dev. 19, 2783–2810.

Mayshar, Y., Ben-David, U., Lavon, N., Biancotti, J.C., Yakir, B., Clark, A.T.,

Plath, K., Lowry, W.E., and Benvenisty, N. (2010). Identification and classifica-

tion of chromosomal aberrations in human induced pluripotent stem cells. Cell

Stem Cell 7, 521–531.

McCright, B., Lozier, J., and Gridley, T. (2002). A mouse model of Alagille syn-

drome: Notch2 as a genetic modifier of Jag1 haploinsufficiency. Development

129, 1075–1082.

Michalopoulos, G.K. (2014). The liver is a peculiar organwhen it comes to stem

cells. Am. J. Pathol. 184, 1263–1267.

Mitaka, T. (1998). The current status of primary hepatocyte culture. Int. J. Exp.

Pathol. 79, 393–409.

Pera, M.F. (2011). Stem cells: The dark side of induced pluripotency. Nature

471, 46–47.

Rashid, S.T., Corbineau, S., Hannan, N., Marciniak, S.J., Miranda, E., Alex-

ander, G., Huang-Doran, I., Griffin, J., Ahrlund-Richter, L., Skepper, J., et al.

(2010). Modeling inherited metabolic disorders of the liver using human

induced pluripotent stem cells. J. Clin. Invest. 120, 3127–3136.

Sato, T., Vries, R.G., Snippert, H.J., van de Wetering, M., Barker, N., Stange,

D.E., van Es, J.H., Abo, A., Kujala, P., Peters, P.J., and Clevers, H. (2009).

Single Lgr5 stem cells build crypt-villus structures in vitro without a mesen-

chymal niche. Nature 459, 262–265.

Sato, T., Stange, D.E., Ferrante, M., Vries, R.G., Van Es, J.H., Van den Brink,

S., Van Houdt, W.J., Pronk, A., Van Gorp, J., Siersema, P.D., and Clevers,

H. (2011). Long-term expansion of epithelial organoids from human colon,

adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 141,

1762–1772.

Schaub, J.R., Malato, Y., Gormond, C., and Willenbring, H. (2014). Evidence

against a stem cell origin of new hepatocytes in a common mouse model of

chronic liver injury. Cell Rep. 8, 933–939.

Schmelzer, E., Zhang, L., Bruce, A., Wauthier, E., Ludlow, J., Yao, H.L., Moss,

N., Melhem, A., McClelland, R., Turner, W., et al. (2007). Human hepatic stem

cells from fetal and postnatal donors. J. Exp. Med. 204, 1973–1987.
312 Cell 160, 299–312, January 15, 2015 ª2015 The Authors
Schwank, G., Koo, B.K., Sasselli, V., Dekkers, J.F., Heo, I., Demircan, T., Sa-

saki, N., Boymans, S., Cuppen, E., van der Ent, C.K., et al. (2013). Functional

repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic

fibrosis patients. Cell Stem Cell 13, 653–658.

Shan, J., Schwartz, R.E., Ross, N.T., Logan, D.J., Thomas, D., Duncan, S.A.,

North, T.E., Goessling, W., Carpenter, A.E., and Bhatia, S.N. (2013). Identifica-

tion of small molecules for human hepatocyte expansion and iPS differentia-

tion. Nat. Chem. Biol. 9, 514–520.

Shin, S., Walton, G., Aoki, R., Brondell, K., Schug, J., Fox, A., Smirnova, O.,

Dorrell, C., Erker, L., Chu, A.S., et al. (2011). Foxl1-Cre-marked adult hepatic

progenitors have clonogenic and bilineage differentiation potential. Genes

Dev. 25, 1185–1192.

Stoller, J.K., and Aboussouan, L.S. (2005). Alpha1-antitrypsin deficiency.

Lancet 365, 2225–2236.

Sugimoto, H., Yang, C., LeBleu, V.S., Soubasakos, M.A., Giraldo, M., Zeis-

berg, M., and Kalluri, R. (2007). BMP-7 functions as a novel hormone to

facilitate liver regeneration. FASEB J. 21, 256–264.

Vilarinho, S., and Lifton, R.P. (2012). Liver transplantation: from inception to

clinical practice. Cell 150, 1096–1099.
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