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Abstract
Arrhythmogenic cardiomyopathy (AC) is an inherited disorder characterized by lethal arrhythmias and a risk to sudden car-
diac death. A hallmark feature of AC is the progressive replacement of the ventricular myocardium with fibro-fatty tissue, 
which can act as an arrhythmogenic substrate further exacerbating cardiac dysfunction. Therefore, identifying the processes 
underlying this pathological remodelling would help understand AC pathogenesis and support the development of novel 
therapies. In this review, we summarize our knowledge on the different models designed to identify the cellular origin and 
molecular pathways underlying cardiac fibroblast and adipocyte cell differentiation in AC patients. We further outline future 
perspectives and how targeting the fibro-fatty remodelling process can contribute to novel AC therapeutics.
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Introduction

Arrhythmogenic cardiomyopathy (AC) is a genetic disorder 
that usually manifests with three main clinical phases: (I) 
the concealed phase, with minimal clinical symptoms, but 
with a risk of sudden cardiac death; (II) the electrical phase, 
with symptomatic ventricular arrhythmias in the form of 
ventricular tachycardias or ventricular fibrillation, palpita-
tions, and syncope, together with structural abnormalities; 
and (III) the end-stage phase, with severe structural changes, 
ventricular dilation, and dysfunction which can progress to 
heart failure [4, 16, 58]. The prevalence of AC is 1:2000 to 
1:5000 depending on the population, and has been found 
to mainly affect young individuals and athletes [17, 77]. 
Despite the complex disease aetiology, with multiple risk 
factors contributing to disease pathogenesis, genetic pre-
disposition remains the main underlying cause of AC. A 
familial background has been associated with about 60% of 
AC cases with an autosomal dominant mode of inheritance 
[36, 45]. Most of AC-related mutations (~ 54% of all AC 
cases) have been linked to genes encoding components of 

desmosomes; intercellular junctions expressed by cardiac 
muscle and epithelial tissue. These include plakophilin-2 
(PKP2), desmoplakin (DSP), desmocollin-2 (DSC2), des-
moglein-2 (DSG2) and plakoglobin (JUP). However, muta-
tions in the non-desmosomal genes transmembrane pro-
tein 43 (TMEM43), phospholamban (PLN), transforming 
growth factor beta 3 (TGFB3), desmin (DES), titin (TTN), 
αT-catenin (CTNNA3), and lamin A/C (LMNA), have been 
also linked to AC in ~ 5% of the cases [36, 45].

The most striking histopathological feature of AC is the 
loss of ventricular myocardium, possibly due to cardiomyo-
cyte atrophy and apoptosis, and its replacement with fibro-
fatty tissue. Fibro-fatty tissue deposition typically extends 
from the epicardium towards the endocardium and is usually 
associated with inflammatory infiltrates [5, 16] (Fig. 1). As 
the disease progresses, fibro-fatty tissue can act as a sub-
strate to aggravate arrhythmias further hindering proper 
ventricular function [20, 76].

Many cellular and animal models of AC are available to 
help understand different aspects of AC pathogenesis such 
as ventricular dysfunction, cardiomyocyte death and inflam-
mation [3, 33]. However, recapitulating and studying the 
fibro-fatty infiltration process characteristic of AC has been 
limited due to the natural resistance of most experimental 
animal models to cardiac adipose tissue development [82]. 
In this review, we summarize our understanding on the cel-
lular origin and mechanisms of fibroblast and fat cell dif-
ferentiation in AC.
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Cellular origin

In recent years, there has been considerable efforts to elu-
cidate the cellular effectors contributing to the replacement 
of ventricular myocardial tissue with extensive fibro-fatty 
infiltrates in AC patients. Studies implemented different 
models of dysfunctional desmosomes due to mutations 
or gene knockouts. These included mouse and zebrafish 
as well as cellular models of AC such as human-induced 
pluripotent stem cell (hiPSC)-derived cardiac cultures and 
explanted human AC hearts. So far, cell types which have 
been proposed to act as a source of fibro-fatty tissue in AC 
are cardiomyocytes, cardiac progenitor cells and epicardial 
cells. These studies are summarized in Table 1 and discussed 
below. 

Cardiomyocytes

Cardiomyocyte transdifferentiation into adipocytes dur-
ing AC progression was first suggested based on the mor-
phological examination of the ventricular myocardium of 
a female transplant patient [18]. Cardiomyocytes adjacent 
to fibro-fatty tissue contained sarcoplasmic vacuoles with 
a lipidic nature that highly resembled pre-adipocytes [18]. 
The authors therefore suggested a cardiomyocyte-to-adipo-
cyte switch, as some of these cells also stained positive for 
vimentin, a marker expressed by adipocytes [18]. However, 
vimentin is a mesenchymal marker which is not exclusively 
expressed by adipocytes [19]. The presence of intracellular 
lipid droplets in cardiomyocytes has been also described in 

biopsied myocardial tissue of another AC patient [30]. These 
lipids were found in degenerating cardiomyocytes and were 
often discharged into the interstitial space upon cell mem-
brane dissociation [30]. Despite the informative ultrastruc-
tural examination of explanted AC hearts, these studies were 
based on the histological observation of single cases.

In an in vivo setting, one report could show that some 
adipocytes arising in a Dsp knockout mouse model located 
at the sub-epicardium, but not at the midwall, originate from 
a cardiomyocyte lineage labelled by MLC2v [55]. Presence 
of a common “cardiomyocyte-adipocyte progenitor” cell 
population in normal hearts was further proposed in a study 
by Dorn et al. [24]. The authors described an  Isl1+/Wt1+ 
progenitor cell population in normal hearts, which under 
different stimuli primes towards a myocytic or adipocytic 
fate, and hence could potentially contribute to adipocyte dif-
ferentiation in AC [24].

Due to difficulties with recapitulating the fibro-fatty phe-
nomenon in many AC mouse models, the use of hiPSCs 
presented an alternative tool to study the cardiomyocyte 
transdifferentiation hypothesis in vitro. In three subsequent 
reports, hiPSC-derived cardiomyocytes (hiPSC-CMs) gen-
erated from AC patients demonstrated several AC features 
such as reduced densities of desmosomal proteins and 
electrical instabilities [10, 42, 56]. Additionally, exposure 
of hiPSC-CMs to adipogenic stimuli induced lipid droplet 
accumulation, which suggested an underlying predisposi-
tion to adipocytic differentiation in AC [10, 42, 56]. How-
ever, the exposure of cells to an adipogenic environment is 
rather artificial and does not mimic human disease, hence 
the cardiomyocyte-to-adipocyte transdifferentiation theory 
requires further investigation.

RV LV RV LV RV LV

250μm

Healthy control PKP2 c.235C>T DSP c.1705A>T

AC patients

Fig. 1  Cardiac fibro-fatty tissue remodelling in AC patients. Masson 
trichrome staining of explanted human hearts from a healthy con-
trol and AC patients showing cardiomyocytes in red, fibrosis in blue 
and adipocytes in white. Upper panels show full ventricular sections 
and insets indicate slices where higher magnification images were 

obtained. Lower panels show fibro-fatty tissue replacement within 
myocardial regions of the corresponding ventricular slices. RV, right 
ventricle; LV, left ventricle. Adapted from Sepehrkhouy et  al. [69] 
and Kohela et al. [43]
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Table 1  Summary of studies investigating fibro-fatty remodelling in AC

Proposed cellular origin Models used Main findings related to fibro-fatty remodelling Ref #

Cardiomyocytes Explanted human AC heart Cardiomyocytes adjacent to fibro-fatty tissue of 
an explanted human AC heart contain lipids 
and stain positive for vimentin.

[18]

Explanted human AC heart Cardiomyocytes of an explanted human AC 
heart contain lipids.

[30]

hiPSC-cardiomyocytes PKP2 mutant hiPSC CMs undergo lipogen-
esis following adipogenic stimulation due to 
reduced Wnt signalling.

[10]

hiPSC-cardiomyocytes PKP2 mutant hiPSC-cardiomyocytes undergo 
lipogenesis following adipogenic stimulation 
due to activated PPARγ signalling.

[42]

hiPSC-cardiomyocytes PKP2 mutant hiPSC-cardiomyocytes undergo 
lipogenesis following adipogenic stimulation.

[56]

Cardiomyocyte-specific Dsp−/− mice Some adipocytes at the sub-epicardium in 
Dsp−/− mice originate from an  MLC2v+ car-
diomyocyte lineage.

[55]

Isl1+  Wt1+ myo-adipo progenitors Isl1/Wt1 lineage traced mice A common cardiomyocyte and adipocyte  Isl1+/
Wt1+ progenitor underlies adipogenesis in AC.

[24]

Isl1+  Mef2c+ progenitors Dsp± lineage-traced mice Isl1+  Mef2c+ second heart field progenitors give 
rise to most adipocytes in Dsp± mice due to 
PKG nuclear translocation and WNT inhibi-
tion.

[54]

c-Kit+  Sca1+ progenitors Transgenic mice overexpressing mutant PKG 
 (PKGTrg)

c-Kit+  Sca1+ progenitors isolated from  PKGTrg 
mice undergo lipogenesis upon adipogenic 
stimulation due to WNT signalling inhibition.

[53]

Fibro-adipocyte progenitors (FAPs) Human and mouse isolated FAPs and Dsp± mice Cardiac FAPs are a PDGFRA + progenitor 
cell population which expresses COL1A1 or 
CEBPA and can differentiate into fibroblasts or 
adipocytes, respectively.

40% of adipocytes in Dsp± mice arise from 
FAPs via WNT signalling inhibition.

[52]

Transgenic mice overexpressing mutant DSG2 
 (DSG2mu)

PDGFRA+  HIC1+ FAPs give rise to fibroblasts 
and adipocytes in  DSG2mu mice.

[71]

Mesenchymal stromal cells (MSCs) Explanted and bioptic samples from human AC 
and control hearts

Adipocytes in explanted human AC hearts 
express CD29 and CD105 indicating their 
mesenchymal origin.

MSCs isolated from AC patients subjected to 
adipogenic stimuli display increased lipogen-
esis and adipogenic marker expression due to 
WNT pathway suppression.

[72]

Epicardial cells Neonatal rat epicardial explants Pkp2 suppression in neonatal rat epicardial 
explants promotes their proliferation, migra-
tion, lipogenesis and cellular differentiation 
into α-SMA+ cells.

[60]

Epicardial-specific Dsp± mice Fibroblasts in epicardium-specific Dsp± mice 
arise via epicardial EMT through the expres-
sion of paracrine factors such as TGFβ1 and 
FGF.

[85]

hiPSC-epicardial cells and explanted hearts from 
AC patients

hiPSC-epicardial cells undergo spontaneous 
fibro-fatty cellular differentiation upon desmo-
somal gene suppression due to enhanced EMT 
mediated by TFAP2A.

Explanted human AC hearts display epicardial 
thickening, activation through WT1 expres-
sion, and TFAP2A induction in the sub-epicar-
dial mesenchyme.

[43]
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Cardiac progenitor cells

The presence of unique progenitor cell populations in the 
heart with a multipotent differentiation potential has gained 
much attention in the recent years. Different reports have 
suggested that during AC disease progression, resident 
cardiac progenitors can differentiate into fibroblasts, adipo-
cytes, or both. Below, we discuss the different populations 
proposed.

Isl1+  Mef2c+ progenitors

In 2009, the group of A. J. Marian used lineage tracing to 
monitor the origin of adipocytes in Dsp-deficient mice [54]. 
Three cardiac lineage promoters were used: Nkx2.5 which 
labels descendants of first and second heart field progeni-
tors as well as epicardial cells, Mef2c which labels descend-
ants of only second heart field progenitors, and Myh6 which 
labels cardiomyocytes [54]. Most adipocytes in the Dsp-
deficient mice were shown to derive from the Nkx2.5 and 
Mef2c lineage, but not from the Myh6 lineage, indicating 
that adipocytes in AC hearts can possibly arise from sec-
ond heart field progenitors expressing Isl1 and Mef2c [54]. 
This has been suggested to occur due to PKG translocation 
to the nucleus which leads to suppressed WNT signalling 
and hence enhanced adipogenic differentiation in AC hearts 
[54]. This study demonstrates the possible contribution of 
second heart field progenitors to adipocytes arising in the 
right ventricle. However, presence of biventricular and left-
dominant forms of AC argues against a second heart field 
origin of adipocytes.

c‑Kit+  Sca1+ progenitors

To follow up on the role of PKG nuclear translocation and its 
role in AC pathogenesis, the same group further investigated 
the relation between PKG, WNT signalling and adipogenesis 
[53]. The authors generated transgenic mice overexpressing 
wild-type  (PKGWT) or truncated PKG  (PKGTR) as well as 
PKG null mice  (PKG−/−) [53].  PKGTR mice showed reduced 
membrane localization and binding to DSP and DSG2 [53]. 
Furthermore, PKG was found to be expressed in a progenitor 
cell population expressing c-Kit and Sca1, which, upon adi-
pogenic stimulation, could undergo lipogenesis in vitro [53]. 
This effect was shown to be mediated through suppressed 
WNT signalling and reversed through WNT signalling acti-
vation [53]. Furthermore, c-Kit+  Sca1+ progenitors isolated 
from  PKG−/− embryos were resistant to adipogenesis and 
exhibited increased levels of WNT signalling activation, 
further suggesting the potential of c-Kit+  Sca1+ progeni-
tors to undergo adipogenic differentiation [53]. However, 
the extremely low abundance of c-Kit+  Sca1+ cells in the 
heart, and emerging reports arguing against their pluripotent 

potential [75], limit their ability to act as a main source of 
adipocytes in AC.

Fibro‑adipocyte progenitors

Fibro-adipocyte progenitors (FAPs) were first described in 
skeletal muscle as a quiescent population of cells which can 
rapidly proliferate and contribute to adipocyte and fibroblast 
differentiation after muscle injury [40, 78]. In the heart, 
Marian’s group could further identify a similar  PDGFRA+ 
cell population with bipotential towards fibroblast and adipo-
cyte differentiation [52]. Isolation of FAPs from human and 
mouse hearts showed that these cells expressed COL1A1 
or CEBPA, which allowed to label them as fibroblast or 
adipocyte progenitors, respectively [52]. In a Dsp-deficient 
mouse model, the authors could show that ~ 40% of cardiac 
adipocytes originated from FAPs, indicating the contribution 
of FAPs, as well as other cell types, to adipogenesis in AC 
[52]. Corroborating their previous AC studies, the adipo-
genic potential of FAPs was found to be mediated through 
WNT signalling suppression, which when re-activated 
reduced adipogenesis in vitro [52]. Although the described 
FAPs population was selected based on the exclusion of the 
fibroblast markers THY1 and DDR2, most of these cells still 
expressed COL1A1, which is often depicted as an activated 
myofibroblast marker. Furthermore, interestingly, DSP was 
only expressed in the adipogenic, and not fibrogenic, sub-
sets of FAPs, which made it difficult to trace the fibrogenic 
potential of Dsp-deficient FAPs [52].

Later in 2020, another study further described the role 
FAPs in models of myocardial infarction (MI) and AC [71]. 
The authors described FAPs as a multipotent resident pro-
genitor cell population expressing PDGFRA and the pro-
genitor cell markers SCA1 and HIC1 [71]. In response to 
MI, these cells were activated generating fibroblasts which 
contributed to scar tissue formation at the injury area [71]. 
In an AC mouse model overexpressing mutant DSG2, cells 
derived from the  PDGFRA+ or  HIC1+ lineage contributed to 
both fibroblast and adipocyte differentiation [71]. A similar 
phenotype was observed in Hic1 knockout hearts [71]. How-
ever, in this study, it was unclear how different injury models 
triggered fibrogenesis only or fibro-adipogenesis following 
HIC1 suppression.

Mesenchymal stromal cells

Cardiac mesenchymal stem/stromal cells (MSCs) are multi-
potent progenitors of epicardial origin, which are important 
for the mechanical support of tissues by providing extra-
cellular matrix and paracrine signals [63]. The contribu-
tion of cardiac resident MSCs to scar tissue formation was 
first reported in a model of MI [9]. The authors could show 
that  CD44+ MSCs act as precursor cells which generate 
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scar tissue fibroblasts upon injury [9]. In vitro, these cells 
expressed both stem cell and fibroblast markers and retained 
a self-renewal and multipotent capability when cultured in 
different lineage-induction media [9].

In the context of AC, a study by Sommariva et al. showed 
their potential to also differentiate into adipocytes [72]. In 
hearts of AC patients, adipocytes labelled by the mature adi-
pocyte marker PLIN1 also stained positive for the mesenchy-
mal markers CD29 and CD105, suggesting their mesenchy-
mal origin [72]. Of note, the authors occasionally found rare 
populations of c-Kit+ adipocytes suggesting a possible, but 
limited, contribution of c-Kit+ progenitors to adipogenesis 
[72]. MSCs isolated from AC patients expressed higher lev-
els of adipogenic markers and were more prone to undergo 
lipogenesis than control MSCs when subjected to adipo-
genic stimuli [72]. This effect was reduced following WNT 
pathway activation or PKP2 overexpression in patient MSCs 
[72]. Due to their high abundance in the heart and plasticity 
to differentiate into various mesenchymal lineages, MSCs 
present strong candidates to adipogenesis in AC. However, 
the isolation of these cells relies on their plastic adherence 
after digestion and their expression of mesenchymal markers 
(CD90, CD29, CD105, CD44, CD73) [66]. These properties 
are not specific for MSCs, but also found in other stromal 
cells such as fibroblasts [28, 66]. Furthermore, MSCs were 
isolated from patient auricles and not ventricles which show 
most fibro-fatty remodelling. In addition to their reported 
adipogenic potential in this study, it would be interesting to 
investigate the fibrogenic potential of these MSCs as well, 
owing to their previously described role in scar tissue forma-
tion following ischemic injury [9].

Epicardial cells

The epicardium is the outermost layer of the heart com-
posed of mesothelial cells that mainly remain quiescent in 
adult hearts. During development and after disease, epicar-
dial cells can undergo epithelial-to-mesenchymal transi-
tion (EMT) giving rise to different cardiac cell populations 
[34, 70]. Given their multipotent cell potential [34, 70], the 
sub-epicardial predominance of fibro-fatty infiltrates in AC 
patients [45, 76], and the high epicardial expression of des-
mosomal genes [43, 60], epicardial cells have been also sug-
gested as candidates to originate fibro-fatty tissue.

In the normal murine heart, fat tissue is often confined at 
a specific region named the atrial–ventricular (AV) groove 
[82]. A study by Yamaguchi et al. demonstrated that the 
AV groove fat originates from the epicardium through the 
EMT and PPARγ pathway activation [82]. Later, using line-
age tracing on ischemic injury models, adipocytes emerging 
at the peri-infarct region following MI were shown to also 
partially derive from the adult epicardium [51, 86]. Addi-
tionally, epicardial-to-fibroblast differentiation due to adult 

epicardial EMT has been also suggested in models of MI 
[26, 68, 80].

Interestingly, in studies on atrial fibrillation, which is 
characterized by the extensive atrial remodelling with fibro-
fatty tissue, fibroblasts and adipocytes were shown to arise 
from the epicardium [74]. This appeared to be due to a pre-
programmed state of subsets of adult epicardial-derived cells 
(EPDCs) towards either fibroblast or adipocyte cell fates, 
which when activated undergo fibro-fatty differentiation and 
infiltration into the diseased atria [74].

In the context of AC, Matthes et al. were the first to show 
that epicardial explants from neonatal rat hearts express 
PKP2, which when silenced promotes cellular prolifera-
tion, migration, lipogenesis and cellular differentiation into 
α-SMA+ cells [60]. These data suggested an important role 
of the desmosome in maintaining the mechanical integrity of 
epicardial cells, which when lost could potentially promote 
cellular differentiation.

In addition to the previously discussed studies from Mar-
ian’s group suggesting the contribution of different progeni-
tors to fibro-fatty differentiation [52–54], they could recently 
also demonstrate the role of the epicardium in AC pathogen-
esis [85]. Using a reporter mouse model carrying an induc-
ible epicardial-specific Dsp deletion, the authors could show 
the epicardial origin of fibroblasts [85]. These cells were 
shown to express paracrine factors such as TGFβ1 and FGF, 
which mediate EMT as well as apoptosis, arrhythmias and 
cardiac dysfunction [85].

In a recently published report, our group further under-
scored the role of the epicardium in fibro-fatty remodelling. 
[43]. In this study, we made use of hiPSC-derived cardiac 
cultures generated from AC patients, their isogenic controls 
and healthy donors to study AC pathogenesis in vitro. We 
could show that hiPSC-derived epicardial cells undergo 
EMT and spontaneous fibro-fatty cellular differentiation 
upon desmosomal gene suppression, due to either intrin-
sic mutations or targeting siRNAs. Using single cell RNA 
sequencing, we identified transcription factor TFAP2A to 
mediate this process by enhancing EMT signalling in the 
diseased cells. Furthermore, we observed that human AC 
hearts display increased epicardial thickening and WT1 
expression indicative of epicardial activation. Additionally, 
cells located at the sub-epicardial mesenchyme stained posi-
tive for WT1 and TFAP2A, which further suggested that an 
epicardial-derived subset of cells underlies the fibro-fatty 
phenotype.

Other potential sources of fibroblasts

Various studies have tried elucidating the cellular origin of 
fibroblasts contributing to scar tissue formation in differ-
ent forms of cardiovascular disease. Although not particu-
larly studied in AC, these identified fibroblast progenitor 
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populations might also potentially contribute to fibrosis in 
AC patients and hence are also discussed below.

All resident fibroblasts in the adult heart derive from 
the epicardium during development and remain quiescent 
under homeostatic conditions [31]. Several reports could 
demonstrate the presence of cardiac fibroblast progenitor 
cell populations which upon injury can contribute to the 
pathological fibroblast differentiation. In one study, an adult 
stem cell population labelled by PW1 was found to con-
tribute to fibrotic remodelling after MI [83].  PW1+ cells 
were mainly found near infarct areas of human and mouse 
ischemic hearts and could give rise to fibroblasts labelled 
by FSP1 and α-SMA [83]. In another study, peri-vascular 
precursors, labelled by GLI1 expression, were also shown to 
contribute to fibrosis after injury in different organs includ-
ing the heart [44]. Lineage tracing experiments showed that 
60% of infarct fibroblasts arise from GLI1 + vascular pro-
genitors [44].

Bone marrow-derived cells have been also suggested to 
differentiate into cardiac fibroblasts, although the contribu-
tion seemed to vary between different cardiac disorders. In 
different studies, mice were transplanted with genetically 
labelled or sex-mismatched bone marrow cells which were 
shown to significantly contribute to scar tissue fibroblasts 
after MI [61, 79] and in dilated cardiomyopathy [15].

Another study described a circulating population of leu-
kocytes termed fibrocytes as a source of injury fibroblasts 
in models of angiotensin-II-induced cardiac hypertrophy 
[38] and ischemic cardiomyopathy [39]. These cells nor-
mally express both hematopoietic markers (CD34, CD45) 
and fibroblast markers (procollagen I, vimentin) [48]. Upon 
stimulation, fibrocytes are recruited to the injury site where 
they adopt a myofibroblast phenotype expressing α-SMA 
and produce collagen [48].

In contrast to these reports, other lineage-tracing stud-
ies could show that scar tissue fibroblasts mainly originate 
from pre-existing resident epicardium-derived fibroblasts 
and not from bone marrow or stem cell populations. This 
was observed in models of pressure overload [1, 62] and MI 
[29, 41, 67, 84].

Despite the potential of the described reports to identify 
the origin of fibroblasts in different cardiac disorders, it is 
unknown whether these findings also apply to AC where 
fibroblasts infiltrate massive regions of adipose tissue.

Pathways implicated

AC is mainly considered a disease of cardiac desmosomes 
[21]. These multiprotein complexes are required for main-
taining both mechanical and electrical signals throughout the 
heart [21]. The main pathways found to be potentially impli-
cated in fibro-fatty remodelling in AC due to desmosomal 

dysregulation are WNT, Hippo, TGFβ and PPARγ signalling 
pathways.

WNT pathway

Canonical WNT signalling is the most commonly accepted 
pathway involved in AC pathogenesis. β-catenin, together 
with PKG, also known as γ-catenin, acts to link cadherin 
proteins to the actin cytoskeleton [88]. In response to WNT 
ligands, intracellular β-catenin levels are stabilized leading 
to its translocation to the nucleus, where it activates target 
genes via binding to TCF/LEF1 transcription factors [88]. 
Since PKG functions as a constituent of the desmosome and 
has been also shown to inhibit the transcriptional activity of 
β-catenin [64, 88], WNT signalling has been suggested to 
be implicated in AC pathogenesis.

Aberrant WNT signalling in AC was first reported by 
Garcia-Gras et al. in 2006 [32]. The authors showed that 
loss of DSP expression in cultured atrial myocytes or in mice 
leads to the nuclear translocation of PKG, where it com-
petes with β-catenin for binding to TCF/LEF1 and therefore 
inhibits β-catenin-mediated WNT signalling [32]. Since 
WNT signalling inhibition is known to promote adipogen-
esis [65], the authors suggested PKG nuclear translocation 
as an underlying mechanism to adipocyte differentiation in 
AC [32]. Reduced WNT signalling activity has been fur-
ther demonstrated in other AC mouse models overexpressing 
mutant forms of Jup [53] and Dsg2 [8] and in Dsp-deficient 
zebrafish [35]. However, conflicting to these data, cardio-
restricted Jup knockout was shown to increase β-catenin 
stabilization and TCF/LEF transcriptional activity, which 
was suggested to underlie a cardiac hypertrophic phenotype 
in these mice with no signs of cardiac adipogenesis [47]. In 
another cardiac-specific Jup knockout mouse model, WNT 
signalling was shown to be unaltered [46]. In addition to its 
involvement in adipogenic remodelling, WNT signalling has 
been also linked to cardiomyocyte apoptosis and electrical 
instabilities [2, 37], suggesting a broader role for WNT sig-
nalling in AC pathogenesis. However, further investigation 
is needed to understand the causal mechanisms underlying 
WNT pathway dysregulation in AC patients.

Hippo pathway

The Hippo pathway is well known for its roles in regulat-
ing cellular proliferation and apoptosis, thereby controlling 
growth of tissues [81]. Particularly in AC, a study showed 
that in human AC hearts, as well as in cell culture and mouse 
models of AC, Hippo signalling was activated [13]. This 
led to the phosphorylation of downstream Hippo molecules 
including the Hippo-effector molecule Yes-associated pro-
tein (YAP), which was found to interact with β-catenin and 
PKG, ultimately enhancing the adipogenic phenotype [13].
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TGFβ pathway

TGFβ signalling is key in regulating cardiac fibrosis and 
hence has been linked with fibrotic remodelling in AC 
[23, 49]. The association of TGFβ signalling with AC was 
first demonstrated by the identification of mutations in the 
UTR regions of TGFβ3 in two familial cases of AC, which 
were shown to increase the activity of TGFβ by twofold 
[7]. Furthermore, in a Jup knockout mouse model, which 
showed massive fibrosis and no alterations in WNT signal-
ling, TGFβ signalling was significantly induced [46]. The 
authors suggested that the elevated TGFβ activity could be 
contributed to an increase in myocardial wall stress as a 
result of desmosomal loss [46]. Interestingly, the increase 
in TGFβ activity has recently also been validated in 
plasma collected from AC patients, which coincided with 
an increase in fibrotic markers in endomyocardial biopsies 
[57]. In this study, the authors found that MSCs isolated 
from AC patients were more prone to fibrotic differentiation 
in response to TGFβ1 treatment compared to healthy donors 
[57]. In another study, knockdown of Pkp2 in cardiomyo-
cytes induced a TGFβ-mediated induction of pro-fibrotic 
genes [27]. This effect was corroborated in tissues isolated 
from Pkp2 and Dsp-deficient mouse and zebrafish models 
[27, 35]. In addition to its role in fibrotic differentiation, 
TGFβ is known for its crucial roles in promoting EMT sig-
nalling in the heart which can precede fibrotic remodelling 
[6, 25]. Recently, we could show that hiPSC-epicardial cells 
and primary human atrial EPDCs undergo excessive EMT 
in response to TGFβ1 treatment or desmosomal suppression 
[43]. This has been further corroborated in an epicardial-
specific Dsp knockout mouse model which demonstrated 
an epicardial-derived origin of fibroblasts due to enhanced 
EMT and TGFβ signalling [85]. However, the exact link 
between AC-related mutations and EMT remains to be 
elucidated.

PPARγ pathway

PPARγ is a nuclear receptor that functions as a master reg-
ulator of lipid uptake and adipogenesis [11]. Induction of 
PPARγ signalling together with increased lipogenesis have 
been described in different models of AC. These include 
Dsp- and Pkp2-deficient cardiomyocytes [24, 32, 42] and 
epicardial cells [43] as well as human AC hearts [22]. The 
exact mechanisms by which desmosomal dysregulation 
alters PPARγ signalling are not fully understood. However, 
one possible link could be the negative regulation of PPARγ 
by β-catenin [50], which is widely suggested to be inhibited 
in AC [8, 32, 35, 53].

Concluding remarks

AC is a multifaceted and progressive disorder. Its patho-
genesis usually initially manifests with electrophysiological 
instabilities which can lead to lethal ventricular arrhythmias 
[4]. As the disease develops, fibro-fatty remodelling pro-
gressively intervenes, which can act as an arrhythmogenic 
substrate further hindering cardiac conductivity [20, 76]. In 
this review, we discussed the possible cellular origins and 
mechanisms which can underlie fibro-fatty tissue deposition 
in AC hearts (Fig. 2). However, whether the emergence of 
fibro-fatty tissue is a direct cause of AC-related mutations, 
a consequence to cardiomyocyte death and physiological 
instabilities, or possibly both, remains an open question.

As previously outlined, cardiomyocyte-to-fibroblast/
adipocyte transdifferentiation is potentially limited in AC 
hearts. However, emerging evidence suggests the presence 
of resident cardiac cell populations with ability to differen-
tiate into fibroblasts, adipocytes or both. It is important to 
note that not a single cell population should be considered 
the only source to cardiac fibro-adiposis, as many popula-
tions can possibly overlap at different developmental and 
pathological stages. As discussed, the epicardium presents a 
strong candidate to fibro-fatty cellular differentiation. How-
ever,  Isl1+ progenitors, which were suggested to originate 
adipocytes in AC, can also give rise to epicardium [87]. 
Additionally, FAPs and MSCs, which seem to present over-
lapping cell populations, can be derived via epicardial EMT 
[14, 72], and hence can act as intermediate multipotent mes-
enchymal cell populations (Fig. 2).

From a clinical perspective, current AC treatments are 
mainly directed towards relieving symptoms and halting 
disease progression to heart failure. These include antiar-
rhythmic drugs, implantable cardioverter defibrillators, 
catheter ablation, and optimally heart transplantation [17]. 
However, with the ongoing molecular understanding to AC 
pathogenesis, treatments targeted towards specific molecular 
pathways present promising therapeutic alternatives. Using 
a high-throughput screening approach, the WNT pathway 
activator SB216763 was identified as a novel candidate to 
prevent cardiac dysfunction in zebrafish and mouse models 
of AC [2, 12]. However, specifically related to fibro-fatty 
remodelling, difficulties with recapitulating this phenom-
enon in murine AC models has halted testing potential tar-
geted therapies in a pre-clinical setting. However, one recent 
study showed that boosting levels of oxidized low-density 
lipoprotein (oxLDL) through high fat diet feeding in Pkp2 
heterozygous knockout mice that normally display no overt 
phenotype leads to sub-epicardial adipogenesis and ven-
tricular systolic impairment [73]. Since AC patients with 
severe cardiac dysfunction and fibro-fatty tissue display high 
plasma levels of oxLDL, these mice could serve as suitable 
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models to test the potential of targeting fibro-fatty tissue 
in vivo [73]. Additionally, advances in hiPSC technolo-
gies have allowed mimicking human AC pathogenesis and 
studying key pathological pathways of the disease in vitro. 
By generating patient-specific cardiac cultures, our group 
recently showed that siRNA-mediated epicardial targeting of 
transcription factor TFAP2A can reduce AC-induced EMT 
and fibro-fatty differentiation, which remains to be validated 
in a pre-clinical setting [43].

Owing to the sub-epicardial pre-dominance of fibro-fatty 
infiltrates in AC patients, therapies can potentially be con-
veniently directed towards the pericardial sac or the epi-
cardial membrane using patches, catheters and slow-release 
hydrogels [59]. However, careful assessment to off-target 
effects, identifying optimal delivery systems, and whether 
a preventative therapy can be used at early stages of the 
disease, when fibro-fatty remodelling has not yet outspread 
in the heart, are yet to be studied. This will potentially help 
design better therapeutic options for patients with AC as well 
as other forms of cardiac disease.
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